|
1
|
Chandra RA, Keane FK, Voncken FEM and
Thomas CR Jr: Contemporary radiotherapy: Present and future.
Lancet. 398:171–184. 2021.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Chen Q and Thouas GA: Metallic implant
biomaterials. Mater Sci Eng R Rep. 87:1–57. 2015.
|
|
3
|
Le Fèvre C, Lacornerie T, Noël G and
Antoni D: Management of metallic implants in radiotherapy. Cancer
Radiother. 26:411–416. 2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Spaander MCW, Van Der Bogt RD, Baron TH,
Albers D, Blero D, de Ceglie A, Conio M, Czakó L, Everett S,
Garcia-Pagán JC, et al: Esophageal stenting for benign and
malignant disease: European Society of Gastrointestinal Endoscopy
(ESGE) Guideline-Update 2021. Endoscopy. 53:751–762.
2021.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Chen YK, Schefter TE and Newman F:
Esophageal cancer patients undergoing external beam radiation after
placement of self-expandable metal stents: Is there a risk of
radiation dose enhancement? Gastrointest Endosc. 73:1109–1114.
2011.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Conio M and Sorbi D: Metal stents improve
dysphagia, nutrition and survival in malignant oesophageal
stenosis: A randomized controlled trial comparing modified
Gianturco Z-stents with plastic Atkinson tubes. Gastrointest
Endosc. 51:248–249. 2000.PubMed/NCBI
|
|
7
|
Hansen CR, Christiansen RL, Lorenzen EL,
Bertelsen AS, Asmussen JT, Gyldenkerne N, Eriksen JG, Johansen J
and Brink C: Contouring and dose calculation in head and neck
cancer radiotherapy after reduction of metal artifacts in CT
images. Acta Oncol. 56:874–878. 2017.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Akyol O, Dirican B, Toklu T, Eren H and
Olgar T: Investigating the effect of dental implant materials with
different densities on radiotherapy dose distribution using
Monte-Carlo simulation and pencil beam convolution algorithm.
Dentomaxillofac Radiol. 48(20180267)2019.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Evans AJ, Lee DY, Jain AK, Razi SS, Park
K, Schwartz GS, Trichter F, Ostenson J, Sasson JR and Bhora FY: The
effect of metallic tracheal stents on radiation dose in the airway
and surrounding tissues. J Surg Res. 189:1–6. 2014.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Spadea MF, Verburg JM, Baroni G and Seco
J: The impact of low-Z and high-Z metal implants in IMRT: A Monte
Carlo study of dose inaccuracies in commercial dose algorithms. Med
Phys. 41(011702)2014.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Bazalova M, Beaulieu L, Palefsky S and
Verhaegena F: Correction of CT artifacts and its influence on Monte
Carlo dose calculations. Med Phys. 34:2119–2132. 2007.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Paudel MR, Mackenzie M, Fallone BG and
Rathee S: Evaluation of normalized metal artifact reduction (NMAR)
in kVCT using MVCT prior images for radiotherapy treatment
planning. Med Phys. 40(081701)2013.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Park HS, Hwang D and Seo JK: Metal
Artifact Reduction for Polychromatic X-ray CT Based on a
Beam-Hardening Corrector. IEEE Trans Med Imaging. 35:480–487.
2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Praveenkumar RD, Santhosh KP and Augustine
A: Estimation of inhomogenity correction factors for a Co-60 beam
using Monte Carlo simulation. J Cancer Res Ther. 7:308–313.
2011.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Giantsoudi D, De Man B, Verburg J,
Trofimov A, Jin Y, Wang G, Gjesteby L and Paganetti H: Metal
artifacts in computed tomography for radiotherapy planning:
Dosimetric effects and impact of metal artifact reduction. Phys Med
Biol. 62:R49–R80. 2017.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Reft C, Alecu R, Das IJ, Gerbi BJ, Keall
P, Lief E, Mijnheer BJ, Papanikolaou N, Sibata C and Van Dyk J:
AAPM Radiation Therapy Committee Task Group 63. Dosimetric
considerations for patients with HIP prostheses undergoing pelvic
irradiation. Report of the AAPM Radiation Therapy Committee Task
Group 63. Med Phys. 30:1162–1182. 2003.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Nevelsky A, Borzov E, Daniel S and
Bar-Deroma R: Perturbation effects of the carbon fiber-PEEK screws
on radiotherapy dose distribution. J Appl Clin Med Phys. 18:62–68.
