1
|
Decker WK, da lva RF, Sanabria MH, Angelo
LS, Guimarães F, Burt BM, Kheradmand F and Paust S: Cancer
immunotherapy: Historical perspective of a clinical revolution and
emerging preclinical animal models. Front Immunol. 8:8292017.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Farkona S, Diamandis EP and Blasutig IM:
Cancer immunotherapy: The beginning of the end of cancer? BMC Med.
14:732016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yuan J, Hegde PS, Clynes R, Foukas PG,
Harari A, Kleen TO, Kvistborg P, Maccalli C, Maecker HT, Page DB,
et al: Novel technologies and emerging biomarkers for personalized
cancer immunotherapy. J Immunother Cancer. 4:32016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Butterfield LH: The society for
immunotherapy of cancer biomarkers task force recommendations
review. Semin Cancer Biol. Sept 22–2017.(Epub ahead of print).
PubMed/NCBI
|
5
|
Maecker HT and Harari A: Immune monitoring
technology primer: Flow and mass cytometry. J Immunother Cancer.
3:442015. View Article : Google Scholar : PubMed/NCBI
|
6
|
Greenplate AR, Johnson DB, Ferrell PB Jr
and Irish JM: Systems immune monitoring in cancer therapy. Eur J
Cancer. 61:77–84. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Robinson JP and Roederer M: History of
science. Flow cytometry strikes gold. Science. 350:739–740. 2015.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Blow N: Going with the flow.
Biotechniques. 62:201–205. 2017. View Article : Google Scholar : PubMed/NCBI
|
9
|
Mazzini G and Danova M: Fluorochromes for
DNA staining and quantitation. Methods Mol Biol. 1560:239–259.
2017.Springer Science Business Media LLC. View Article : Google Scholar : PubMed/NCBI
|
10
|
Craig FE and Foon KA: Flow cytometric
immunophenotyping for hematologic neoplasms. Blood. 111:3941–3967.
2008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Adan A, Alizada G, Kiraz Y, Baran Y and
Nalbant A: Flow cytometry: Basic principles and applications. Crit
Rev Biotechnol. 37:163–176. 2017. View Article : Google Scholar : PubMed/NCBI
|
12
|
Irish JM and Doxie DB: High-dimensional
single-cell cancer biology. Curr Top Microbiol Immunol. 377:1–21.
2014.PubMed/NCBI
|
13
|
Proserpio V and Lönnberg T: Single-cell
technologies are revolutionizing the approach to rare cells.
Immunol Cell Biol. 94:225–229. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liang SB and Fu LW: Application of
single-cell technology in cancer research. Biotechnol Adv.
35:443–449. 2017. View Article : Google Scholar : PubMed/NCBI
|
15
|
Spitzer MH and Nolan GP: Mass cytometry:
Single cells, many features. Cell. 165:780–791. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Behbehani GK: Applications of mass
cytometry in clinical medicine: The promises and perils of clinical
CyTOF. Clin Lab Med. 37:945–964. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen DS and Mellman I: Elements of cancer
immunity and the cancer-immune set point. Nature. 541:321–330.
2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Ozverel CS, Karaboz I and Nalbantsoy A:
Novel treatment strategies in cancer immunotherapy. Acta Biol Turc.
30:36–51. 2017.
|
19
|
Eggermont LJ, Paulis LE, Tel J and Figdor
CG: Towards efficient cancer immunotherapy: Advances in developing
artificial antigen-presenting cells. Trends Biotechnol. 32:456–465.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Śledzińska A, Menger L, Bergerhoff K,
Peggs KS and Quezada SA: Negative immune checkpoints on T
lymphocytes and their relevance to cancer immunotherapy. Mol Oncol.
