FBW7 in hematological tumors (Review)
- Authors:
- Qiaojuan Zhu
- Linjun Hu
- Yang Guo
- Zunqiang Xiao
- Qiuran Xu
- Xiangmin Tong
-
Affiliations: The Second Clinical Medical Department, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310014, P.R. China, Medical Department, Qingdao University, Qingdao, Shandong 266071, P.R. China, Graduate Department, Bengbu Medical College, Bengbu, Anhui 233030, P.R. China, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, Zhejiang 310014, P.R. China - Published online on: January 8, 2020 https://doi.org/10.3892/ol.2020.11264
- Pages: 1657-1664
-
Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hershko A, Ciechanover A and Varshavsky A: The ubiquitin system. Nat Med. 6:1073–1081. 2000. View Article : Google Scholar : PubMed/NCBI | |
Crusio KM, King B, Reavie LB and Aifantis I: The ubiquitous nature of cancer: The role of the SCF(Fbw7) complex in development and transformation. Oncogene. 29:4865–4873. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shimizu K, Nihira NT, Inuzuka H and Wei W: Physiological functions of FBW7 in cancer and metabolism. Cell Signal. 46:15–22. 2018. View Article : Google Scholar : PubMed/NCBI | |
Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M and Mohammad RM: Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol. 36:18–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
Thompson BJ, Buonamici S, Sulis ML, Palomero T, Vilimas T, Basso G, Ferrando A and Aifantis I: The SCFFBW7 ubiquitin ligase complex as a tumor suppressor in T cell leukemia. J Exp Med. 204:1825–1835. 2007. View Article : Google Scholar : PubMed/NCBI | |
Welcker M and Clurman BE: FBW7 ubiquitin ligase: A tumour suppressor at the crossroads of cell division, growth and differentiation. Nat Rev Cancer. 8:83–93. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tan Y, Sangfelt O and Spruck C: The Fbxw7/hCdc4 tumor suppressor in human cancer. Cancer Lett. 271:1–12. 2008. View Article : Google Scholar : PubMed/NCBI | |
Spruck CH, Strohmaier H, Sangfelt O, Müller HM, Hubalek M, Müller-Holzner E, Marth C, Widschwendter M and Reed SI: hCDC4 gene mutations in endometrial cancer. Cancer Res. 62:4535–4539. 2002.PubMed/NCBI | |
Davis RJ, Welcker M and Clurman BE: Tumor suppression by the Fbw7 ubiquitin ligase: Mechanisms and opportunities. Cancer Cell. 26:455–464. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hao B, Oehlmann S, Sowa ME, Harper JW and Pavletich NP: Structure of a Fbw7-Skp1-cyclin E complex: Multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell. 26:131–143. 2007. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Larimore EA, Swanger J, Bengoechea-Alonso MT, Grim JE, Ericsson J, Zheng N and Clurman BE: Fbw7 dimerization determines the specificity and robustness of substrate degradation. Genes Dev. 27:2531–2536. 2013. View Article : Google Scholar : PubMed/NCBI | |
Crusio K M, King B, Reavie L B and Aifantis I: The ubiquitous nature of cancer: the role of the SCF Fbw7 complex in development and transformation. Oncogene. 29:4865–4873. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tang X, Orlicky S, Lin Z, Willems A, Neculai D, Ceccarelli D, Mercurio F, Shilton BH, Sicheri F and Tyers M: Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell. 129:1165–1176. 2007. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Orian A, Jin J, Grim JE, Harper JW, Eisenman RN and Clurman BE: The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation. Proc Natl Acad Sci USA. 101:9085–9090. 2004. View Article : Google Scholar : PubMed/NCBI | |
Busino L, Millman SE, Scotto L, Kyratsous CA, Basrur V, O'Connor O, Hoffmann A, Elenitoba-Johnson KS and Pagano M: Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol. 14:375–385. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K and Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI | |
Welcker M, Orian A, Grim JE, Eisenman RN and Clurman BE: A nucleolar isoform of the Fbw7 ubiquitin ligase regulates c-Myc and cell size. Curr Biol. 14:1852–1857. 2004. View Article : Google Scholar : PubMed/NCBI | |
Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW and Elledge SJ: Phosphorylation-dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science. 294:173–177. 2001. View Article : Google Scholar : PubMed/NCBI | |
Weng AP, Ferrando AA, Lee W, Morris JP IV, Silverman LB, Sanchez-Irizarry C, Blacklow SC, Look AT and Aster JC: Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science. 306:269–271. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fukushima H, Matsumoto A, Inuzuka H, Zhai B, Lau AW, Wan L, Gao D, Shaik S, Yuan M, Gygi SP, et al: SCF(Fbw7) modulates the NFkB signaling pathway by targeting NFkB2 for ubiquitination and destruction. Cell Rep. 1:434–443. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Jin J, Schlisio S, Harper JW and Kaelin WG Jr: The v-Jun point mutation allows c-Jun to escape GSK3-dependent recognition and destruction by the Fbw7 ubiquitin ligase. Cancer Cell. 8:25–33. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lochab S, Pal P, Kapoor I, Kanaujiya JK, Sanyal S, Behre G and Trivedi AK: E3 ubiquitin ligase Fbw7 negatively regulates granulocytic differentiation by targeting G-CSFR for degradation. Biochim Biophys Acta. 1833:2639–2652. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xie CM and Sun Y: The MTORC1-mediated autophagy is regulated by the FBXW7-SHOC2-RPTOR axis. Autophagy. 15:1470–1472. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang L-Y, Zhao J, Chen H, Wan L, Inuzuka H, Guo J, Fu X, Zhai Y, Lu Z, Wang X, et al: SCFFBW7-mediated degradation of Brg1 suppresses gastric cancer metastasis. Nat Commun. 9:35692018. View Article : Google Scholar : PubMed/NCBI | |
Finkin S, Aylon Y, Anzi S, Oren M and Shaulian E: Fbw7 regulates the activity of endoreduplication mediators and the p53 pathway to prevent drug-induced polyploidy. Oncogene. 27:4411–4421. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu N, Li H, Li S, Shen M, Xiao N, Chen Y, Wang Y, Wang W, Wang R, Wang Q, et al: The Fbw7/human CDC4 tumor suppressor targets proproliferative factor KLF5 for ubiquitination and degradation through multiple phosphodegron motifs. J Biol Chem. 285:18858–18867. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kourtis N, Moubarak RS, Aranda-Orgilles B, Lui K, Aydin IT, Trimarchi T, Darvishian F, Salvaggio C, Zhong J, Bhatt K, et al: FBXW7 modulates cellular stress response and metastatic potential through HSF1 post-translational modification. Nat Cell Biol. 17:322–332. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bengoechea-Alonso MT and Ericsson J: The ubiquitin ligase Fbxw7 controls adipocyte differentiation by targeting C/EBPalpha for degradation. Proc Natl Acad Sci USA. 107:11817–11822. 2010. View Article : Google Scholar : PubMed/NCBI | |
Akhoondi S, Lindström L, Widschwendter M, Corcoran M, Bergh J, Spruck C, Grandér D and Sangfelt O: Inactivation of FBW7/hCDC4-beta expression by promoter hypermethylation is associated with favorable prognosis in primary breast cancer. Breast Cancer Res. 12:R1052010. View Article : Google Scholar : PubMed/NCBI | |
Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, Jacobsen A, Byrne CJ, Heuer ML, Larsson E, et al: The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2:401–404. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mao JH, Kim IJ, Wu D, Climent J, Kang HC, DelRosario R and Balmain A: FBXW7 targets mTOR for degradation and cooperates with PTEN in tumor suppression. Science. 321:1499–1502. 2008. View Article : Google Scholar : PubMed/NCBI | |
Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, Dafou D, Marth C, et al: FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 67:9006–9012. 2007. View Article : Google Scholar : PubMed/NCBI | |
Perry JM and Li L: Self-renewal versus transformation: Fbxw7 deletion leads to stem cell activation and leukemogenesis. Genes Dev. 22:1107–1109. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kimura T, Gotoh M, Nakamura Y and Arakawa H: hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Sci. 94:431–436. 2003. View Article : Google Scholar : PubMed/NCBI | |
Mansour MR, Sanda T, Lawton LN, Li X, Kreslavsky T, Novina CD, Brand M, Gutierrez A, Kelliher MA, Jamieson CH, et al: The TAL1 complex targets the FBXW7 tumor suppressor by activating miR-223 in human T cell acute lymphoblastic leukemia. J Exp Med. 210:1545–1557. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xiang J, Hang JB, Che JM and Li HC: MiR-25 is up-regulated in non-small cell lung cancer and promotes cell proliferation and motility by targeting FBXW7. Int J Clin Exp Pathol. 8:9147–9153. 2015.PubMed/NCBI | |
Li L, Sarver AL, Khatri R, Hajeri PB, Kamenev I, French AJ, Thibodeau SN, Steer CJ and Subramanian S: Sequential expression of miR-182 and miR-503 cooperatively targets FBXW7, contributing to the malignant transformation of colon adenoma to adenocarcinoma. J Pathol. 234:488–501. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Shen L, Mao L, Wang B, Li Y and Yu H: miR-92a is upregulated in cervical cancer and promotes cell proliferation and invasion by targeting FBXW7. Biochem Biophys Res Commun. 458:63–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Yang Z, Liu C, Huang S, Wang H, Chen Y and Chen G: RBP-J-interacting and tubulin-associated protein induces apoptosis and cell cycle arrest in human hepatocellular carcinoma by activating the p53-FBW7 pathway. Biochem Biophys Res Commun. 454:71–77. 2014. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Ma L, Li J, Yu Y, Zhang D, Wei J, Jin H, Xu D, Gao J and Huang C: NF-κB1 inhibits c-Myc protein degradation through suppression of FBW7 expression. Oncotarget. 5:493–505. 2014. View Article : Google Scholar : PubMed/NCBI | |
Min SH, Lau AW, Lee TH, Inuzuka H, Wei S, Huang P, Shaik S, Lee DY, Finn G, Balastik M, et al: Negative regulation of the stability and tumor suppressor function of Fbw7 by the Pin1 prolyl isomerase. Mol Cell. 46:771–783. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Liu Y, Zhang P, Zhang W, Wang W, Curr K, Wei G and Mao JH: FAM83D promotes cell proliferation and motility by downregulating tumor suppressor gene FBXW7. Oncotarget. 4:2476–2486. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Xing H, Kim TM, Jung Y, Huang W, Yang HW, Song S, Park PJ, Carroll RS and Johnson MD: Numb regulates glioma stem cell fate and growth by altering epidermal growth factor receptor and Skp1-Cullin-F-box ubiquitin ligase activity. Stem Cells. 30:1313–1326. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peirs S, Van der Meulen J, Van de Walle I, Taghon T, Speleman F, Poppe B and Van Vlierberghe P: Epigenetics in T-cell acute lymphoblastic leukemia. Immunol Rev. 263:50–67. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pui CH and Evans WE: Treatment of acute lymphoblastic leukemia. N Engl J Med. 354:166–178. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vadillo E, Dorantes-Acosta E, Pelayo R and Schnoor M: T cell acute lymphoblastic leukemia (T-ALL): New insights into the cellular origins and infiltration mechanisms common and unique among hematologic malignancies. Blood Rev. 32:36–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Allen A, Sireci A, Colovai A, Pinkney K, Sulis M, Bhagat G and Alobeid B: Early T-cell precursor leukemia/lymphoma in adults and children. Leuk Res. 37:1027–1034. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pui CH, Robison LL and Look AT: Acute lymphoblastic leukaemia. Lancet. 371:1030–1043. 2008. View Article : Google Scholar : PubMed/NCBI | |
Matsuoka S, Oike Y, Onoyama I, Iwama A, Arai F, Takubo K, Mashimo Y, Oguro H, Nitta E, Ito K, et al: Fbxw7 acts as a critical fail-safe against premature loss of hematopoietic stem cells and development of T-ALL. Genes Dev. 22:986–991. 2008. View Article : Google Scholar : PubMed/NCBI | |
Onoyama I, Tsunematsu R, Matsumoto A, Kimura T, de Alborán IM, Nakayama K and Nakayama KI: Conditional inactivation of Fbxw7 impairs cell-cycle exit during T cell differentiation and results in lymphomatogenesis. J Exp Med. 204:2875–2888. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kwon YW, Kim IJ, Wu D, Lu J, Stock WA Jr, Liu Y, Huang Y, Kang HC, DelRosario R, Jen KY, et al: Pten regulates Aurora-A and cooperates with Fbxw7 in modulating radiation-induced tumor development. Mol Cancer Res. 10:834–844. 2012. View Article : Google Scholar : PubMed/NCBI | |
King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J, Vakoc C, et al: The ubiquitin ligase FBXW7 modulates leukemia-initiating cell activity by regulating MYC stability. Cell. 153:1552–1566. 2013. View Article : Google Scholar : PubMed/NCBI | |
