The impact of metal implants on the dose and clinical outcome of radiotherapy (Review)
- Authors:
- Yuwen Liang
- Haonan Xu
- Wenqiang Tang
- Xiaobo Du
-
Affiliations: Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China, Department of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China - Published online on: July 18, 2024 https://doi.org/10.3892/mco.2024.2764
- Article Number: 66
-
Copyright: © Liang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chandra RA, Keane FK, Voncken FEM and Thomas CR Jr: Contemporary radiotherapy: Present and future. Lancet. 398:171–184. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen Q and Thouas GA: Metallic implant biomaterials. Mater Sci Eng R Rep. 87:1–57. 2015. | |
Le Fèvre C, Lacornerie T, Noël G and Antoni D: Management of metallic implants in radiotherapy. Cancer Radiother. 26:411–416. 2022.PubMed/NCBI View Article : Google Scholar | |
Spaander MCW, Van Der Bogt RD, Baron TH, Albers D, Blero D, de Ceglie A, Conio M, Czakó L, Everett S, Garcia-Pagán JC, et al: Esophageal stenting for benign and malignant disease: European Society of Gastrointestinal Endoscopy (ESGE) Guideline-Update 2021. Endoscopy. 53:751–762. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen YK, Schefter TE and Newman F: Esophageal cancer patients undergoing external beam radiation after placement of self-expandable metal stents: Is there a risk of radiation dose enhancement? Gastrointest Endosc. 73:1109–1114. 2011.PubMed/NCBI View Article : Google Scholar | |
Conio M and Sorbi D: Metal stents improve dysphagia, nutrition and survival in malignant oesophageal stenosis: A randomized controlled trial comparing modified Gianturco Z-stents with plastic Atkinson tubes. Gastrointest Endosc. 51:248–249. 2000.PubMed/NCBI | |
Hansen CR, Christiansen RL, Lorenzen EL, Bertelsen AS, Asmussen JT, Gyldenkerne N, Eriksen JG, Johansen J and Brink C: Contouring and dose calculation in head and neck cancer radiotherapy after reduction of metal artifacts in CT images. Acta Oncol. 56:874–878. 2017.PubMed/NCBI View Article : Google Scholar | |
Akyol O, Dirican B, Toklu T, Eren H and Olgar T: Investigating the effect of dental implant materials with different densities on radiotherapy dose distribution using Monte-Carlo simulation and pencil beam convolution algorithm. Dentomaxillofac Radiol. 48(20180267)2019.PubMed/NCBI View Article : Google Scholar | |
Evans AJ, Lee DY, Jain AK, Razi SS, Park K, Schwartz GS, Trichter F, Ostenson J, Sasson JR and Bhora FY: The effect of metallic tracheal stents on radiation dose in the airway and surrounding tissues. J Surg Res. 189:1–6. 2014.PubMed/NCBI View Article : Google Scholar | |
Spadea MF, Verburg JM, Baroni G and Seco J: The impact of low-Z and high-Z metal implants in IMRT: A Monte Carlo study of dose inaccuracies in commercial dose algorithms. Med Phys. 41(011702)2014.PubMed/NCBI View Article : Google Scholar | |
Bazalova M, Beaulieu L, Palefsky S and Verhaegena F: Correction of CT artifacts and its influence on Monte Carlo dose calculations. Med Phys. 34:2119–2132. 2007.PubMed/NCBI View Article : Google Scholar | |
Paudel MR, Mackenzie M, Fallone BG and Rathee S: Evaluation of normalized metal artifact reduction (NMAR) in kVCT using MVCT prior images for radiotherapy treatment planning. Med Phys. 40(081701)2013.PubMed/NCBI View Article : Google Scholar | |
Park HS, Hwang D and Seo JK: Metal Artifact Reduction for Polychromatic X-ray CT Based on a Beam-Hardening Corrector. IEEE Trans Med Imaging. 35:480–487. 2016.PubMed/NCBI View Article : Google Scholar | |
Praveenkumar RD, Santhosh KP and Augustine A: Estimation of inhomogenity correction factors for a Co-60 beam using Monte Carlo simulation. J Cancer Res Ther. 7:308–313. 2011.PubMed/NCBI View Article : Google Scholar | |
Giantsoudi D, De Man B, Verburg J, Trofimov A, Jin Y, Wang G, Gjesteby L and Paganetti H: Metal artifacts in computed tomography for radiotherapy planning: Dosimetric effects and impact of metal artifact reduction. Phys Med Biol. 62:R49–R80. 2017.PubMed/NCBI View Article : Google Scholar | |
Reft C, Alecu R, Das IJ, Gerbi BJ, Keall P, Lief E, Mijnheer BJ, Papanikolaou N, Sibata C and Van Dyk J: AAPM Radiation Therapy Committee Task Group 63. Dosimetric considerations for patients with HIP prostheses undergoing pelvic irradiation. Report of the AAPM Radiation Therapy Committee Task Group 63. Med Phys. 30:1162–1182. 2003.PubMed/NCBI View Article : Google Scholar | |
Nevelsky A, Borzov E, Daniel S and Bar-Deroma R: Perturbation effects of the carbon fiber-PEEK screws on radiotherapy dose distribution. J Appl Clin Med Phys. 18:62–68. 2017.PubMed/NCBI View Article : Google Scholar | |
Mail N, Albarakati Y, Ahmad Khan M, Saeedi F, Safadi N, Al-Ghamdi S and Saoudi A: The impacts of dental filling materials on RapidArc treatment planning and dose delivery: challenges and solution. Med Phys. 40(081714)2013.PubMed/NCBI View Article : Google Scholar | |
Abu Dayyeh BK, Vandamme JJ, Miller RC and Baron TH: Esophageal self-expandable stent material and mesh grid density are the major determining factors of external beam radiation dose perturbation: Results from a phantom model. Endoscopy. 45:42–47. 2013.PubMed/NCBI View Article : Google Scholar | |
Dietlicher I, Casiraghi M, Ares C, Bolsi A, Weber DC, Lomax AJ and Albertini F: The effect of surgical titanium rods on proton therapy delivered for cervical bone tumors: Experimental validation using an anthropomorphic phantom. Phys Med Biol. 59:7181–7194. 2014.PubMed/NCBI View Article : Google Scholar | |
Atwood TF, Hsu A, Ogara MM, Luba DG, Tamler BJ, Disario JA and Maxim PG: Radiotherapy dose perturbation of esophageal stents examined in an experimental model. Int J Radiat Oncol Biol Phys. 82:1659–1664. 2012.PubMed/NCBI View Article : Google Scholar | |
Tsuji Y, Yoshimura H, Uto F, Tamada T, Iwata K, Tamamoto T, Asakawa I, Shinkai T, Kichikawa K and Hasegawa M: Physical and histopathological assessment of the effects of metallic stents on radiation therapy. J Radiat Res. 48:477–483. 2007.PubMed/NCBI View Article : Google Scholar | |
Liu M, Li X, Niu Q and Zhai F: Impact of implanted metal plates on radiation dose distribution in vivo. Chin J Rad Oncol. 19:459–462. 2010. | |
Lin MH, