|
1
|
Wang Z, Guo Y and Han W: Current status
and perspectives of chimeric antigen receptor modified T cells for
cancer treatment. Protein Cell. 8:896–925. 2017.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Pilones KA, Aryankalayil J and Demaria S:
Invariant NKT cells as novel targets for immunotherapy in solid
tumors. Clin Dev Immunol. 2012(720803)2012.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Gentles AJ, Newman AM, Liu CL, Bratman SV,
Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD, et al: The
prognostic landscape of genes and infiltrating immune cells across
human cancers. Nat Med. 21:938–945. 2015.PubMed/NCBI View
Article : Google Scholar
|
|
4
|
Zhao Y, Niu C and Cui J: Gamma-delta (γδ)
T cells: Friend or foe in cancer development? J Transl Med.
16(3)2018.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Chmielewski M and Abken H: TRUCKs: The
fourth generation of CARs. Expert Opin Biol Ther. 15:1145–1154.
2015.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Izsvák Z, Hackett PB, Cooper LJN and Ivics
Z: Translating sleeping beauty transposition into cellular
therapies: Victories and challenges. Bioessays. 32:756–767.
2010.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Zheng PP, Kros JM and Li J: Approved CAR T
cell therapies: Ice bucket challenges on glaring safety risks and
long-term impacts. Drug Discov Today. 23:1175–1182. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Maude SL, Laetsch TW, Buechner J, Rives S,
Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers
GD, et al: Tisagenlecleucel in Children and Young Adults with
B-Cell Lymphoblastic Leukemia. N Engl J Med. 378:439–448.
2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Neelapu SS, Locke FL, Bartlett NL, Lekakis
LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T,
Lin Y, et al: Axicabtagene ciloleucel CAR T-cell therapy in
refractory large B-cell lymphoma. N Engl J Med. 377:2531–2544.
2017.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Schuster SJ, Bishop MR, Tam CS, Waller EK,
Borchmann P, McGuirk JP, Jäger U, Jaglowski S, Andreadis C, Westin
JR, et al: Tisagenlecleucel in adult relapsed or refractory diffuse
large B-cell lymphoma. N Engl J Med. 380:45–56. 2019.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Mullard A: FDA approves fourth CAR-T cell
therapy. Nat Rev Drug Discov. 20(166)2021.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Tokarew N, Ogonek J, Endres S, von
Bergwelt-Baildon M and Kobold S: Teaching an old dog new tricks:
Next-generation CAR T cells. Br J Cancer. 120:26–37.
2019.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Charrot S and Hallam S: CAR-T Cells:
Future perspectives. Hemasphere. 3(e188)2019.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Kuwana Y, Asakura Y, Utsunomiya N,
Nakanishi M, Arata Y, Itoh S, Nagase F and Kurosawa Y: Expression
of chimeric receptor composed of immunoglobulin-derived V resions
and T-cell receptor-derived C regions. Biochem Biophys Res Commun.
149:960–968. 1987.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Ramos CA and Dotti G: Chimeric antigen
receptor (CAR)-engineered lymphocytes for cancer therapy. Expert
Opin Biol Ther. 11:855–873. 2011.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Dotti G, Gottschalk S, Savoldo B and
Brenner MK: Design and development of therapies using chimeric
antigen receptor-expressing T cells. Immunol Rev. 257:107–126.
2014.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Sharpe AH and Abbas AK: T-cell
costimulation-biology, therapeutic potential, and challenges. N
Engl J Med. 355:973–975. 2006.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Zhang C, Liu J, Zhong JF and Zhang X:
Engineering CAR-T cells. Biomark Res. 5(22)2017.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Fesnak AD, June CH and Levine BL:
Engineered T cells: The promise and challenges of cancer
immunotherapy. Nat Rev Cancer. 16:566–581. 2016.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Chmielewski M, Hombach AA and Abken H: Of
CARs and TRUCKs: Chimeric antigen receptor (CAR) T cells engineered
with an inducible cytokine to modulate the tumor stroma. Immunol
Rev. 257:83–90. 2014.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Pegram HJ, Lee JC, Hayman EG, Imperato GH,
Tedder TF, Sadelain M and Brentjens RJ: Tumor-targeted T cells
modified to secrete IL-12 eradicate systemic tumors without need
for prior conditioning. Blood. 119:4133–4141. 2012.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Hunter BD and Jacobson CA: CAR T-Cell
associated neurotoxicity: Mechanisms, clinicopathologic correlates,
and future directions. J Natl Cancer Inst. 111:646–654.
2019.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Sun S, Hao H, Yang G, Zhang Y and Fu Y:
Immunotherapy with CAR-Modified T Cells: Toxicities and overcoming
strategies. J Immunol Res. 2018(2386187)2018.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Yáñez L, Sánchez-Escamilla M and Perales
MA: CAR T cell toxicity: Current management and future directions.
Hemasphere. 3(e186)2019.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Fucà G, Reppel L, Landoni E, Savoldo B and
Dotti G: Enhancing chimeric antigen receptor T-cell efficacy in
solid tumors. Clin Cancer Res. 26:2444–2451. 2020.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang
C, Ye Z and Qian Q: Current progress in CAR-T cell therapy for
solid tumors. Int J Biol Sci. 15:2548–2560. 2019.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Davila ML and Brentjens RJ: CD19-Targeted
CAR T cells as novel cancer immunotherapy for relapsed or
refractory B-cell acute lymphoblastic leukemia. Clin Adv Hematol
Oncol. 14:802–808. 2016.PubMed/NCBI
|
|
28
|
Dotti G: The other face of chimeric
antigen receptors. Mol Ther. 22:899–900. 2014.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Hombach A, Hombach AA and Abken H:
Adoptive immunotherapy with genetically engineered T cells:
Modification of the IgG1 Fc ‘spacer’ domain in the extracellular
moiety of chimeric antigen receptors avoids ‘off-target’ activation
and unintended initiation of an innate immune response. Gene Ther.
17:1206–1213. 2010.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Lee YG, Marks I, Srinivasarao M, Kanduluru
AK, Mahalingam SM, Liu X, Chu H and Low PS: Use of a single CAR T
cell and several bispecific adapters facilitates eradication of
multiple antigenically different solid tumors. Cancer Res.
79:387–396. 2019.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Darowski D, Kobold S, Jost C and Klein C:
Combining the best of two worlds: Highly flexible chimeric antigen
receptor adaptor molecules (CAR-adaptors) for the recruitment of
chimeric antigen receptor T cells. mAbs. 11:621–631.
2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Arndt C, Fasslrinner F, Loureiro LR,
Koristka S, Feldmann A and Bachmann M: Adaptor CAR platforms-next
generation of T Cell-based cancer immunotherapy. Cancers (Basel).
12(1302)2020.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Dai H, Wu Z, Jia H, Tong C, Guo Y, Ti D,
Han X, Liu Y, Zhang W, Wang C, et al: Bispecific CAR-T cells
targeting both CD19 and CD22 for therapy of adults with relapsed or
refractory B cell acute lymphoblastic leukemia. J Hematol Oncol.
13(30)2020.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Chen N, Morello A, Tano Z and Adusumilli
PS: CAR T-cell intrinsic PD-1 checkpoint blockade: A two-in-one
approach for solid tumor immunotherapy. Oncoimmunology.
6(e1273302)2016.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Kloss CC, Lee J, Zhang A, Chen F,
Melenhorst JJ, Lacey SF, Maus MV, Fraietta JA, Zhao Y and June CH:
Dominant-Negative TGF-β receptor enhances PSMA-targeted human CAR T
cell proliferation and augments prostate cancer eradication. Mol
Ther. 26:1855–1866. 2018.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Makita S, Yoshimura K and Tobinai K:
Clinical development of anti-CD19 chimeric antigen receptor T-cell
therapy for B-cell non-Hodgkin lymphoma. Cancer Sci. 108:1109–1118.
2017.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Maude SL, Frey N, Shaw PA, Aplenc R,
Barrett DM, Bunin NJ, Chew A, Gonzalez VE, Zheng Z, Lacey SF, et
al: Chimeric antigen receptor T cells for sustained remissions in
leukemia. N Engl J Med. 371:1507–1517. 2014.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Reagan PM and Friedberg JW: Axicabtagene
ciloleucel and brexucabtagene autoleucel in relapsed and refractory
diffuse large B-cell and mantle cell lymphomas. Future Oncol.
17:1269–1283. 2021.PubMed/NCBI View Article : Google Scholar
|
|
39
|
FDA approves second CAR T-cell therapy.
Cancer Discov. 8:5–6. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Mullard A: FDA approves first
BCMA-targeted CAR-T cell therapy. Nat Rev Drug Discov.
20(332)2021.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Novak AJ, Darce JR, Arendt BK, Harder B,
Henderson K, Kindsvogel W, Gross JA, Greipp PR and Jelinek DF:
Expression of BCMA, TACI, and BAFF-R in multiple myeloma: A
mechanism for growth and survival. Blood. 103:689–694.
2004.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Ribas A and Wolchok JD: Cancer
immunotherapy using checkpoint blockade. Science. 359:1350–1355.
2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Guedan S, Ruella M and June CH: Emerging
cellular therapies for cancer. Annu Rev Immunol. 37:145–171.
2019.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Brown CE, Alizadeh D, Starr R, Weng L,
Wagner JR, Naranjo A, Ostberg JR, Blanchard MS, Kilpatrick J,
Simpson J, et al: Regression of glioblastoma after chimeric antigen
receptor T-cell therapy. N Engl J Med. 375:2561–2569.
2016.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Louis CU, Savoldo B, Dotti G, Pule M, Yvon
E, Myers GD, Rossig C, Russell HV, Diouf O, Liu E, et al: Antitumor
activity and long-term fate of chimeric antigen receptor-positive T
cells in patients with neuroblastoma. Blood. 118:6050–6056.
2011.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Vignali D and Kallikourdis M: Improving
homing in T cell therapy. Cytokine Growth Factor Rev. 36:107–116.
2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Martinez M and Moon EK: CAR T cells for
solid tumors: New strategies for finding, infiltrating, and
surviving in the tumor microenvironment. Front Immunol.
10(128)2019.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Morgan RA, Yang JC, Kitano M, Dudley ME,
Laurencot CM and Rosenberg SA: Case report of a serious adverse
event following the administration of T cells transduced with a
chimeric antigen receptor recognizing ERBB2. Mol Ther. 18:843–851.
2010.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Richman SA, Nunez-Cruz S, Moghimi B, Li
LZ, Gershenson ZT, Mourelatos Z, Barrett DM, Grupp SA and Milone
MC: High-Affinity GD2-Specific CAR T cells induce fatal
encephalitis in a preclinical neuroblastoma model. Cancer Immunol
Res. 6:36–46. 2018.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Chang SS: Overview of prostate-specific
membrane antigen. Rev Urol. 6 (Suppl 10):S13–S18. 2004.PubMed/NCBI
|
|
51
|
Hassan R and Ho M: Mesothelin targeted
cancer immunotherapy. Eur J Cancer. 44:46–53. 2008.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Fitzgerald AA and Weiner LM: The role of
fibroblast activation protein in health and malignancy. Cancer
Metastasis Rev. 39:783–803. 2020.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Hammarström S: The carcinoembryonic
antigen (CEA) family: Structures, suggested functions and
expression in normal and malignant tissues. Semin Cancer Biol.
