Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
June-2014 Volume 9 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2014 Volume 9 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Association of glycogen synthase kinase‑3β with Parkinson's disease (Review)

  • Authors:
    • Da‑Wei Li
    • Zhi‑Qiang Liu
    • Wei Chen
    • Min Yao
    • Guang‑Ren Li
  • View Affiliations / Copyright

    Affiliations: Department of Neurology, Affiliated Hospital of Beihua University, Jilin, Jilin 132000, P.R. China, Department of Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China, Department of Neurology, The Third Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].
  • Pages: 2043-2050
    |
    Published online on: March 28, 2014
       https://doi.org/10.3892/mmr.2014.2080
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Glycogen synthase kinase‑3 (GSK‑3) is a pleiotropic serine/threonine protein kinase found in almost all eukaryotes. It is structurally highly conserved and has been identified as a multifaceted enzyme affecting a wide range of biological functions, including gene expression and cellular processes. There are two closely related isoforms of GSK‑3; GSK‑3α and GSK‑3β. The latter appears to play crucial roles in regulating the pathogenesis of diverse diseases, including neurodegenerative disease. The present review focuses on the involvement of this protein in Parkinson's disease (PD), a common neurodegenerative disorder characterized by the gradually progressive and selective loss of dopaminergic neurons, and by intracellular inclusions known as Lewy bodies (LBs) expressed in surviving neurons of the substantia nigra (SN). GSK‑3β is involved in multiple signaling pathways and has several phosphorylation targets. Numerous apoptotic conditions can be facilitated by the GSK‑3β signaling pathways. Studies have shown that GSK‑3β inhibition protects the dopaminergic neurons from various stress‑induced injuries, indicating the involvement of GSK‑3β in PD pathogenesis. However, the underlying mechanisms of the protective effect of GSK‑3β inhibition on dopaminergic neurons in PD is not completely understood. Multiple pathological events have been recognized to be responsible for the loss of dopaminergic neurons in PD, including mitochondrial dysfunction, oxidative stress, protein aggregation and neuroinflammation. The present review stresses the regulatory roles of GSK‑3β in these events and in dopaminergic neuron degeneration, in an attempt to gain an improved understanding of the underlying mechanisms and to provide a potential effective therapeutic target for PD.
View Figures

Figure 1

Figure 2

View References

1 

Forno LS: Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol. 55:259–272. 1996.

2 

McNaught KS and Olanow CW: Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging. 27:530–545. 2006.

3 

Martinez-Vicente M, Talloczy Z, Kaushik S, et al: Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest. 118:777–788. 2008.PubMed/NCBI

4 

Keeney PM, Xie J, Capaldi RA and Bennett JP Jr: Parkinson’s disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci. 26:5256–5264. 2006.

5 

Li DW, Li GR, Lu Y, et al: alpha-lipoic acid protects dopaminergic neurons against MPP+-induced apoptosis by attenuating reactive oxygen species formation. Int J Mol Med. 32:108–114. 2013.PubMed/NCBI

6 

Rasola A and Bernardi P: Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium. 50:222–233. 2011. View Article : Google Scholar

7 

Parker WD Jr, Boyson SJ and Parks JK: Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Ann Neurol. 26:719–723. 1989.

8 

Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB and Marsden CD: Mitochondrial complex I deficiency in Parkinson’s disease. Lancet. 1:12691989.

9 

Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV and Greenamyre JT: Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 3:1301–1306. 2000.

10 

Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE and Greenamyre JT: A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis. 34:279–290. 2009.PubMed/NCBI

11 

Hantraye P, Brouillet E, Ferrante R, et al: Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med. 2:1017–1021. 1996. View Article : Google Scholar : PubMed/NCBI

12 

Shang T, Kotamraju S, Kalivendi SV, Hillard CJ and Kalyanaraman B: 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide. J Biol Chem. 279:19099–19112. 2004. View Article : Google Scholar

13 

Hartley A, Stone JM, Heron C, Cooper JM and Schapira AH: Complex I inhibitors induce dose-dependent apoptosis in PC12 cells: relevance to Parkinson’s disease. J Neurochem. 63:1987–1990. 1994.PubMed/NCBI

14 

Kreutzberg GW: Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 19:312–318. 1996. View Article : Google Scholar : PubMed/NCBI

15 

Monahan AJ, Warren M and Carvey PM: Neuroinflammation and peripheral immune infiltration in Parkinson’s disease: an autoimmune hypothesis. Cell Transplant. 17:363–372. 2008.