2017.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Mail N, Albarakati Y, Ahmad Khan M, Saeedi
F, Safadi N, Al-Ghamdi S and Saoudi A: The impacts of dental
filling materials on RapidArc treatment planning and dose delivery:
challenges and solution. Med Phys. 40(081714)2013.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Abu Dayyeh BK, Vandamme JJ, Miller RC and
Baron TH: Esophageal self-expandable stent material and mesh grid
density are the major determining factors of external beam
radiation dose perturbation: Results from a phantom model.
Endoscopy. 45:42–47. 2013.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Dietlicher I, Casiraghi M, Ares C, Bolsi
A, Weber DC, Lomax AJ and Albertini F: The effect of surgical
titanium rods on proton therapy delivered for cervical bone tumors:
Experimental validation using an anthropomorphic phantom. Phys Med
Biol. 59:7181–7194. 2014.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Atwood TF, Hsu A, Ogara MM, Luba DG,
Tamler BJ, Disario JA and Maxim PG: Radiotherapy dose perturbation
of esophageal stents examined in an experimental model. Int J
Radiat Oncol Biol Phys. 82:1659–1664. 2012.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Tsuji Y, Yoshimura H, Uto F, Tamada T,
Iwata K, Tamamoto T, Asakawa I, Shinkai T, Kichikawa K and Hasegawa
M: Physical and histopathological assessment of the effects of
metallic stents on radiation therapy. J Radiat Res. 48:477–483.
2007.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Liu M, Li X, Niu Q and Zhai F: Impact of
implanted metal plates on radiation dose distribution in vivo. Chin
J Rad Oncol. 19:459–462. 2010.
|
|
24
|
Lin MH, Li J, Price RA Jr, Wang L, Lee CC
and Ma CM: The dosimetric impact of dental implants on
head-and-neck volumetric modulated arc therapy. Phys Med Biol.
58:1027–1040. 2013.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Mahuvava C and Du Plessis FCP: Dosimetry
effects caused by unilateral and bilateral hip prostheses: A monte
carlo case study in megavoltage photon radiotherapy for computed
tomography data without metal artifacts. J Med Phys. 43:236–246.
2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
He Xueping and Ni Xinye: Impact of Metal
Implants with Two Different Materials on Radiation Dose
Distribution. China Medical Devices. 33:54–69. 2018.
|
|
27
|
Bhushan M, Tripathi D, Yadav G, Kumar L,
Dewan A and Kumar G: Effect of Hip prosthesis on photon beam
characteristics in radiological physics. Asian Pac J Cancer Prev.
21:1731–1738. 2020.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Ozen J, Dirican B, Oysul K, Beyzadeoglu M,
Ucok O and Beydemir B: Dosimetric evaluation of the effect of
dental implants in head and neck radiotherapy. Oral Surg Oral Med
Oral Pathol Oral Radiol Endod. 99:743–747. 2005.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Ade N and du Plessis FCP: Measurement of
the influence of titanium hip prosthesis on therapeutic electron
beam dose distributions in a novel pelvic phantom. Phys Med.
42:99–107. 2017.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Warburton A, Girdler SJ, Mikhail CM, Ahn A
and Cho SK: Biomaterials in spinal implants: A review. Neurospine.
17:101–110. 2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Kaur M and Singh K: Review on titanium and
titanium based alloys as biomaterials for orthopaedic applications.
