|
1
|
Forno LS: Neuropathology of Parkinson’s
disease. J Neuropathol Exp Neurol. 55:259–272. 1996.
|
|
2
|
McNaught KS and Olanow CW: Protein
aggregation in the pathogenesis of familial and sporadic
Parkinson’s disease. Neurobiol Aging. 27:530–545. 2006.
|
|
3
|
Martinez-Vicente M, Talloczy Z, Kaushik S,
et al: Dopamine-modified alpha-synuclein blocks chaperone-mediated
autophagy. J Clin Invest. 118:777–788. 2008.PubMed/NCBI
|
|
4
|
Keeney PM, Xie J, Capaldi RA and Bennett
JP Jr: Parkinson’s disease brain mitochondrial complex I has
oxidatively damaged subunits and is functionally impaired and
misassembled. J Neurosci. 26:5256–5264. 2006.
|
|
5
|
Li DW, Li GR, Lu Y, et al: alpha-lipoic
acid protects dopaminergic neurons against MPP+-induced apoptosis
by attenuating reactive oxygen species formation. Int J Mol Med.
32:108–114. 2013.PubMed/NCBI
|
|
6
|
Rasola A and Bernardi P: Mitochondrial
permeability transition in Ca(2+)-dependent apoptosis
and necrosis. Cell Calcium. 50:222–233. 2011. View Article : Google Scholar
|
|
7
|
Parker WD Jr, Boyson SJ and Parks JK:
Abnormalities of the electron transport chain in idiopathic
Parkinson’s disease. Ann Neurol. 26:719–723. 1989.
|
|
8
|
Schapira AH, Cooper JM, Dexter D, Jenner
P, Clark JB and Marsden CD: Mitochondrial complex I deficiency in
Parkinson’s disease. Lancet. 1:12691989.
|
|
9
|
Betarbet R, Sherer TB, MacKenzie G,
Garcia-Osuna M, Panov AV and Greenamyre JT: Chronic systemic
pesticide exposure reproduces features of Parkinson’s disease. Nat
Neurosci. 3:1301–1306. 2000.
|
|
10
|
Cannon JR, Tapias V, Na HM, Honick AS,
Drolet RE and Greenamyre JT: A highly reproducible rotenone model
of Parkinson’s disease. Neurobiol Dis. 34:279–290. 2009.PubMed/NCBI
|
|
11
|
Hantraye P, Brouillet E, Ferrante R, et
al: Inhibition of neuronal nitric oxide synthase prevents
MPTP-induced parkinsonism in baboons. Nat Med. 2:1017–1021. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Shang T, Kotamraju S, Kalivendi SV,
Hillard CJ and Kalyanaraman B: 1-Methyl-4-phenylpyridinium-induced
apoptosis in cerebellar granule neurons is mediated by transferrin
receptor iron-dependent depletion of tetrahydrobiopterin and
neuronal nitric-oxide synthase-derived superoxide. J Biol Chem.
279:19099–19112. 2004. View Article : Google Scholar
|
|
13
|
Hartley A, Stone JM, Heron C, Cooper JM
and Schapira AH: Complex I inhibitors induce dose-dependent
apoptosis in PC12 cells: relevance to Parkinson’s disease. J
Neurochem. 63:1987–1990. 1994.PubMed/NCBI
|
|
14
|
Kreutzberg GW: Microglia: a sensor for
pathological events in the CNS. Trends Neurosci. 19:312–318. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Monahan AJ, Warren M and Carvey PM:
Neuroinflammation and peripheral immune infiltration in Parkinson’s
disease: an autoimmune hypothesis. Cell Transplant. 17:363–372.
2008.
|
|
16
|
Hirsch EC and Hunot S: Neuroinflammation
in Parkinson’s disease: a target for neuroprotection? Lancet
Neurol. 8:382–397. 2009.
|
|
17
|
Gao HM, Zhou H, Zhang F, Wilson BC, Kam W
and Hong JS: HMGB1 acts on microglia Mac1 to mediate chronic
neuroinflammation that drives progressive neurodegeneration. J
Neurosci. 31:1081–1092. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
McGeer PL, Schwab C, Parent A and Doudet
D: Presence of reactive microglia in monkey substantia nigra years
after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration.
Ann Neurol. 54:599–604. 2003.
|
|
19
|
Block ML, Zecca L and Hong JS:
Microglia-mediated neurotoxicity: uncovering the molecular
mechanisms. Nat Rev Neurosci. 8:57–69. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Gao HM, Liu B, Zhang W and Hong JS: Novel
anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol
Sci. 24:395–401. 2003.
|
|
21
|
Wu DC, Teismann P, Tieu K, et al: NADPH
oxidase mediates oxidative stress in the
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s
disease. Proc Natl Acad Sci USA. 100:6145–6150. 2003.
|
|
22
|
Zhang F, Qian L, Flood PM, Shi JS, Hong JS
and Gao HM: Inhibition of IkappaB kinase-beta protects dopamine
neurons against lipopolysaccharide-induced neurotoxicity. J
Pharmacol Exp Ther. 333:822–833. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wang W, Yang Y, Ying C, et al: Inhibition
of glycogen synthase kinase-3beta protects dopaminergic neurons
from MPTP toxicity. Neuropharmacology. 52:1678–1684. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
King TD, Bijur GN and Jope RS: Caspase-3
activation induced by inhibition of mitochondrial complex I is
facilitated by glycogen synthase kinase-3beta and attenuated by
lithium. Brain Res. 919:106–114. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Woodgett JR: Molecular cloning and
expression of glycogen synthase kinase-3/factor A. EMBO J.
9:2431–2438. 1990.PubMed/NCBI
|
|
26
|
Parker PJ, Embi N, Caudwell FB and Cohen
P: Glycogen synthase from rabbit skeletal muscle. State of
phosphorylation of the seven phosphoserine residues in vivo in the
presence and absence of adrenaline. Eur J Biochem. 124:47–55. 1982.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Jope RS and Johnson GV: The glamour and
gloom of glycogen synthase kinase-3. Trends Biochem Sci. 29:95–102.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kockeritz L, Doble B, Patel S and Woodgett
JR: Glycogen synthase kinase-3 - an overview of an over-achieving
protein kinase. Curr Drug Targets. 7:1377–1388. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Miura T, Tanno M and Sato T: Mitochondrial
kinase signalling pathways in myocardial protection from
ischaemia/reperfusion-induced necrosis. Cardiovasc Res. 88:7–15.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Medina M, Garrido JJ and Wandosell FG:
Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies.
Front Mol Neurosci. 4:242011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
King MR, Anderson NJ, Guernsey LS and
Jolivalt CG: Glycogen synthase kinase-3 inhibition prevents
learning deficits in diabetic mice. J Neurosci Res. 91:506–514.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zheng H, Li W, Wang Y, et al: Glycogen
synthase kinase-3 beta regulates Snail and beta-catenin expression
during Fas-induced epithelial-mesenchymal transition in
gastrointestinal cancer. Eur J Cancer. 2013. View Article : Google Scholar
|
|
33
|
Dajani R, Fraser E, Roe SM, et al: Crystal
structure of glycogen synthase kinase 3 beta: structural basis for
phosphate-primed substrate specificity and autoinhibition. Cell.
105:721–732. 2001.PubMed/NCBI
|
|
34
|
Xavier IJ, Mercier PA, McLoughlin CM, Ali
A, Woodgett JR and Ovsenek N: Glycogen synthase kinase 3beta
negatively regulates both DNA-binding and transcriptional
activities of heat shock factor 1. J Biol Chem. 275:29147–29152.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Bijur GN and Jope RS: Proapoptotic stimuli
induce nuclear accumulation of glycogen synthase kinase-3 beta. J
Biol Chem. 276:37436–37442. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bijur GN and Jope RS: Glycogen synthase
kinase-3 beta is highly activated in nuclei and mitochondria.
Neuroreport. 14:2415–2419. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Hoshi M, Sato M, Kondo S, et al: Different
localization of tau protein kinase I/glycogen synthase kinase-3
beta from glycogen synthase kinase-3 alpha in cerebellum
mitochondria. J Biochem. 118:683–685. 1995.PubMed/NCBI
|
|
38
|
Senatorov VV, Ren M, Kanai H, Wei H and
Chuang DM: Short-term lithium treatment promotes neuronal survival
and proliferation in rat striatum infused with quinolinic acid, an
excitotoxic model of Huntington’s disease. Mol Psychiatry.
9:371–385. 2004.PubMed/NCBI
|
|
39
|
Bijur GN, De Sarno P and Jope RS: Glycogen
synthase kinase-3beta facilitates staurosporine- and heat
shock-induced apoptosis. Protection by lithium. J Biol Chem.
275:7583–7590. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Alvarez AR, Godoy JA, Mullendorff K,
Olivares GH, Bronfman M and Inestrosa NC: Wnt-3a overcomes
beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res.
297:186–196. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wu Y, Shang Y, Sun S, Liang H and Liu R:
Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium
ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated
signaling pathway. Apoptosis. 12:1365–1375. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Petit-Paitel A, Brau F, Cazareth J and
Chabry J: Involvment of cytosolic and mitochondrial GSK-3beta in
mitochondrial dysfunction and neuronal cell death of
MPTP/MPP-treated neurons. PLoS One. 4:e54912009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
King TD, Clodfelder-Miller B, Barksdale KA
and Bijur GN: Unregulated mitochondrial GSK3beta activity results
in NADH: ubiquinone oxidoreductase deficiency. Neurotox Res.
14:367–382. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Huang WC, Lin YS, Wang CY, et al: Glycogen
synthase kinase-3 negatively regulates anti-inflammatory
interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis
and RANTES production in microglial cells. Immunology.
128:e275–e286. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yuskaitis CJ and Jope RS: Glycogen
synthase kinase-3 regulates microglial migration, inflammation, and
inflammation-induced neurotoxicity. Cell Signal. 21:264–273. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Camello-Almaraz C, Gomez-Pinilla PJ, Pozo
MJ and Camello PJ: Mitochondrial reactive oxygen species and
Ca2+signaling. Am J Physiol Cell Physiol.
291:C1082–C1088. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Grivennikova VG and Vinogradov AD:
Generation of superoxide by the mitochondrial Complex I. Biochim
Biophys Acta. 1757:553–561. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Abou-Sleiman PM, Muqit MM and Wood NW:
Expanding insights of mitochondrial dysfunction in Parkinson’s
disease. Nat Rev Neurosci. 7:207–219. 2006.
|
|
49
|
Langston JW, Ballard P, Tetrud JW and
Irwin I: Chronic Parkinsonism in humans due to a product of
meperidine-analog synthesis. Science. 219:979–980. 1983. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chiba K, Trevor A and Castagnoli N Jr:
Metabolism of the neurotoxic tertiary amine, MPTP, by brain
monoamine oxidase. Biochem Biophys Res Commun. 120:574–578. 1984.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Javitch JA, D’Amato RJ, Strittmatter SM
and Snyder SH: Parkinsonism-inducing neurotoxin,
N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the
metabolite N-methyl-4-phenylpyridine by dopamine neurons explains
selective toxicity. Proc Natl Acad Sci USA. 82:2173–2177. 1985.
View Article : Google Scholar
|
|
52
|
Bindoff LA, Birch-Machin M, Cartlidge NE,
Parker WD Jr and Turnbull DM: Mitochondrial function in Parkinson’s
disease. Lancet. 2:491989.
|
|
53
|
Kussmaul L and Hirst J: The mechanism of
superoxide production by NADH: ubiquinone oxidoreductase (complex
I) from bovine heart mitochondria. Proc Natl Acad Sci USA.
103:7607–7612. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Sipos I, Tretter L and Adam-Vizi V:
Quantitative relationship between inhibition of respiratory
complexes and formation of reactive oxygen species in isolated
nerve terminals. J Neurochem. 84:112–118. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Murphy MP: How mitochondria produce
reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cassarino DS, Fall CP, Swerdlow RH, et al:
Elevated reactive oxygen species and antioxidant enzyme activities
in animal and cellular models of Parkinson’s disease. Biochim
Biophys Acta. 1362:77–86. 1997.PubMed/NCBI
|
|
57
|
Pastorino JG, Hoek JB and Shulga N:
Activation of glycogen synthase kinase 3beta disrupts the binding
of hexokinase II to mitochondria by phosphorylating
voltage-dependent anion channel and potentiates
chemotherapy-induced cytotoxicity. Cancer Res. 65:10545–10554.
2005. View Article : Google Scholar
|
|
58
|
Watcharasit P, Bijur GN, Song L, Zhu J,
Chen X and Jope RS: Glycogen synthase kinase-3beta (GSK3beta) binds
to and promotes the actions of p53. J Biol Chem. 278:48872–48879.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Valerio A, Bertolotti P, Delbarba A, et
al: Glycogen synthase kinase-3 inhibition reduces ischemic cerebral
damage, restores impaired mitochondrial biogenesis and prevents ROS
production. J Neurochem. 116:1148–1159. 2011. View Article : Google Scholar
|
|
60
|
Vila M and Przedborski S: Targeting
programmed cell death in neurodegenerative diseases. Nat Rev
Neurosci. 4:365–375. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Perier C, Tieu K, Guegan C, et al: Complex
I deficiency primes Bax-dependent neuronal apoptosis through
mitochondrial oxidative damage. Proc Natl Acad Sci USA.
102:19126–19131. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Roucou X and Martinou JC: Conformational
change of Bax: a question of life or death. Cell Death Differ.
8:875–877. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Obame FN, Plin-Mercier C, Assaly R, et al:
Cardioprotective effect of morphine and a blocker of glycogen
synthase kinase 3 beta, SB216763
[3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione],
via inhibition of the mitochondrial permeability transition pore. J
Pharmacol Exp Ther. 326:252–258. 2008.PubMed/NCBI
|
|
64
|
Nishihara M, Miura T, Miki T, et al:
Modulation of the mitochondrial permeability transition pore
complex in GSK-3beta-mediated myocardial protection. J Mol Cell
Cardiol. 43:564–570. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Feng J, Lucchinetti E, Ahuja P, Pasch T,
Perriard JC and Zaugg M: Isoflurane postconditioning prevents
opening of the mitochondrial permeability transition pore through
inhibition of glycogen synthase kinase 3beta. Anesthesiology.
103:987–995. 2005. View Article : Google Scholar
|
|
66
|
Park SS, Zhao H, Mueller RA and Xu Z:
Bradykinin prevents reperfusion injury by targeting mitochondrial
permeability transition pore through glycogen synthase kinase
3beta. J Mol Cell Cardiol. 40:708–716. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Gomez L, Paillard M, Thibault H, Derumeaux
G and Ovize M: Inhibition of GSK3beta by postconditioning is
required to prevent opening of the mitochondrial permeability
transition pore during reperfusion. Circulation. 117:2761–2768.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Zhou K, Zhang L, Xi J, Tian W and Xu Z:
Ethanol prevents oxidant-induced mitochondrial permeability
transition pore opening in cardiac cells. Alcohol Alcohol.
44:20–24. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Youdim MB and Arraf Z: Prevention of MPTP
(N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic
neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and
Bax. Neuropharmacology. 46:1130–1140. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Linseman DA, Butts BD, Precht TA, et al:
Glycogen synthase kinase-3beta phosphorylates Bax and promotes its
mitochondrial localization during neuronal apoptosis. J Neurosci.
24:9993–10002. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Maurer U, Charvet C, Wagman AS, Dejardin E
and Green DR: Glycogen synthase kinase-3 regulates mitochondrial
outer membrane permeabilization and apoptosis by destabilization of
MCL-1. Mol Cell. 21:749–760. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tsujimoto Y and Shimizu S: VDAC regulation
by the Bcl-2 family of proteins. Cell Death Differ. 7:1174–1181.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Martinou JC and Green DR: Breaking the
mitochondrial barrier. Nat Rev Mol Cell Biol. 2:63–67. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Armstrong JS: Mitochondrial membrane
permeabilization: the sine qua non for cell death. Bioessays.
28:253–260. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gollapudi S, McCormick MJ and Gupta S:
Changes in mitochondrial membrane potential and mitochondrial mass
occur independent of the activation of caspase-8 and caspase-3
during CD95-mediated apoptosis in peripheral blood T cells. Int J
Oncol. 22:597–600. 2003.PubMed/NCBI
|
|
76
|
Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET
and Yu Q: Pharmacologic modulation of glycogen synthase
kinase-3beta promotes p53-dependent apoptosis through a direct
Bax-mediated mitochondrial pathway in colorectal cancer cells.
Cancer Res. 65:9012–9020. 2005. View Article : Google Scholar
|
|
77
|
Chen G, Zeng WZ, Yuan PX, et al: The
mood-stabilizing agents lithium and valproate robustly increase the
levels of the neuroprotective protein bcl-2 in the CNS. J
Neurochem. 72:879–882. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kaga S, Zhan L, Altaf E and Maulik N:
Glycogen synthase kinase-3beta/beta-catenin promotes angiogenic and
anti-apoptotic signaling through the induction of VEGF, Bcl-2 and
survivin expression in rat ischemic preconditioned myocardium. J
Mol Cell Cardiol. 40:138–147. 2006. View Article : Google Scholar
|
|
79
|
Chen RW and Chuang DM: Long term lithium
treatment suppresses p53 and Bax expression but increases Bcl-2
expression. A prominent role in neuroprotection against
excitotoxicity. J Biol Chem. 274:6039–6042. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Ohori K, Miura T, Tanno M, et al: Ser9
phosphorylation of mitochondrial GSK-3beta is a primary mechanism
of cardiomyocyte protection by erythropoietin against
oxidant-induced apoptosis. Am J Physiol Heart Circ Physiol.
295:H2079–H2086. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Ge XH, Zhu GJ, Geng DQ, Zhang ZJ and Liu
CF: Erythropoietin attenuates 6-hydroxydopamine-induced apoptosis
via glycogen synthase kinase 3b-mediated mitochondrial
translocation of Bax in PC12 cells. Neurol Sci. 33:1249–1256. 2012.
View Article : Google Scholar
|
|
82
|
Ngok-Ngam P, Watcharasit P, Thiantanawat A
and Satayavivad J: Pharmacological inhibition of GSK3 attenuates
DNA damage-induced apoptosis via reduction of p53 mitochondrial
translocation and Bax oligomerization in neuroblastoma SH-SY5Y
cells. Cell Mol Biol Lett. 18:58–74. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Samii A, Nutt JG and Ransom BR:
Parkinson’s disease. Lancet. 363:1783–1793. 2004.
|
|
84
|
Spillantini MG, Schmidt ML, Lee VM,
Trojanowski JQ, Jakes R and Goedert M: Alpha-synuclein in Lewy
bodies. Nature. 388:839–840. 1997. View
Article : Google Scholar : PubMed/NCBI
|
|
85
|
Singleton AB, Farrer M, Johnson J, et al:
alpha-Synuclein locus triplication causes Parkinson’s disease.
Science. 302:8412003.
|
|
86
|
Liu D, Jin L, Wang H, et al: Silencing
alpha-synuclein gene expression enhances tyrosine hydroxylase
activity in MN9D cells. Neurochem Res. 33:1401–1409. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Baptista MJ, O’Farrell C, Daya S, et al:
Co-ordinate transcriptional regulation of dopamine synthesis genes
by alpha-synuclein in human neuroblastoma cell lines. J Neurochem.
