1
|
Rodan GA: The development and function of
the skeleton and bone metastases. Cancer. 97:726–732. 2003.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Tanaka Y, Nakayamada S and Okada Y:
Osteoblasts and osteoclasts in bone remodeling and inflammation.
Curr Drug Targets Inflamm Allergy. 4:325–328. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Pathak JL, Bravenboer N, Verschueren P,
Lems WF, Luyten FP, Klein-Nulend J and Bakker AD: Inflammatory
factors in the circulation of patients with active rheumatoid
arthritis stimulate osteoclastogenesis via endogenous cytokine
production by osteoblasts. Osteoporos Int. 25:2453–2463. 2014.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Jules J and Feng X: In vitro investigation
of the roles of the proinflammatory cytokines tumor necrosis
factor-alpha and interleukin-1 in murine osteoclastogenesis.
Methods Mol Biol. 1155:109–123. 2014. View Article : Google Scholar : PubMed/NCBI
|
5
|
Córdova LA, Trichet V, Escriou V, Rosset
P, Amiaud J, Battaglia S, Charrier C, Berreur M, Brion R, Gouin F,
et al: Inhibition of osteolysis and increase of bone formation
after local administration of siRNA-targeting RANK in a
polyethylene particle-induced osteolysis model. Acta Biomater.
13:150–158. 2015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Weitzmann MN: The Role of inflammatory
cytokines, the RANKL/OPG axis, and the immunoskeletal interface in
physiological bone turnover and osteoporosis. Scientifica (Cairo).
2013:1257052013.PubMed/NCBI
|
7
|
Gallois A, Lachuer J, Yvert G, Wierinckx
A, Brunet F, Rabourdin-Combe C, Delprat C, Jurdic P and Mazzorana
M: Genome-wide expression analyses establish dendritic cells as a
new osteoclast precursor able to generate bone-resorbing cells more
efficiently than monocytes. J Bone Miner Res. 25:661–672. 2010.
View Article : Google Scholar : PubMed/NCBI
|
8
|
De Vries TJ, Schoenmaker T, Aerts D,
Grevers LC, Souza PP, Nazmi K, van de Wiel M, Ylstra B, Lent PL,
Leenen PJ and Everts V: M-CSF priming of osteoclast precursors can
cause osteoclastogenesis-insensitivity, which can be prevented and
overcome on bone. J Cell Physiol. 230:210–225. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim HJ, Yoon HJ, Kim SY and Yoon YR: A
medium-chain fatty acid, capric acid, inhibits RANKL-induced
osteoclast differentiation via the suppression of NF-kappaB
signaling and blocks cytoskeletal organization and survival in
mature osteoclasts. Mol Cells. 37:598–604. 2014. View Article : Google Scholar : PubMed/NCBI
|
10
|
Choi J, Choi SY, Lee SY, Lee JY, Kim HS,
Lee SY and Lee NK: Caffeine enhances osteoclast differentiation and
maturation through p38 MAP kinase/Mitf and DC-STAMP/CtsK and TRAP
pathway. Cell Signal. 25:1222–1227. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Lampiasi N, Russo R and Zito F: The
alternative faces of macrophage generate osteoclasts. Biomed Res
Int. 2016:90896102016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Ishida N, Hayashi K, Hoshijima M, Ogawa T,
Koga S, Miyatake Y, Kumegawa M, Kimura T and Takeya T: Large scale
gene expression analysis of osteoclastogenesis in vitro and
elucidation of NFAT2 as a key regulator. J Biol Chem.