Mater Sci Eng C Mater Biol Appl. 102:844–862. 2019.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Rana SB and Pokharel S: A dosimetric study
of volumetric modulated arc therapy planning techniques for
treatment of low-risk prostate cancer in patients with bilateral
hip prostheses. South Asian J Cancer. 3:18–21. 2014.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Koutcher L, Ballangrud A, Cordeiro PG,
McCormick B, Hunt M, Van Zee KJ, Hudis C and Beal K: Postmastectomy
intensity modulated radiation therapy following immediate
expander-implant reconstruction. Radiother Oncol. 94:319–323.
2010.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Park SH, Kim YS and Choi J: Dosimetric
analysis of the effects of a temporary tissue expander on the
radiotherapy technique. Radiol Med. 126:437–444. 2021.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Chen SA, Ogunleye T, Dhabbaan A, Huang EH,
Losken A, Gabram S, Davis L and Torres MA: Impact of internal
metallic ports in temporary tissue expanders on postmastectomy
radiation dose distribution. Int J Radiat Oncol Biol Phys.
85:630–635. 2013.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Shankar RA, Nibhanupudy JR, Sridhar R,
Ashton C and Goldson AL: Immediate breast reconstruction-impact on
radiation management. J Natl Med Assoc. 95:286–295. 2003.PubMed/NCBI
|
|
37
|
Gee HE, Bignell F, Odgers D, Gill S,
Martin D, Toohey J and Carroll S: In vivo dosimetric impact of
breast tissue expanders on post-mastectomy radiotherapy. J Med
Imaging Radiat Oncol. 60:138–145. 2016.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Da Silva MF, De Oliveira HF, Borges LF,
Carrara HHA and Farina JA Jr: Effects of the metallic port in
tissue expanders on dose distribution in postmastectomy
radiotherapy: A tridimensional experimental model of dosimetry in
breast reconstruction. Ann Plast Surg. 80:67–70. 2018.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Mizuno N, Takahashi H, Kawamori J,
Nakamura N, Ogita M, Hatanaka S, Yamauchi R, Hariu M and Sekiguchi
K: Determination of the appropriate physical density of internal
metallic ports in temporary tissue expanders for the treatment
planning of post-mastectomy radiation therapy. J Radiat Res.
59:190–197. 2018.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Park JM, Kim K, Park JI, Shin KH, Jin US
and Kim JI: Dosimetric effect of internal metallic ports in
temporary tissue expanders on postmastectomy radiation therapy: A
Monte Carlo study. Phys Med Biol. 62:4623–4636. 2017.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Tomé WA and Fowler JF: On cold spots in
tumor subvolumes. Med Phys. 29:1590–1598. 2002.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Kovacs DG, Rechner LA, Appelt AL,
Berthelsen AK, Costa JC, Friborg J, Persson GF, Bangsgaard JP,
Specht L and Aznar MC: Metal artefact reduction for accurate tumour
delineation in radiotherapy. Radiother Oncol. 126:479–486.
2018.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Rousselle A, Amelot A, Thariat J, Jacob J,
Mercy G, De Marzi L and Feuvret L: Metallic implants and CT
artefacts in the CTV area: Where are we in 2020 ? Cancer Radiother.
24:658–666. 2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Wang Y, Qian B, Li B, Qin G, Zhou Z, Qiu
Y, Sun X and Zhu B: Metal artifacts reduction using monochromatic
images from spectral CT: Evaluation of pedicle screws in patients
with scoliosis. Eur J Radiol. 82:e360–e366. 2013.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Zhou C, Zhao YE, Luo S, Shi H, Li L, Zheng
L, Zhang LJ and Lu G: Monoenergetic imaging of dual-energy CT
reduces artifacts from implanted metal orthopedic devices in
patients with factures. Acad Radiol. 18:1252–1257. 2011.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Morsbach F, Bickelhaupt S, Wanner GA,
Krauss A, Schmidt B and Alkadhi H: Reduction of metal artifacts
from hip prostheses on CT images of the pelvis: Value of iterative
reconstructions. Radiology. 268:237–244. 2013.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Conti D, Baruffaldi F, Erani P, Festa A,
Durante S and Santoro M: Dual-Energy Computed Tomography
Applications to Reduce Metal Artifacts in Hip Prostheses: A Phantom
Study. Diagnostics (Basel). 13(50)2022.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Axente M, Paidi A, Von Eyben R, Zeng C,
Bani-Hashemi A, Krauss A and Hristov D: Clinical evaluation of the
iterative metal artifact reduction algorithm for CT simulation in
radiotherapy. Med Phys. 42:1170–1183. 2015.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Metal Artifact Reduction for Orthopedic
Implants (O-MAR), Philips Healthc 1-12, 2011.