King B, Trimarchi T, Reavie L, Xu L, Mullenders J, Ntziachristos P, Aranda-Orgilles B, Perez-Garcia A, Shi J and Vakoc C: Regulation of leukemia-initiating cell activity by the ubiquitin ligase FBXW7. Cell. 153:1552–1566. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thompson BJ, Jankovic V, Gao J, Buonamici S, Vest A, Lee JM, Zavadil J, Nimer SD and Aifantis I: Control of hematopoietic stem cell quiescence by the E3 ubiquitin ligase Fbw7. J Exp Med. 205:1395–1408. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tosello V and Ferrando AA: The NOTCH signaling pathway: Role in the pathogenesis of T-cell acute lymphoblastic leukemia and implication for therapy. Ther Adv Hematol. 4:199–210. 2013. View Article : Google Scholar : PubMed/NCBI | |
Arruga F, Gizdic B, Bologna C, et al: Mutations in NOTCH1 PEST domain orchestrate CCL19-driven homing of chronic lymphocytic leukemia cells by modulating the tumor suppressor gene DUSP22. 31:18822017.PubMed/NCBI | |
Chiang MY, Radojcic V and Maillard I: Oncogenic Notch signaling in T-cell and B-cell lymphoproliferative disorders. Curr Opin Hematol. 23:362–370. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grabher C, von Boehmer H and Look AT: Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer. 6:347–359. 2006. View Article : Google Scholar : PubMed/NCBI | |
Suresh S and Irvine AE: The NOTCH signaling pathway in normal and malignant blood cell production. J Cell Commun Signal. 9:5–13. 2015. View Article : Google Scholar : PubMed/NCBI | |
Malecki MJ, Sanchez-Irizarry C, Mitchell JL, Histen G, Xu ML, Aster JC and Blacklow SC: Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol. 26:4642–4651. 2006. View Article : Google Scholar : PubMed/NCBI | |
O'Neil J, Grim J, Strack P, Rao S, Tibbitts D, Winter C, Hardwick J, Welcker M, Meijerink JP, Pieters R, et al: FBW7 mutations in leukemic cells mediate NOTCH pathway activation and resistance to γ-secretase inhibitors. J Exp Med. 204:1813–1824. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kumar V, Palermo R, Talora C, Campese AF, Checquolo S, Bellavia D, Tottone L, Testa G, Miele E, Indraccolo S, et al: Notch and NF-kB signaling pathways regulate miR-223/FBXW7 axis in T-cell acute lymphoblastic leukemia. Leukemia. 28:2324–2335. 2014. View Article : Google Scholar : PubMed/NCBI | |
Malyukova A, Brown S, Papa R, O'Brien R, Giles J, Trahair TN, Dalla Pozza L, Sutton R, Liu T, Haber M, et al: FBXW7 regulates glucocorticoid response in T-cell acute lymphoblastic leukaemia by targeting the glucocorticoid receptor for degradation. Leukemia. 27:1053–1062. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang-Yen HF: Mcl-1: A highly regulated cell death and survival controller. J Biomed Sci. 13:201–204. 2006. View Article : Google Scholar : PubMed/NCBI | |
Inuzuka H, Shaik S, Onoyama I, Gao D, Tseng A, Maser RS, Zhai B, Wan L, Gutierrez A, Lau AW, et al: SCF(FBW7) regulates cellular apoptosis by targeting MCL1 for ubiquitylation and destruction. Nature. 471:104–109. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wertz IE, Kusam S, Lam C, Okamoto T, Sandoval W, Anderson DJ, Helgason E, Ernst JA, Eby M, Liu J, et al: Sensitivity to antitubulin chemotherapeutics is regulated by MCL1 and FBW7. Nature. 471:110–114. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schwickart M, Huang X, Lill JR, Liu J, Ferrando R, French DM, Maecker H, O'Rourke K, Bazan F, Eastham-Anderson J, et al: Deubiquitinase USP9X stabilizes MCL1 and promotes tumour cell survival. Nature. 463:103–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Katsuya H, Ishitsuka K, Utsunomiya A, Hanada S, Eto T, Moriuchi Y, Saburi Y, Miyahara M, Sueoka E, Uike N, et al ATL-Prognostic Index Project, : Treatment and survival among 1594 patients with ATL. Blood. 126:2570–2577. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yeh C-H, Bellon M, Pancewicz-Wojtkiewicz J and Nicot C: Oncogenic mutations in the FBXW7 gene of adult T-cell leukemia patients. Proc Natl Acad Sci USA. 113:6731–6736. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mihashi Y, Mizoguchi M, Takamatsu Y, Ishitsuka K, Iwasaki H, Koga M, Urabe K, Momosaki S, Sakata T, Kiyomi F, et al: C-MYC and its main ubiquitin ligase, FBXW7, influence cell proliferation and prognosis in adult T-cell leukemia/lymphoma. Am J Surg Pathol. 41:1139–1149. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chiorazzi N, Rai KR and Ferrarini M: Chronic lymphocytic leukemia. N Engl J Med. 352:804–815. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kipps TJ, Stevenson FK, Wu CJ, Croce CM, Packham G, Wierda WG, O'Brien S, Gribben J and Rai K: Chronic lymphocytic leukaemia. Nat Rev Dis Primers. 3:160962017. View Article : Google Scholar : PubMed/NCBI | |