16 

Hirsch EC and Hunot S: Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8:382–397. 2009.

17 

Gao HM, Zhou H, Zhang F, Wilson BC, Kam W and Hong JS: HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration. J Neurosci. 31:1081–1092. 2011. View Article : Google Scholar : PubMed/NCBI

18 

McGeer PL, Schwab C, Parent A and Doudet D: Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol. 54:599–604. 2003.

19 

Block ML, Zecca L and Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 8:57–69. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Gao HM, Liu B, Zhang W and Hong JS: Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci. 24:395–401. 2003.

21 

Wu DC, Teismann P, Tieu K, et al: NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA. 100:6145–6150. 2003.

22 

Zhang F, Qian L, Flood PM, Shi JS, Hong JS and Gao HM: Inhibition of IkappaB kinase-beta protects dopamine neurons against lipopolysaccharide-induced neurotoxicity. J Pharmacol Exp Ther. 333:822–833. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Wang W, Yang Y, Ying C, et al: Inhibition of glycogen synthase kinase-3beta protects dopaminergic neurons from MPTP toxicity. Neuropharmacology. 52:1678–1684. 2007. View Article : Google Scholar : PubMed/NCBI

24 

King TD, Bijur GN and Jope RS: Caspase-3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase-3beta and attenuated by lithium. Brain Res. 919:106–114. 2001. View Article : Google Scholar : PubMed/NCBI

25 

Woodgett JR: Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J. 9:2431–2438. 1990.PubMed/NCBI

26 

Parker PJ, Embi N, Caudwell FB and Cohen P: Glycogen synthase from rabbit skeletal muscle. State of phosphorylation of the seven phosphoserine residues in vivo in the presence and absence of adrenaline. Eur J Biochem. 124:47–55. 1982. View Article : Google Scholar : PubMed/NCBI

27 

Jope RS and Johnson GV: The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci. 29:95–102. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Kockeritz L, Doble B, Patel S and Woodgett JR: Glycogen synthase kinase-3 - an overview of an over-achieving protein kinase. Curr Drug Targets. 7:1377–1388. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Miura T, Tanno M and Sato T: Mitochondrial kinase signalling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovasc Res. 88:7–15. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Medina M, Garrido JJ and Wandosell FG: Modulation of GSK-3 as a Therapeutic Strategy on Tau Pathologies. Front Mol Neurosci. 4:242011. View Article : Google Scholar : PubMed/NCBI

31 

King MR, Anderson NJ, Guernsey LS and Jolivalt CG: Glycogen synthase kinase-3 inhibition prevents learning deficits in diabetic mice. J Neurosci Res. 91:506–514. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Zheng H, Li W, Wang Y, et al: Glycogen synthase kinase-3 beta regulates Snail and beta-catenin expression during Fas-induced epithelial-mesenchymal transition in gastrointestinal cancer. Eur J Cancer. 2013. View Article : Google Scholar

33 

Dajani R, Fraser E, Roe SM, et al: Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 105:721–732. 2001.PubMed/NCBI

34 

Xavier IJ, Mercier PA, McLoughlin CM, Ali A, Woodgett JR and Ovsenek N: Glycogen synthase kinase 3beta negatively regulates both DNA-binding and transcriptional activities of heat shock factor 1. J Biol Chem. 275:29147–29152. 2000. View Article : Google Scholar : PubMed/NCBI

35 

Bijur GN and Jope RS: Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta. J Biol Chem. 276:37436–37442. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Bijur GN and Jope RS: Glycogen synthase kinase-3 beta is highly activated in nuclei and mitochondria. Neuroreport. 14:2415–2419. 2003. View Article : Google Scholar : PubMed/NCBI

37 

Hoshi M, Sato M, Kondo S, et al: Different localization of tau protein kinase I/glycogen synthase kinase-3 beta from glycogen synthase kinase-3 alpha in cerebellum mitochondria. J Biochem. 118:683–685. 1995.PubMed/NCBI

38 

Senatorov VV, Ren M, Kanai H, Wei H and Chuang DM: Short-term lithium treatment promotes neuronal survival and proliferation in rat striatum infused with quinolinic acid, an excitotoxic model of Huntington’s disease. Mol Psychiatry. 9:371–385. 2004.PubMed/NCBI

39 

Bijur GN, De Sarno P and Jope RS: Glycogen synthase kinase-3beta facilitates staurosporine- and heat shock-induced apoptosis. Protection by lithium. J Biol Chem. 275:7583–7590. 2000. View Article : Google Scholar : PubMed/NCBI

40 

Alvarez AR, Godoy JA, Mullendorff K, Olivares GH, Bronfman M and Inestrosa NC: Wnt-3a overcomes beta-amyloid toxicity in rat hippocampal neurons. Exp Cell Res. 297:186–196. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Wu Y, Shang Y, Sun S, Liang H and Liu R: Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway. Apoptosis. 12:1365–1375. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Petit-Paitel A, Brau F, Cazareth J and Chabry J: Involvment of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons. PLoS One. 4:e54912009. View Article : Google Scholar : PubMed/NCBI

43 

King TD, Clodfelder-Miller B, Barksdale KA and Bijur GN: Unregulated mitochondrial GSK3beta activity results in NADH: ubiquinone oxidoreductase deficiency. Neurotox Res. 14:367–382. 2008. View Article : Google Scholar : PubMed/NCBI

44 

Huang WC, Lin YS, Wang CY, et al: Glycogen synthase kinase-3 negatively regulates anti-inflammatory interleukin-10 for lipopolysaccharide-induced iNOS/NO biosynthesis and RANTES production in microglial cells. Immunology. 128:e275–e286. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Yuskaitis CJ and Jope RS: Glycogen synthase kinase-3 regulates microglial migration, inflammation, and inflammation-induced neurotoxicity. Cell Signal. 21:264–273. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ and Camello PJ: Mitochondrial reactive oxygen species and Ca2+signaling. Am J Physiol Cell Physiol. 291:C1082–C1088. 2006. View Article : Google Scholar : PubMed/NCBI

47 

Grivennikova VG and Vinogradov AD: Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta. 1757:553–561. 2006. View Article : Google Scholar : PubMed/NCBI

48 

Abou-Sleiman PM, Muqit MM and Wood NW: Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci. 7:207–219. 2006.

49 

Langston JW, Ballard P, Tetrud JW and Irwin I: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 219:979–980. 1983. View Article : Google Scholar : PubMed/NCBI

50 

Chiba K, Trevor A and Castagnoli N Jr: Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun. 120:574–578. 1984. View Article : Google Scholar : PubMed/NCBI

51 

Javitch JA, D’Amato RJ, Strittmatter SM and Snyder SH: Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA. 82:2173–2177. 1985. View Article : Google Scholar

52 

Bindoff LA, Birch-Machin M, Cartlidge NE, Parker WD Jr and Turnbull DM: Mitochondrial function in Parkinson’s disease. Lancet. 2:491989.