277:41147–41156. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Johnson RS, Spiegelman BM and Papaioannou
V: Pleiotropic effects of a null mutation in the c-fos
proto-oncogene. Cell. 71:577–586. 1992. View Article : Google Scholar : PubMed/NCBI
|
14
|
Takayanagi H, Kim S, Koga T, Nishina H,
Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T and Inoue J:
Induction and activation of the transcription factor NFATc1 (NFAT2)
integrate RANKL signaling in terminal differentiation of
osteoclasts. Dev Cell. 3:889–901. 2002. View Article : Google Scholar : PubMed/NCBI
|
15
|
Danks L and Takayanagi H: Immunology and
bone. J Biochem. 154:29–39. 2013. View Article : Google Scholar : PubMed/NCBI
|
16
|
Almeida M, Han L, Ambrogini E, Weinstein
RS and Manolagas SC: Glucocorticoids and tumor necrosis factor α
increase oxidative stress and suppress Wnt protein signaling in
osteoblasts. J Biol Chem. 286:44326–44335. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Dong J, Cui X, Jiang Z and Sun J:
MicroRNA-23a modulates tumor necrosis factor-alpha-induced
osteoblasts apoptosis by directly targeting Fas. J Cell Biochem.
114:2738–2745. 2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Garcia-Lopez S, Villanueva R and Meikle
MC: Alterations in the Synthesis of IL-1β, TNF-α, IL-6, and their
downstream targets RANKL and OPG by mouse calvarial osteoblasts
in vitro: Inhibition of bone resorption by cyclic mechanical
strain. Front Endocrinol (Lausanne). 4:1602013.PubMed/NCBI
|
19
|
Lin NY, Stefanica A and Distler JH:
Autophagy: A key pathway of TNF-induced inflammatory bone loss.
Autophagy. 9:1253–1255. 2013. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kitaura H, Kimura K, Ishida M, Kohara H,
Yoshimatsu M and Takano-Yamamoto T: Immunological reaction in
TNF-α-mediated osteoclast formation and bone resorption in
vitro and in vivo. Clin Dev Immunol. 2013:1818492013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Mukai T, Ishida S, Ishikawa R, Yoshitaka
T, Kittaka M, Gallant R, Lin YL, Rottapel R, Brotto M,
Reichenberger EJ and Ueki Y: SH3BP2 cherubism mutation potentiates
TNF-α -induced osteoclastogenesis via NFATc1 and TNF-α -mediated
inflammatory bone loss. J Bone Miner Res. 29:2618–2635. 2014.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Osta B, Benedetti G and Miossec P:
Classical and paradoxical effects of TNF-alpha on bone homeostasis.
Front Immunol. 5:482014. View Article : Google Scholar : PubMed/NCBI
|
24
|
Ritchlin CT, Haas-Smith SA, Li P, Hicks DG
and Schwarz EM: Mechanisms of TNF-alpha- and RANKL-mediated
osteoclastogenesis and bone resorption in psoriatic arthritis. J
Clin Invest. 111:821–831. 2003. View Article : Google Scholar : PubMed/NCBI
|
25
|
Li J, Sarosi I, Yan XQ, Morony S,
Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, et al:
RANK is the intrinsic hematopoietic cell surface receptor that
controls osteoclastogenesis and regulation of bone mass and calcium
metabolism. Proc Natl Acad Sci USA. 97:pp. 1566–1571. 2000;
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yu Y, Yang D, Qiu L, Okamura H, Guo J and
Haneji T: Tumor necrosis factor-α induces interleukin-34 expression
through nuclear factor-κB activation in MC3T3-E1 osteoblastic
cells. Mol Med Rep. 10:1371–1376. 2014. View Article : Google Scholar : PubMed/NCBI
|
27
|
Xiong J, Piemontese M, Thostenson JD,
Weinstein RS, Manolagas SC and O'Brien CA: Osteocyte-derived RANKL
is a critical mediator of the increased bone resorption caused by
dietary calcium deficiency. Bone. 66:146–154. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Swarnkar G and Abu-Amer Y: Regulation of
NF-κB signaling in osteoclasts and myeloid progenitors. Methods Mol
Biol. 1280:527–542. 2015. View Article : Google Scholar : PubMed/NCBI
|