9:1936–1965. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Hodi FS, O'Day SJ, McDermott DF, Weber RW,
Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel
JC, et al: Improved survival with ipilimumab in patients with
metastatic melanoma. N Engl J Med. 363:711–723. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
O'Day SJ, Maio M, Chiarion-Sileni V,
Gajewski TF, Pehamberger H, Bondarenko IN, Queirolo P, Lundgren L,
Mikhailov S, Roman L, et al: Efficacy and safety of ipilimumab
monotherapy in patients with pretreated advanced melanoma: A
multicenter single-arm phase II study. Ann Oncol. 21:1712–1717.
2010. View Article : Google Scholar : PubMed/NCBI
|
23
|
Robert C, Thomas L, Bondarenko I, O'Day S,
Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al:
Ipilimumab plus dacarbazine for previously untreated metastatic
melanoma. N Engl J Med. 364:2517–2526. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Robert C, Long GV, Brady B, Dutriaux C,
Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C,
Kalinka-Warzocha E, et al: Nivolumab in previously untreated
melanoma without BRAF mutation. N Engl J Med. 372:320–330. 2015.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Brahmer J, Reckamp KL, Baas P, Crinò L,
Eberhardt WE, Poddubskaya E, Antonia S, Pluzanski A, Vokes EE,
Holgado E, et al: Nivolumab versus docetaxel in advanced squamous
cell-non-small cell lung cancer. N Engl J Med. 373:123–135. 2015.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Gettinger SN, Horn L, Gandhi L, Spigel DR,
Antonia SJ, Rizvi NA, Powderly JD, Heist RS, Carvajal RD, Jackman
DM, et al: Overall Survival and Long-Term Safety of Nivolumab
(Anti-Programmed Death 1 Antibody, BMS-936558, ONO-4538) in
patients with previously treated advanced nons-mall-cell lung
cancer. J Clin Oncol. 33:2004–2012. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Garon EB, Rizvi NA, Hui R, Leighl N,
Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L,
et al: Pembrolizumab for the treatment of non-small-cell lung
cancer. N Engl J Med. 372:2018–2028. 2015. View Article : Google Scholar : PubMed/NCBI
|
28
|
Reck M, Rodríguez-Abreu D, Robinson AG,
Hui R, Csőszi T, Fülöp A, Gottfried M, Peled N, Tafreshi A, Cuffe
S, et al: Pembrolizumab versus chemotherapy for PD-L1 positive
non-small-cell lung cancer. N Engl J Med. 375:1823–1833. 2016.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Fehrenbacher L, Spira A, Ballinger M,
Kowanetz M, Vansteenkiste J, Mazieres J, Park K, Smith D,
Artal-Cortes A, Lewanski C, et al: Atezolizumab versus docetaxel
for patients with previously treated non-small-cell lung cancer
(POPLAR): A multicentre, open-label, phase 2 randomised controlled
trial. Lancet. 387:1837–1846. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Seetharamu N, Preeshagul IR and Sullivan
KM: New PD-L1 inhibitors in non-small cell lung cancer-impact of
atezolizumab. Lung Cancer (Auckl). 8:67–78. 2017.PubMed/NCBI
|
31
|
Gridelli C, Ardizzoni A, Barberis M,
Cappuzzo F, Casaluce F, Danesi R, Troncone G and De Marinis F:
Predictive biomarkers of immunotherapy for non-small cell lung
cancer: Results from an experts panel meeting of the italian
association of thoracic oncology. Transl Lung Cancer Res.
6:373–386. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu D, Wang S and Bindeman W: Clinical
applications of PD-L1 bioassays for cancer immunotherapy. J Hematol
Oncol. 10:1102017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Maleki Vareki S, Garrigós C and Duran I:
Biomarkers of response to PD-1/PD-L1 inhibition. Crit Rev Oncol
Hematol. 116:116–124. 2017. View Article : Google Scholar : PubMed/NCBI
|
34
|
Roussel H, De Guillebon E, Biard L,
Mandavit M, Gibault L, Fabre E, Antoine M, Hofman P, Beau-Faller M,
Blons H, et al: Composite biomarkers defined by multiparametric
immunofluorescence analysis identify ALK-positive adenocarcinoma as
a potential target for immunotherapy. OncoImmunology.
6:e12864372017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Quandt D, Dieter Zucht H, Amann A,
Wulf-Goldenberg A, Borrebaeck C, Cannarile M, Lambrechts D,
Oberacher H, Garrett J, Nayak T, et al: Implementing liquid
biopsies into clinical decision making for cancer immunotherapy.
Oncotarget. 8:48507–48520. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Milano G: Resistance to immunotherapy:
Clouds in a bright sky. Invest New Drugs. 35:649–654. 2017.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Martens A, Wistuba-Hamprecht K, Geukes
Foppen M, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B,
Capone M, et al: Baseline peripheral blood biomarkers associated
with clinical outcome of advanced melanoma patients treated with
Ipilimumab. Clin Cancer Res. 22:2908–2918. 2016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Hegde PS, Karanikas V and Evers S: The
where, the when, and the how of immune monitoring for cancer
immunotherapies in the era of checkpoint inhibition. Clin Cancer
Res. 22:1865–1874. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Masucci GV, Cesano A, Hawtin R, Janetzki
S, Zhang J, Kirsch I, Dobbin KK, Alvarez J, Robbins PB, Selvan SR,
et al: Validation of biomarkers to predict response to
immunotherapy in cancer: Volume I-pre-analytical and analytical
validation. J Immunother Cancer. 4:762016. View Article : Google Scholar : PubMed/NCBI
|
40
|
Krieg C, Nowicka M, Guglietta S, Schindler
S, Hartmann FJ, Weber LM, Dummer R, Robinson MD, Levesque MP and
Becher B: High-dimensional single-cell analysis predicts response
to anti-PD-1 immunotherapy. Nat Med. 24:1–153. 2018. View Article : Google Scholar : PubMed/NCBI
|
41
|
Danielsen HE, Pradhan M and Novelli M:
Revisiting tumor aneuploidy-the place of ploidy assessment in the
molecular era. Nat Rev Clin Oncol. 13:291–304. 2016. View Article : Google Scholar : PubMed/NCBI
|
42
|
Mishra S, Awasthi NP, Husain N, Anand A,
Pradeep Y, Ansari R and Saxena S: Flow cytometric analysis of DNA
ploidy in liquid based cytology for cervical pre-cancer and cancer.
Asian Pac J Cancer Prev. 18:1595–1601. 2017.PubMed/NCBI
|
43
|
Pinto AE, Pereira T, Silva GL and André S:
Prognostic relevance of DNA flow cytometry in breast cancer
revisited: The 25-year experience of the portuguese institute of
oncology of lisbon. Oncol Lett. 13:2027–2033. 2017. View Article : Google Scholar : PubMed/NCBI
|
44
|
Malcovati L, Hellström-Lindberg E, Bowen
D, Adès L, Cermak J, Del Cañizo C, Della Porta MG, Fenaux P,
Gattermann N, Germing U, et al: Diagnosis and treatment of primary
myelodysplastic syndromes in adults: Recommendations from the
European LeukemiaNet. Blood. 122:2943–2964. 2013. View Article : Google Scholar : PubMed/NCBI
|
45
|
Finak G, Langweiler M, Jaimes M, Malek M,
Taghiar J, Korin S, Raddassi K, Devine L, Obermoser G, Pekalski ML,
et al: Standardizing flow cytoanalysis from the human
immunophenotyping consortium. Sci Rep. 6:206862016. View Article : Google Scholar : PubMed/NCBI
|
46
|
Strati P and Shanafelt TD: Monoclonal
B-cell lymphocytosis and early-stage chronic lymphocytic leukemia:
Diagnosis, natural history, and risk stratification. Blood.