53 

Kussmaul L and Hirst J: The mechanism of superoxide production by NADH: ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA. 103:7607–7612. 2006. View Article : Google Scholar : PubMed/NCBI

54 

Sipos I, Tretter L and Adam-Vizi V: Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem. 84:112–118. 2003. View Article : Google Scholar : PubMed/NCBI

55 

Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Cassarino DS, Fall CP, Swerdlow RH, et al: Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochim Biophys Acta. 1362:77–86. 1997.PubMed/NCBI

57 

Pastorino JG, Hoek JB and Shulga N: Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res. 65:10545–10554. 2005. View Article : Google Scholar

58 

Watcharasit P, Bijur GN, Song L, Zhu J, Chen X and Jope RS: Glycogen synthase kinase-3beta (GSK3beta) binds to and promotes the actions of p53. J Biol Chem. 278:48872–48879. 2003. View Article : Google Scholar : PubMed/NCBI

59 

Valerio A, Bertolotti P, Delbarba A, et al: Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. J Neurochem. 116:1148–1159. 2011. View Article : Google Scholar

60 

Vila M and Przedborski S: Targeting programmed cell death in neurodegenerative diseases. Nat Rev Neurosci. 4:365–375. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Perier C, Tieu K, Guegan C, et al: Complex I deficiency primes Bax-dependent neuronal apoptosis through mitochondrial oxidative damage. Proc Natl Acad Sci USA. 102:19126–19131. 2005. View Article : Google Scholar : PubMed/NCBI

62 

Roucou X and Martinou JC: Conformational change of Bax: a question of life or death. Cell Death Differ. 8:875–877. 2001. View Article : Google Scholar : PubMed/NCBI

63 

Obame FN, Plin-Mercier C, Assaly R, et al: Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3 beta, SB216763 [3-(2,4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione], via inhibition of the mitochondrial permeability transition pore. J Pharmacol Exp Ther. 326:252–258. 2008.PubMed/NCBI

64 

Nishihara M, Miura T, Miki T, et al: Modulation of the mitochondrial permeability transition pore complex in GSK-3beta-mediated myocardial protection. J Mol Cell Cardiol. 43:564–570. 2007. View Article : Google Scholar : PubMed/NCBI

65 

Feng J, Lucchinetti E, Ahuja P, Pasch T, Perriard JC and Zaugg M: Isoflurane postconditioning prevents opening of the mitochondrial permeability transition pore through inhibition of glycogen synthase kinase 3beta. Anesthesiology. 103:987–995. 2005. View Article : Google Scholar

66 

Park SS, Zhao H, Mueller RA and Xu Z: Bradykinin prevents reperfusion injury by targeting mitochondrial permeability transition pore through glycogen synthase kinase 3beta. J Mol Cell Cardiol. 40:708–716. 2006. View Article : Google Scholar : PubMed/NCBI

67 

Gomez L, Paillard M, Thibault H, Derumeaux G and Ovize M: Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation. 117:2761–2768. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Zhou K, Zhang L, Xi J, Tian W and Xu Z: Ethanol prevents oxidant-induced mitochondrial permeability transition pore opening in cardiac cells. Alcohol Alcohol. 44:20–24. 2009. View Article : Google Scholar : PubMed/NCBI

69 

Youdim MB and Arraf Z: Prevention of MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) dopaminergic neurotoxicity in mice by chronic lithium: involvements of Bcl-2 and Bax. Neuropharmacology. 46:1130–1140. 2004. View Article : Google Scholar : PubMed/NCBI

70 

Linseman DA, Butts BD, Precht TA, et al: Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci. 24:9993–10002. 2004. View Article : Google Scholar : PubMed/NCBI

71 

Maurer U, Charvet C, Wagman AS, Dejardin E and Green DR: Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell. 21:749–760. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Tsujimoto Y and Shimizu S: VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ. 7:1174–1181. 2000. View Article : Google Scholar : PubMed/NCBI

73 

Martinou JC and Green DR: Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol. 2:63–67. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Armstrong JS: Mitochondrial membrane permeabilization: the sine qua non for cell death. Bioessays. 28:253–260. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Gollapudi S, McCormick MJ and Gupta S: Changes in mitochondrial membrane potential and mitochondrial mass occur independent of the activation of caspase-8 and caspase-3 during CD95-mediated apoptosis in peripheral blood T cells. Int J Oncol. 22:597–600. 2003.PubMed/NCBI