Bosch F and Dalla-Favera R: Chronic lymphocytic leukaemia: From genetics to treatment. Nat Rev Clin Oncol. 16:684–701. 2019. View Article : Google Scholar : PubMed/NCBI | |
Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, Kluth S, Bozic I, Lawrence M, Böttcher S, et al: Mutations driving CLL and their evolution in progression and relapse. Nature. 526:525–530. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jeromin S, Weissmann S, Haferlach C, Dicker F, Bayer K, Grossmann V, Alpermann T, Roller A, Kohlmann A, Haferlach T, et al: SF3B1 mutations correlated to cytogenetics and mutations in NOTCH1, FBXW7, MYD88, XPO1 and TP53 in 1160 untreated CLL patients. Leukemia. 28:108–117. 2014. View Article : Google Scholar : PubMed/NCBI | |
Quijada-Álamo M, Hernández-Sánchez M, Robledo C, Hernández-Sánchez JM, Benito R, Montaño A, Rodríguez-Vicente AE, Quwaider D, Martín AÁ, García-Álvarez M, et al: Next-generation sequencing and FISH studies reveal the appearance of gene mutations and chromosomal abnormalities in hematopoietic progenitors in chronic lymphocytic leukemia. J Hematol Oncol. 10:832017. View Article : Google Scholar : PubMed/NCBI | |
Close V, Close W, Kugler SJ, Reichenzeller M, Yosifov DY, Bloehdorn J, Pan L, Tausch E, Westhoff MA, Döhner H, et al: FBXW7 mutations reduce binding of NOTCH1, leading to cleaved NOTCH1 accumulation and target gene activation in CLL. Blood. 133:830–839. 2019. View Article : Google Scholar : PubMed/NCBI | |
Palumbo A and Anderson K: Multiple myeloma. N Engl J Med. 364:1046–1060. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sonneveld P, Avet-Loiseau H, Lonial S, Usmani S, Siegel D, Anderson KC, Chng WJ, Moreau P, Attal M, Kyle RA, et al: Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood. 127:2955–2962. 2016. View Article : Google Scholar : PubMed/NCBI | |
Annunziata CM, Davis RE, Demchenko Y, Bellamy W, Gabrea A, Zhan F, Lenz G, Hanamura I, Wright G, Xiao W, et al: Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell. 12:115–130. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jourdan M, Moreaux J, De Vos J, Hose D, Mahtouk K, Abouladze M, Robert N, Baudard M, Rème T, Romanelli A, et al: Targeting NF-kappaB pathway with an IKK2 inhibitor induces inhibition of multiple myeloma Cell Proliferation. Br J Haematol. 138:160–168. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sun SC: The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017. View Article : Google Scholar : PubMed/NCBI | |
Senftleben U, Cao Y, Xiao G, Greten FR, Krähn G, Bonizzi G, Chen Y, Hu Y, Fong A, Sun SC, et al: Activation by IKKalpha of a second, evolutionary conserved, NF-kappa B signaling pathway. Science. 293:1495–1499. 2001. View Article : Google Scholar : PubMed/NCBI | |
Busino L, Millman SE and Pagano M: SCF-mediated degradation of p100 (NF-κB2): Mechanisms and relevance in multiple myeloma. Sci Signal. 5:pt142012. View Article : Google Scholar : PubMed/NCBI | |
Frassanito MA, Rao L, Moschetta M, Ria R, Di Marzo L, De Luisi A, Racanelli V, Catacchio I, Berardi S, Basile A, et al: Bone marrow fibroblasts parallel multiple myeloma progression in patients and mice: In vitro and in vivo studies. Leukemia. 28:904–916. 2014. View Article : Google Scholar : PubMed/NCBI | |
Frassanito MA, De Veirman K, Desantis V, Di Marzo L, Vergara D, Ruggieri S, Annese T, Nico B, Menu E, Catacchio I, et al: Halting pro-survival autophagy by TGFβ inhibition in bone marrow fibroblasts overcomes bortezomib resistance in multiple myeloma patients. Leukemia. 30:640–648. 2016. View Article : Google Scholar : PubMed/NCBI | |
Frassanito MA, Desantis V, Di Marzo L, Craparotta I, Beltrame L, Marchini S, Annese T, Visino F, Arciuli M, Saltarella I, et al: Bone marrow fibroblasts overexpress miR-27b and miR-214 in step with multiple myeloma progression, dependent on tumour cell-derived exosomes. J Pathol. 247:241–253. 2019. View Article : Google Scholar : PubMed/NCBI |