126:454–462. 2015. View Article : Google Scholar : PubMed/NCBI
|
47
|
Tognarelli S, Jacobs B, Staiger N and
Ullrich E: Flow cytometry-based assay for the monitoring of NK cell
functions. J Vis Exp. Oct 30–2016.https://doi.org/10.3791/54615simple10.3791/54615
View Article : Google Scholar : PubMed/NCBI
|
48
|
Flores-Montero J, Sanoja-Flores L, Paiva
B, Puig N, García-Sánchez O, Böttcher S, Van der Velden VHJ,
Pérez-Morán JJ, Vidriales MB, García-Sanz R, et al: Next generation
flow for highly sensitive and standardized detection of minimal
residual disease in multiple myeloma. Leukemia. 31:2094–2103. 2017.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Luskin MR and Stone RM: Can minimal
residual disease determination in acute myeloid leukemia be used in
clinical practice? J Oncol Pract. 13:471–480. 2017. View Article : Google Scholar : PubMed/NCBI
|
50
|
Manzoni M, Rovati B, Ronzoni M, Loupakis
F, Mariucci S, Ricci V, Gattoni E, Salvatore L, Tinelli C, Villa E
and Danova M: Immunological effects of bevacizumab-based treatment
in metastatic colorectal cancer. Oncology. 79:187–196. 2010.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Manzoni M, Mariucci S, Delfanti S, Rovati
B, Ronzoni M, Loupakis F, Brugnatelli S, Tinelli C, Villa E,
Falcone A and Danova M: Circulating endothelial cells and their
apoptotic fraction are mutually independent predictive biomarkers
in Bevacizumab-based treatment for advanced colorectal cancer. J
Cancer Res Clin Oncol. 138:1187–1196. 2012. View Article : Google Scholar : PubMed/NCBI
|
52
|
Danova M, Comolli G, Manzoni M, Torchio M
and Mazzini G: Flow cytometric analysis of circulating endothelial
cells and endothelial progenitors for clinical purposes in
oncology: A critical evaluation. Mol Clin Oncol. 4:909–917. 2016.
View Article : Google Scholar : PubMed/NCBI
|
53
|
De Biasi S, Gibellini L, Feletti A, Pavesi
G, Bianchini E, Lo Tartaro D, Pecorini S, De Gaetano A, Pullano R,
Boraldi F, et al: High speed flow cytometry allows the detection of
circulating endothelial cells in hemangioblastoma patients.
Methods. 134–135. 1–10. 2018.
|
54
|
Danova M, Torchio M and Mazzini G:
Isolation of rare circulating tumor cells in cancer patients:
Technical aspects and clinical implications. Expert Rev Mol Diagn.
11:473–485. 2011. View Article : Google Scholar : PubMed/NCBI
|
55
|
Kowalik A, Kowalewska M and Góźdź S:
Current approaches for avoiding the limitations of circulating
tumor cells detection methods-implications for diagnosis and
treatment of patients with solid tumors. Transl Res. 185:58–84.e15.
2017. View Article : Google Scholar : PubMed/NCBI
|
56
|
Wu CP, Wu P, Zhao HF, Liu WL and Li WP:
Clinical applications of and challenges in single-cell analysis of
circulating tumor cells. DNA Cell Biol. 37:78–89. 2018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Chen L, Bode AM and Dong Z: Circulating
tumor cells: Moving biological insights into detection.
Theranostics. 7:2606–2619. 2017. View Article : Google Scholar : PubMed/NCBI
|
58
|
D'Errico G, Machado HL and Sainz B Jr: A
current perspective on cancer immune therapy: Step-by-step approach
to constructing the magic bullet. Clin Transl Med. 6:32017.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Tanner SD, Baranov VI, Ornatsky OI,
Bandura DR and George TC: An introduction to mass cytometry:
Fundamentals and applications. Cancer Immunol Immunother.
62:955–965. 2013. View Article : Google Scholar : PubMed/NCBI
|