76 

Tan J, Zhuang L, Leong HS, Iyer NG, Liu ET and Yu Q: Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res. 65:9012–9020. 2005. View Article : Google Scholar

77 

Chen G, Zeng WZ, Yuan PX, et al: The mood-stabilizing agents lithium and valproate robustly increase the levels of the neuroprotective protein bcl-2 in the CNS. J Neurochem. 72:879–882. 1999. View Article : Google Scholar : PubMed/NCBI

78 

Kaga S, Zhan L, Altaf E and Maulik N: Glycogen synthase kinase-3beta/beta-catenin promotes angiogenic and anti-apoptotic signaling through the induction of VEGF, Bcl-2 and survivin expression in rat ischemic preconditioned myocardium. J Mol Cell Cardiol. 40:138–147. 2006. View Article : Google Scholar

79 

Chen RW and Chuang DM: Long term lithium treatment suppresses p53 and Bax expression but increases Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem. 274:6039–6042. 1999. View Article : Google Scholar : PubMed/NCBI

80 

Ohori K, Miura T, Tanno M, et al: Ser9 phosphorylation of mitochondrial GSK-3beta is a primary mechanism of cardiomyocyte protection by erythropoietin against oxidant-induced apoptosis. Am J Physiol Heart Circ Physiol. 295:H2079–H2086. 2008. View Article : Google Scholar : PubMed/NCBI

81 

Ge XH, Zhu GJ, Geng DQ, Zhang ZJ and Liu CF: Erythropoietin attenuates 6-hydroxydopamine-induced apoptosis via glycogen synthase kinase 3b-mediated mitochondrial translocation of Bax in PC12 cells. Neurol Sci. 33:1249–1256. 2012. View Article : Google Scholar

82 

Ngok-Ngam P, Watcharasit P, Thiantanawat A and Satayavivad J: Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell Mol Biol Lett. 18:58–74. 2013. View Article : Google Scholar : PubMed/NCBI

83 

Samii A, Nutt JG and Ransom BR: Parkinson’s disease. Lancet. 363:1783–1793. 2004.

84 

Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R and Goedert M: Alpha-synuclein in Lewy bodies. Nature. 388:839–840. 1997. View Article : Google Scholar : PubMed/NCBI

85 

Singleton AB, Farrer M, Johnson J, et al: alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 302:8412003.

86 

Liu D, Jin L, Wang H, et al: Silencing alpha-synuclein gene expression enhances tyrosine hydroxylase activity in MN9D cells. Neurochem Res. 33:1401–1409. 2008. View Article : Google Scholar : PubMed/NCBI

87 

Baptista MJ, O’Farrell C, Daya S, et al: Co-ordinate transcriptional regulation of dopamine synthesis genes by alpha-synuclein in human neuroblastoma cell lines. J Neurochem. 85:957–968. 2003. View Article : Google Scholar : PubMed/NCBI

88 

Perez RG, Waymire JC, Lin E, Liu JJ, Guo F and Zigmond MJ: A role for alpha-synuclein in the regulation of dopamine biosynthesis. J Neurosci. 22:3090–3099. 2002.

89 

Yu S, Zuo X, Li Y, et al: Inhibition of tyrosine hydroxylase expression in alpha-synuclein-transfected dopaminergic neuronal cells. Neurosci Lett. 367:34–39. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Danzer KM, Haasen D, Karow AR, et al: Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci. 27:9220–9232. 2007. View Article : Google Scholar : PubMed/NCBI

91 

Periquet M, Fulga T, Myllykangas L, Schlossmacher MG and Feany MB: Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J Neurosci. 27:3338–3346. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Desplats P, Lee HJ, Bae EJ, et al: Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci USA. 106:13010–13015. 2009. View Article : Google Scholar : PubMed/NCBI