85:957–968. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Perez RG, Waymire JC, Lin E, Liu JJ, Guo F
and Zigmond MJ: A role for alpha-synuclein in the regulation of
dopamine biosynthesis. J Neurosci. 22:3090–3099. 2002.
|
|
89
|
Yu S, Zuo X, Li Y, et al: Inhibition of
tyrosine hydroxylase expression in alpha-synuclein-transfected
dopaminergic neuronal cells. Neurosci Lett. 367:34–39. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Danzer KM, Haasen D, Karow AR, et al:
Different species of alpha-synuclein oligomers induce calcium
influx and seeding. J Neurosci. 27:9220–9232. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Periquet M, Fulga T, Myllykangas L,
Schlossmacher MG and Feany MB: Aggregated alpha-synuclein mediates
dopaminergic neurotoxicity in vivo. J Neurosci. 27:3338–3346. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Desplats P, Lee HJ, Bae EJ, et al:
Inclusion formation and neuronal cell death through
neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad
Sci USA. 106:13010–13015. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Masliah E, Rockenstein E, Veinbergs I, et
al: Dopaminergic loss and inclusion body formation in
alpha-synuclein mice: implications for neurodegenerative disorders.
Science. 287:1265–1269. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Parihar MS, Parihar A, Fujita M, Hashimoto
M and Ghafourifar P: Mitochondrial association of alpha-synuclein
causes oxidative stress. Cell Mol Life Sci. 65:1272–1284. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Parihar MS, Parihar A, Fujita M, Hashimoto
M and Ghafourifar P: Alpha-synuclein overexpression and aggregation
exacerbates impairment of mitochondrial functions by augmenting
oxidative stress in human neuroblastoma cells. Int J Biochem Cell
Biol. 41:2015–2024. 2009. View Article : Google Scholar
|
|
96
|
Hsu LJ, Sagara Y, Arroyo A, et al:
alpha-synuclein promotes mitochondrial deficit and oxidative
stress. Am J Pathol. 157:401–410. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Feng LR, Federoff HJ, Vicini S and
Maguire-Zeiss KA: Alpha-synuclein mediates alterations in membrane
conductance: a potential role for alpha-synuclein oligomers in cell
vulnerability. Eur J Neurosci. 32:10–17. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lee EJ, Woo MS, Moon PG, et al:
Alpha-synuclein activates microglia by inducing the expressions of
matrix metalloproteinases and the subsequent activation of
protease-activated receptor-1. J Immunol. 185:615–623. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Su X, Federoff HJ and Maguire-Zeiss KA:
Mutant alpha-synuclein overexpression mediates early
proinflammatory activity. Neurotox Res. 16:238–254. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Theodore S, Cao S, McLean PJ and Standaert
DG: Targeted overexpression of human alpha-synuclein triggers
microglial activation and an adaptive immune response in a mouse
model of Parkinson disease. J Neuropathol Exp Neurol. 67:1149–1158.
2008. View Article : Google Scholar
|
|
101
|
Kozikowski AP, Gaisina IN, Petukhov PA, et
al: Highly potent and specific GSK-3beta inhibitors that block tau
phosphorylation and decrease alpha-synuclein protein expression in
a cellular model of Parkinson’s disease. ChemMedChem. 1:256–266.
2006.PubMed/NCBI
|
|
102
|
Haggerty T, Credle J, Rodriguez O, et al:
Hyperphosphorylated Tau in an alpha-synuclein-overexpressing
transgenic model of Parkinson’s disease. Eur J Neurosci.