|
|
50
|
Gondim Teixeira PA, Meyer JB, Baumann C,
Raymond A, Sirveaux F, Coudane H and Blum A: Total hip prosthesis
CT with single-energy projection-based metallic artifact reduction:
impact on the visualization of specific periprosthetic soft tissue
structures. Skeletal Radiol. 43:1237–1246. 2014.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Guilfoile C, Rampant P and House M: The
impact of smart metal artefact reduction algorithm for use in
radiotherapy treatment planning. Australas Phys Eng Sci Med.
40:385–394. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Puvanasunthararajah S, Fontanarosa D,
Wille ML and Camps SM: The application of metal artifact reduction
methods on computed tomography scans for radiotherapy applications:
A literature review. J Appl Clin Med Phys. 22:198–223.
2021.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Katsura M, Sato J, Akahane M, Kunimatsu A
and Abe O: Current and novel techniques for metal artifact
reduction at CT: Practical guide for radiologists. Radiographics.
38:450–461. 2018.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Chang CH, Wu HN, Hsu CH and Lin HH:
Virtual monochromatic imaging with projection-based material
decomposition algorithm for metal artifacts reduction in
photon-counting detector computed tomography. PLoS One.
18(e0282900)2023.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Ceccarelli L, Vara G, Ponti F, Miceli M,
Golfieri R and Facchini G: Reduction of metal artifacts caused by
titanium peduncular screws in the spine by means of monoenergetic
images and the metal artifact reduction software in dual-energy
computed tomography. J Med Phys. 47:152–158. 2022.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Fogliata A, Nicolini G, Vanetti E, Clivio
A and Cozzi L: Dosimetric validation of the anisotropic analytical
algorithm for photon dose calculation: fundamental characterization
in water. Phys Med Biol. 51:1421–1438. 2006.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Brualla L, Rodriguez M and Lallena AM:
Monte Carlo systems used for treatment planning and dose
verification. Strahlenther Onkol. 193:243–259. 2017.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Panettieri V, Barsoum P, Westermark M,
Brualla L and Lax I: AAA and PBC calculation accuracy in the
surface build-up region in tangential beam treatments. Phantom and
breast case study with the Monte Carlo code PENELOPE. Radiother
Oncol. 93:94–101. 2009.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Paulu D and Alaei P: Evaluation of dose
calculation accuracy of treatment planning systems at hip
prosthesis interfaces. J Appl Clin Med Phys. 18:9–15.
2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Ade N and du Plessis FCP: Dose comparison
between Gafchromic film, XiO, and Monaco treatment planning systems
in a novel pelvic phantom that contains a titanium hip prosthesis.
J Appl Clin Med Phys. 18:162–173. 2017.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Parenica HM, Mavroidis P, Jones W, Swanson
G, Papanikolaou N and Stathakis S: VMAT Optimization and Dose
Calculation in the Presence of Metallic Hip Prostheses. Technol
Cancer Res Treat. 18(1533033819892255)2019.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Su A, Reft C, Rash C, Price J and Jani AB:
A case study of radiotherapy planning for a bilateral metal hip
prosthesis prostate cancer patient. Med Dosim. 30:169–175.
2005.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Van Der Est H, Prins P, Heijmen BJ and
Dirkx ML: Intensity modulated radiation therapy planning for
patients with a metal hip prosthesis based on class solutions.
Pract Radiat Oncol. 2:35–40. 2012.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Singh PK, Tripathi D, Singh S, Bhushan M,
Kumar L, Raman K, Barik S, Kumar G, Shukla SK and Gairola M: To
study the impact of different optimization methods on
intensity-modulated radiotherapy and volumetric-modulated Arc
therapy plans for Hip prosthesis patients. J Med Phys. 47:262–269.
2022.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Koutsouvelis N, Dipasquale G, Rouzaud M,
Dubouloz A, Nouet P, Jaccard M, Miralbell R, Tsoutsou P and Zilli
T: Bilateral metallic hip implants: Are avoidance sectors necessary
for pelvic VMAT treatments? Z Med Phys. 31:420–427. 2021.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Ng WL, Brunt J, Temple S, Saipillai M,
Haridass A, Wong H, Malik Z and Eswar C: Volumetric modulated arc
therapy in prostate cancer patients with metallic hip prostheses in
a UK centre. Rep Pract Oncol Radiother. 20:273–277. 2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Soda R, Hatanaka S, Hariu M, Shimbo M,
Yamano T, Nishimura K, Kondo S, Utsumi N and Takahashi T:
Evaluation of geometrical uncertainties on localized prostate
radiotherapy of patients with bilateral metallic hip prostheses
using 3D-CRT, IMRT and VMAT: A planning study. J Xray Sci Technol.
28:243–254. 2020.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Rana S, Cheng C, Zheng Y, His W, Zeidan O,
Schreuder N, Vargas C and Larson G: Dosimetric study of uniform
scanning proton therapy planning for prostate cancer patients with
a metal hip prosthesis, and comparison with volumetric-modulated
arc therapy. J Appl Clin Med Phys. 15(4611)2014.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Shimamoto H, Sumida I, Kakimoto N,
Marutani K, Okahata R, Usami A, Tsujimoto T, Murakami S, Furukawa S
and Tetradis S: Evaluation of the scatter doses in the direction of
the buccal mucosa from dental metals. J Appl Clin Med Phys.
16(5374)2015.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Javed A, Pal S, Dash NR, Ahuja V, Mohanti
BK, Vishnubhatla S, Sahni P and Chattopadhyay TK: Palliative
stenting with or without radiotherapy for inoperable esophageal
carcinoma: A randomized trial. J Gastrointest Cancer. 43:63–69.
2012.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Lai A, Lipka S, Kumar A, Sethi S, Bromberg
D, Li N, Shen H, Stefaniwsky L and Brady P: Role of esophageal
metal stents placement and combination therapy in inoperable
esophageal carcinoma: A systematic review and meta-analysis. Dig
Dis Sci. 63:1025–1034. 2018.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Sasaki K, Osako Y, Urata M, Noda M,
Tsuruda Y, Uchikado Y, Omoto I, Kita Y, Matsushita D, Okubo K, et
al: Clinical outcomes of fully covered self-expanding metallic
stent placement for palliation of incurable esophageal cancer with
or without radiotherapy. Anticancer Res. 41:385–389.
2021.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Machado AA, Martins BC, Josino IR, Chen
ATC, Hong CBC, Santos ALDR, Lima GRA, Cordero MAC, Safatle-Ribeiro
AV, Pennacchi C, et al: Impact of radiotherapy on adverse events of
self-expanding metallic stents in patients with esophageal cancer.
Dis Esophagus. 36(doad019)2023.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Hayakawa S, Ito K, Hayakawa J, Murofushi
KN and Karasawa K: Safety of biliary stent placement followed by
definitive chemoradiotherapy in patients with pancreatic cancer
with bile duct obstruction. J Gastrointest Oncol. 12:2260–2267.
2021.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Fischer AM and Hoskin PJ:
Radiotherapy-induced toxicity in prostate cancer patients with hip
prostheses. Radiat Oncol. 17(9)2022.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Sun L, Quon H, Tran V, Kirkby C and Smith
W: External beam radiation therapy treatment factors prognostic of
biochemical failure free survival: A multi-institutional
retrospective study for prostate cancer. Radiother Oncol.
173:109–118. 2022.PubMed/NCBI View Article : Google Scholar
|