93 

Masliah E, Rockenstein E, Veinbergs I, et al: Dopaminergic loss and inclusion body formation in alpha-synuclein mice: implications for neurodegenerative disorders. Science. 287:1265–1269. 2000. View Article : Google Scholar : PubMed/NCBI

94 

Parihar MS, Parihar A, Fujita M, Hashimoto M and Ghafourifar P: Mitochondrial association of alpha-synuclein causes oxidative stress. Cell Mol Life Sci. 65:1272–1284. 2008. View Article : Google Scholar : PubMed/NCBI

95 

Parihar MS, Parihar A, Fujita M, Hashimoto M and Ghafourifar P: Alpha-synuclein overexpression and aggregation exacerbates impairment of mitochondrial functions by augmenting oxidative stress in human neuroblastoma cells. Int J Biochem Cell Biol. 41:2015–2024. 2009. View Article : Google Scholar

96 

Hsu LJ, Sagara Y, Arroyo A, et al: alpha-synuclein promotes mitochondrial deficit and oxidative stress. Am J Pathol. 157:401–410. 2000. View Article : Google Scholar : PubMed/NCBI

97 

Feng LR, Federoff HJ, Vicini S and Maguire-Zeiss KA: Alpha-synuclein mediates alterations in membrane conductance: a potential role for alpha-synuclein oligomers in cell vulnerability. Eur J Neurosci. 32:10–17. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Lee EJ, Woo MS, Moon PG, et al: Alpha-synuclein activates microglia by inducing the expressions of matrix metalloproteinases and the subsequent activation of protease-activated receptor-1. J Immunol. 185:615–623. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Su X, Federoff HJ and Maguire-Zeiss KA: Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res. 16:238–254. 2009. View Article : Google Scholar : PubMed/NCBI

100 

Theodore S, Cao S, McLean PJ and Standaert DG: Targeted overexpression of human alpha-synuclein triggers microglial activation and an adaptive immune response in a mouse model of Parkinson disease. J Neuropathol Exp Neurol. 67:1149–1158. 2008. View Article : Google Scholar

101 

Kozikowski AP, Gaisina IN, Petukhov PA, et al: Highly potent and specific GSK-3beta inhibitors that block tau phosphorylation and decrease alpha-synuclein protein expression in a cellular model of Parkinson’s disease. ChemMedChem. 1:256–266. 2006.PubMed/NCBI

102 

Haggerty T, Credle J, Rodriguez O, et al: Hyperphosphorylated Tau in an alpha-synuclein-overexpressing transgenic model of Parkinson’s disease. Eur J Neurosci. 33:1598–1610. 2011.PubMed/NCBI

103 

Wills J, Jones J, Haggerty T, Duka V, Joyce JN and Sidhu A: Elevated tauopathy and alpha-synuclein pathology in postmortem Parkinson’s disease brains with and without dementia. Exp Neurol. 225:210–218. 2010.

104 

Cho JH and Johnson GV: Glycogen synthase kinase 3 beta induces caspase-cleaved tau aggregation in situ. J Biol Chem. 279:54716–54723. 2004. View Article : Google Scholar : PubMed/NCBI

105 

Peng JH, Zhang CE, Wei W, Hong XP, Pan XP and Wang JZ: Dehydroevodiamine attenuates tau hyperphosphorylation and spatial memory deficit induced by activation of glycogen synthase kinase-3 in rats. Neuropharmacology. 52:1521–1527. 2007. View Article : Google Scholar : PubMed/NCBI

106 

Chun W and Johnson GV: Activation of glycogen synthase kinase 3beta promotes the intermolecular association of tau. The use of fluorescence resonance energy transfer microscopy. J Biol Chem. 282:23410–23417. 2007. View Article : Google Scholar : PubMed/NCBI

107 

Greco SJ, Sarkar S, Casadesus G, et al: Leptin inhibits glycogen synthase kinase-3beta to prevent tau phosphorylation in neuronal cells. Neurosci Lett. 455:191–194. 2009. View Article : Google Scholar : PubMed/NCBI

108 

Crouch PJ, Hung LW, Adlard PA, et al: Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci USA. 106:381–386. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Engel T, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J and Hernandez F: Cooexpression of FTDP-17 tau and GSK-3beta in transgenic mice induce tau polymerization and neurodegeneration. Neurobiol Aging. 27:1258–1268. 2006. View Article : Google Scholar : PubMed/NCBI

110 

Engel T, Hernandez F, Avila J and Lucas JJ: Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. J Neurosci. 26:5083–5090. 2006.