33:1598–1610. 2011.PubMed/NCBI
|
|
103
|
Wills J, Jones J, Haggerty T, Duka V,
Joyce JN and Sidhu A: Elevated tauopathy and alpha-synuclein
pathology in postmortem Parkinson’s disease brains with and without
dementia. Exp Neurol. 225:210–218. 2010.
|
|
104
|
Cho JH and Johnson GV: Glycogen synthase
kinase 3 beta induces caspase-cleaved tau aggregation in situ. J
Biol Chem. 279:54716–54723. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Peng JH, Zhang CE, Wei W, Hong XP, Pan XP
and Wang JZ: Dehydroevodiamine attenuates tau hyperphosphorylation
and spatial memory deficit induced by activation of glycogen
synthase kinase-3 in rats. Neuropharmacology. 52:1521–1527. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chun W and Johnson GV: Activation of
glycogen synthase kinase 3beta promotes the intermolecular
association of tau. The use of fluorescence resonance energy
transfer microscopy. J Biol Chem. 282:23410–23417. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Greco SJ, Sarkar S, Casadesus G, et al:
Leptin inhibits glycogen synthase kinase-3beta to prevent tau
phosphorylation in neuronal cells. Neurosci Lett. 455:191–194.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Crouch PJ, Hung LW, Adlard PA, et al:
Increasing Cu bioavailability inhibits Abeta oligomers and tau
phosphorylation. Proc Natl Acad Sci USA. 106:381–386. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Engel T, Lucas JJ, Gomez-Ramos P, Moran
MA, Avila J and Hernandez F: Cooexpression of FTDP-17 tau and
GSK-3beta in transgenic mice induce tau polymerization and
neurodegeneration. Neurobiol Aging. 27:1258–1268. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Engel T, Hernandez F, Avila J and Lucas
JJ: Full reversal of Alzheimer’s disease-like phenotype in a mouse
model with conditional overexpression of glycogen synthase
kinase-3. J Neurosci. 26:5083–5090. 2006.
|
|
111
|
Perez M, Hernandez F, Lim F, Diaz-Nido J
and Avila J: Chronic lithium treatment decreases mutant tau protein
aggregation in a transgenic mouse model. J Alzheimers Dis.
5:301–308. 2003.PubMed/NCBI
|
|
112
|
Nakashima H, Ishihara T, Suguimoto P, et
al: Chronic lithium treatment decreases tau lesions by promoting
ubiquitination in a mouse model of tauopathies. Acta Neuropathol.
110:547–556. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Engel T, Goni-Oliver P, Lucas JJ, Avila J
and Hernandez F: Chronic lithium administration to FTDP-17 tau and
GSK-3beta overexpressing mice prevents tau hyperphosphorylation and
neurofibrillary tangle formation, but pre-formed neurofibrillary
tangles do not revert. J Neurochem. 99:1445–1455. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Gao HM and Hong JS: Why neurodegenerative
diseases are progressive: uncontrolled inflammation drives disease
progression. Trends Immunol. 29:357–365. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Kim SU and de Vellis J: Microglia in
health and disease. J Neurosci Res. 81:302–313. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Mrak RE and Griffin WS: Glia and their
cytokines in progression of neurodegeneration. Neurobiol Aging.
26:349–354. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
McGeer PL and McGeer EG: Glial reactions
in Parkinson’s disease. Mov Disord. 23:474–483. 2008.
|
|
118
|
Ouchi Y, Yagi S, Yokokura M and Sakamoto
M: Neuroinflammation in the living brain of Parkinson’s disease.
Parkinsonism Relat Disord. 15 Suppl 3:S200–S204. 2009.
|
|
119
|
Hunot S, Dugas N, Faucheux B, et al:
FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces,
in vitro, production of nitric oxide and tumor necrosis
factor-alpha in glial cells. J Neurosci. 19:3440–3447.
1999.PubMed/NCBI
|
|
120
|
Mogi M, Harada M, Narabayashi H, Inagaki
H, Minami M and Nagatsu T: Interleukin (IL)-1 beta, IL-2, IL-4,
IL-6 and transforming growth factor-alpha levels are elevated in
ventricular cerebrospinal fluid in juvenile parkinsonism and
Parkinson’s disease. Neurosci Lett. 211:13–16. 1996.PubMed/NCBI
|
|
121
|
Koziorowski D, Tomasiuk R, Szlufik S and
Friedman A: Inflammatory cytokines and NT-proCNP in Parkinson’s
disease patients. Cytokine. 60:762–766. 2012.
|
|
122
|
Przedborski S: Inflammation and
Parkinson’s disease pathogenesis. Mov Disord. 25 Suppl 1:S55–S57.
2010.
|
|
123
|
Frankola KA, Greig NH, Luo W and Tweedie
D: Targeting TNF-alpha to elucidate and ameliorate
neuroinflammation in neurodegenerative diseases. CNS Neurol Disord
Drug Targets. 10:391–403. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Qian L, Flood PM and Hong JS:
Neuroinflammation is a key player in Parkinson’s disease and a
prime target for therapy. J Neural Transm. 117:971–979. 2010.
|
|
125
|
Lofrumento DD, Nicolardi G, Cianciulli A,
et al: Neuroprotective effects of resveratrol in an MPTP mouse
model of Parkinson’s-like disease: Possible role of SOCS-1 in
reducing pro-inflammatory responses. Innate Immun. 2013.PubMed/NCBI
|
|
126
|
Martin M, Rehani K, Jope RS and Michalek
SM: Toll-like receptor-mediated cytokine production is
differentially regulated by glycogen synthase kinase 3. Nat
Immunol. 6:777–784. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
127
|
Jope RS, Yuskaitis CJ and Beurel E:
Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and
therapeutics. Neurochem Res. 32:577–595. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Beurel E and Jope RS:
Lipopolysaccharide-induced interleukin-6 production is controlled
by glycogen synthase kinase-3 and STAT3 in the brain. J
Neuroinflammation. 6:92009. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Cheng YL, Wang CY, Huang WC, et al:
Staphylococcus aureus induces microglial inflammation via a
glycogen synthase kinase 3beta-regulated pathway. Infect Immun.
77:4002–4008. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Wang MJ, Huang HY, Chen WF, Chang HF and
Kuo JS: Glycogen synthase kinase-3beta inactivation inhibits tumor
necrosis factor-alpha production in microglia by modulating nuclear
factor kappaB and MLK3/JNK signaling cascades. J Neuroinflammation.
7:992010. View Article : Google Scholar
|
|
131
|
Colasanti M, Persichini T, Di Pucchio T,
Gremo F and Lauro GM: Human ramified microglial cells produce
nitric oxide upon Escherichia coli lipopolysaccharide and tumor
necrosis factor alpha stimulation. Neurosci Lett. 200:144–146.
1995. View Article : Google Scholar
|
|
132
|
Block ML and Hong JS: Chronic microglial
activation and progressive dopaminergic neurotoxicity. Biochem Soc
Trans. 35:1127–1132. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Członkowska A, Kohutnicka M,
Kurkowska-Jastrzebska I and Członkowski A: Microglial reaction in
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced
Parkinson’s disease mice model. Neurodegeneration. 5:137–143.
1996.
|
|
134
|
Przedborski S and Vila M: The
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to
explore the pathogenesis of Parkinson’s disease. Ann NY Acad Sci.
991:189–198. 2003.PubMed/NCBI
|
|
135
|
Duka T, Duka V, Joyce JN and Sidhu A:
Alpha-Synuclein contributes to GSK-3beta-catalyzed Tau
phosphorylation in Parkinson’s disease models. FASEB J.
23:2820–2830. 2009.PubMed/NCBI
|
|
136
|
Watcharasit P, Thiantanawat A and
Satayavivad J: GSK3 promotes arsenite-induced apoptosis via
facilitation of mitochondria disruption. J Appl Toxicol.
28:466–474. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Cookson MR: The biochemistry of
Parkinson’s disease. Annu Rev Biochem. 74:29–52. 2005.
|