9:67–81. 1999.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Slamon DJ, Godolphin W, Jones LA, Holt JA,
Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, et al:
Studies of the HER-2/neu proto-oncogene in human breast and ovarian
cancer. Science. 244:707–712. 1989.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Quail DF and Joyce JA: Microenvironmental
regulation of tumor progression and metastasis. Nat Med.
19:1423–1437. 2013.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Berahovich R, Liu X, Zhou H, Tsadik E, Xu
S, Golubovskaya V and Wu L: Hypoxia selectively impairs CAR-T cells
in vitro. Cancers (Basel). 11(602)2019.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Oliver AJ, Lau PKH, Unsworth AS, Loi S,
Darcy PK, Kershaw MH and Slaney CY: Tissue-Dependent tumor
microenvironments and their impact on immunotherapy responses.
Front Immunol. 9(70)2018.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Newick K, O'Brien S, Moon E and Albelda
SM: CAR T cell therapy for solid tumors. Annu Rev Med. 68:139–152.
2017.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Kershaw MH, Westwood JA, Parker LL, Wang
G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S,
Rogers-Freezer L, et al: A phase I study on adoptive immunotherapy
using gene-modified T cells for ovarian cancer. Clin Cancer Res.
12(20 Pt 1):6106–6115. 2006.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Guo Y, Feng K, Liu Y, Wu Z, Dai H, Yang Q,
Wang Y, Jia H and Han W: Phase I study of chimeric antigen receptor
modified T cells in patients with EGFR-positive advanced biliary
tract cancers. Clin Cancer Res. 24:1277–1286. 2018.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Lee JH and Lee SW: The roles of
carcinoembryonic antigen in liver metastasis and therapeutic
approaches. Gastroenterol Res Pract. 2017(7521987)2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Katz SC, Burga RA, McCormack E, Wang LJ,
Mooring W, Point GR, Khare PD, Thorn M, Ma Q, Stainken BF, et al:
Phase I hepatic immunotherapy for metastases study of
intra-arterial chimeric antigen receptor-modified T-cell therapy
for CEA+ liver metastases. Clin Cancer Res.
21:3149–3159. 2015.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Paoloni M and Khanna C: Translation of new
cancer treatments from pet dogs to humans. Nat Rev Cancer.
8:147–156. 2008.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Park JS, Withers SS, Modiano JF, Kent MS,
Chen M, Luna JI, Culp WTN, Sparger EE, Rebhun RB, Monjazeb AM, et
al: Canine cancer immunotherapy studies: Linking mouse and human. J
Immunother Cancer. 4(97)2016.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Mata M, Vera JF, Gerken C, Rooney CM,
Miller T, Pfent C, Wang LL, Wilson-Robles HM and Gottschalk S:
Toward immunotherapy with redirected T cells in a large animal
model: Ex vivo activation, expansion, and genetic modification of
canine T cells. J Immunother. 37:407–415. 2014.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Taraseviciute A, Tkachev V, Ponce R,
Turtle CJ, Snyder JM, Liggitt HD, Myerson D, Gonzalez-Cuyar L,
Baldessari A, English C, et al: Chimeric antigen receptor T
cell-mediated neurotoxicity in nonhuman primates. Cancer Discov.
8:750–763. 2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
van Steenbeek FG, Hytönen MK, Leegwater PA
and Lohi H: The canine era: The rise of a biomedical model. Anim
Genet. 47:519–527. 2016.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Abadie J, Nguyen F, Loussouarn D, Pena L,
Gama A, Rieder N, Belousov A, Bemelmans I, Jaillardon L, Ibisch C
and Campone M: Canine invasive mammary carcinomas as models of
human breast cancer. Part 2: Immunophenotypes and prognostic
significance. Breast Cancer Res Treat. 167:459–468. 2018.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Queiroga FL, Raposo T, Carvalho MI, Prada
J and Pires I: Canine mammary tumours as a model to study human
breast cancer: Most recent findings. In Vivo. 25:455–465.