111 

Perez M, Hernandez F, Lim F, Diaz-Nido J and Avila J: Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model. J Alzheimers Dis. 5:301–308. 2003.PubMed/NCBI

112 

Nakashima H, Ishihara T, Suguimoto P, et al: Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies. Acta Neuropathol. 110:547–556. 2005. View Article : Google Scholar : PubMed/NCBI

113 

Engel T, Goni-Oliver P, Lucas JJ, Avila J and Hernandez F: Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. J Neurochem. 99:1445–1455. 2006. View Article : Google Scholar : PubMed/NCBI

114 

Gao HM and Hong JS: Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol. 29:357–365. 2008. View Article : Google Scholar : PubMed/NCBI

115 

Kim SU and de Vellis J: Microglia in health and disease. J Neurosci Res. 81:302–313. 2005. View Article : Google Scholar : PubMed/NCBI

116 

Mrak RE and Griffin WS: Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging. 26:349–354. 2005. View Article : Google Scholar : PubMed/NCBI

117 

McGeer PL and McGeer EG: Glial reactions in Parkinson’s disease. Mov Disord. 23:474–483. 2008.

118 

Ouchi Y, Yagi S, Yokokura M and Sakamoto M: Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord. 15 Suppl 3:S200–S204. 2009.

119 

Hunot S, Dugas N, Faucheux B, et al: FcepsilonRII/CD23 is expressed in Parkinson’s disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. J Neurosci. 19:3440–3447. 1999.PubMed/NCBI

120 

Mogi M, Harada M, Narabayashi H, Inagaki H, Minami M and Nagatsu T: Interleukin (IL)-1 beta, IL-2, IL-4, IL-6 and transforming growth factor-alpha levels are elevated in ventricular cerebrospinal fluid in juvenile parkinsonism and Parkinson’s disease. Neurosci Lett. 211:13–16. 1996.PubMed/NCBI

121 

Koziorowski D, Tomasiuk R, Szlufik S and Friedman A: Inflammatory cytokines and NT-proCNP in Parkinson’s disease patients. Cytokine. 60:762–766. 2012.

122 

Przedborski S: Inflammation and Parkinson’s disease pathogenesis. Mov Disord. 25 Suppl 1:S55–S57. 2010.

123 

Frankola KA, Greig NH, Luo W and Tweedie D: Targeting TNF-alpha to elucidate and ameliorate neuroinflammation in neurodegenerative diseases. CNS Neurol Disord Drug Targets. 10:391–403. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Qian L, Flood PM and Hong JS: Neuroinflammation is a key player in Parkinson’s disease and a prime target for therapy. J Neural Transm. 117:971–979. 2010.

125 

Lofrumento DD, Nicolardi G, Cianciulli A, et al: Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: Possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun. 2013.PubMed/NCBI

126 

Martin M, Rehani K, Jope RS and Michalek SM: Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol. 6:777–784. 2005. View Article : Google Scholar : PubMed/NCBI

127 

Jope RS, Yuskaitis CJ and Beurel E: Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res. 32:577–595. 2007. View Article : Google Scholar : PubMed/NCBI

128 

Beurel E and Jope RS: Lipopolysaccharide-induced interleukin-6 production is controlled by glycogen synthase kinase-3 and STAT3 in the brain. J Neuroinflammation. 6:92009. View Article : Google Scholar : PubMed/NCBI

129 

Cheng YL, Wang CY, Huang WC, et al: Staphylococcus aureus induces microglial inflammation via a glycogen synthase kinase 3beta-regulated pathway. Infect Immun. 77:4002–4008. 2009. View Article : Google Scholar : PubMed/NCBI

130 

Wang MJ, Huang HY, Chen WF, Chang HF and Kuo JS: Glycogen synthase kinase-3beta inactivation inhibits tumor necrosis factor-alpha production in microglia by modulating nuclear factor kappaB and MLK3/JNK signaling cascades. J Neuroinflammation. 7:992010. View Article : Google Scholar

131 

Colasanti M, Persichini T, Di Pucchio T, Gremo F and Lauro GM: Human ramified microglial cells produce nitric oxide upon Escherichia coli lipopolysaccharide and tumor necrosis factor alpha stimulation. Neurosci Lett. 200:144–146. 1995. View Article : Google Scholar

132 

Block ML and Hong JS: Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans. 35:1127–1132. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Członkowska A, Kohutnicka M, Kurkowska-Jastrzebska I and Członkowski A: Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration. 5:137–143. 1996.

134 

Przedborski S and Vila M: The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model: a tool to explore the pathogenesis of Parkinson’s disease. Ann NY Acad Sci. 991:189–198. 2003.PubMed/NCBI

135 

Duka T, Duka V, Joyce JN and Sidhu A: Alpha-Synuclein contributes to GSK-3beta-catalyzed Tau phosphorylation in Parkinson’s disease models. FASEB J. 23:2820–2830. 2009.PubMed/NCBI

136 

Watcharasit P, Thiantanawat A and Satayavivad J: GSK3 promotes arsenite-induced apoptosis via facilitation of mitochondria disruption. J Appl Toxicol. 28:466–474. 2008. View Article : Google Scholar : PubMed/NCBI

137 

Cookson MR: The biochemistry of Parkinson’s disease. Annu Rev Biochem. 74:29–52. 2005.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li DW, Liu ZQ, Chen W, Yao M and Li GR: Association of glycogen synthase kinase‑3β with Parkinson's disease (Review). Mol Med Rep 9: 2043-2050, 2014.
APA
Li, D., Liu, Z., Chen, W., Yao, M., & Li, G. (2014). Association of glycogen synthase kinase‑3β with Parkinson's disease (Review). Molecular Medicine Reports, 9, 2043-2050. https://doi.org/10.3892/mmr.2014.2080
MLA
Li, D., Liu, Z., Chen, W., Yao, M., Li, G."Association of glycogen synthase kinase‑3β with Parkinson's disease (Review)". Molecular Medicine Reports 9.6 (2014): 2043-2050.
Chicago
Li, D., Liu, Z., Chen, W., Yao, M., Li, G."Association of glycogen synthase kinase‑3β with Parkinson's disease (Review)". Molecular Medicine Reports 9, no. 6 (2014): 2043-2050. https://doi.org/10.3892/mmr.2014.2080
Copy and paste a formatted citation
x
Spandidos Publications style
Li DW, Liu ZQ, Chen W, Yao M and Li GR: Association of glycogen synthase kinase‑3β with Parkinson's disease (Review). Mol Med Rep 9: 2043-2050, 2014.
APA
Li, D., Liu, Z., Chen, W., Yao, M., & Li, G. (2014). Association of glycogen synthase kinase‑3β with Parkinson's disease (Review). Molecular Medicine Reports, 9, 2043-2050. https://doi.org/10.3892/mmr.2014.2080
MLA
Li, D., Liu, Z., Chen, W., Yao, M., Li, G."Association of glycogen synthase kinase‑3β with Parkinson's disease (Review)". Molecular Medicine Reports 9.6 (2014): 2043-2050.
Chicago
Li, D., Liu, Z., Chen, W., Yao, M., Li, G."Association of glycogen synthase kinase‑3β with Parkinson's disease (Review)". Molecular Medicine Reports 9, no. 6 (2014): 2043-2050. https://doi.org/10.3892/mmr.2014.2080
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team