2011.PubMed/NCBI
|
|
70
|
Buishand FO, Kik M and Kirpensteijn J:
Evaluation of clinico-pathological criteria and the Ki67 index as
prognostic indicators in canine insulinoma. Vet J. 185:62–67.
2010.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Siobhan S, Dunning MD, de Brot S,
Grau-Roma L, Mongan NP and Rutland CS: Comparative review of human
and canine osteosarcoma: Morphology, epidemiology, prognosis,
treatment and genetics. Acta Vet Scand. 59(71)2017.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Leroy BE and Northrup N: Prostate cancer
in dogs: Comparative and clinical aspects. Vet J. 180:149–162.
2009.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Sun F, Báez-Díaz C and Sánchez-Margallo
FM: Canine prostate models in preclinical studies of minimally
invasive interventions: Part I, canine prostate anatomy and
prostate cancer models. Transl Androl Urol. 6:538–546.
2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
McEntee M, Isaacs W and Smith C:
Adenocarcinoma of the canine prostate: Immunohistochemical
examination for secretory antigens. Prostate. 11:163–170.
1987.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Sorenmo KU, Goldschmidt M, Shofer F,
Goldkamp C and Ferracone J: Immunohistochemical characterization of
canine prostatic carcinoma and correlation with castration status
and castration time. Vet Comp Oncol. 1:48–56. 2003.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Yu H, Pan J, Guo Z, Yang C and Mao L: CART
cell therapy for prostate cancer: Status and promise. Onco Targets
Ther. 12:391–395. 2019.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Hillerdal V, Nilsson B, Carlsson B,
Eriksson F and Essand M: T cells engineered with a T cell receptor
against the prostate antigen TARP specifically kill
HLA-A2+ prostate and breast cancer cells. Proc Natl Acad
Sci USA. 109:15877–15881. 2012.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Morgenroth A, Cartellieri M, Schmitz M,
Günes S, Weigle B, Bachmann M, Abken H, Rieber EP and Temme A:
Targeting of tumor cells expressing the prostate stem cell antigen
(PSCA) using genetically engineered T-cells. Prostate.
67:1121–1131. 2007.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Fulkerson CM, Dhawan D, Ratliff TL, Hahn
NM and Knapp DW: Naturally occurring canine invasive urinary
bladder cancer: A complementary animal model to improve the success
rate in human clinical trials of new cancer drugs. Int J Genomics.
2017(6589529)2017.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Ma Q, Gomes EM, Lo AS and Junghans RP:
Advanced generation anti-prostate specific membrane antigen
designer T cells for prostate cancer immunotherapy. Prostate.
74:286–296. 2014.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Knapp DW, Ramos-Vara JA, Moore GE, Dhawan
D, Bonney PL and Young KE: Urinary bladder cancer in dogs, a
naturally occurring model for cancer biology and drug development.
ILAR J. 55:100–118. 2014.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Dhawan D, Paoloni M, Shukradas S,
Choudhury DR, Craig B, Ramos-Vara JA, Hahn N, Bonney PL, Khanna C
and Knapp DW: Comparative gene expression analyses identify luminal
and basal subtypes of canine invasive urothelial carcinoma that
mimic patterns in human invasive bladder cancer. PLoS One.
10(e0136688)2015.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Panjwani MK, Smith JB, Schutsky K,
Gnanandarajah J, O'Connor CM, Powell DJ Jr and Mason NJ:
Feasibility and safety of RNA-transfected CD20-specific chimeric
antigen receptor T cells in dogs with spontaneous B cell lymphoma.
Mol Ther. 24:1602–1614. 2016.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Panjwani MK, Atherton MJ, MaloneyHuss MA,
Haran KP, Xiong A, Gupta M, Kulikovsaya I, Lacey SF and Mason NJ:
Establishing a model system for evaluating CAR T cell therapy using
dogs with spontaneous diffuse large B cell lymphoma.
OncoImmunology. 9(1676615)2019.PubMed/NCBI View Article : Google Scholar
|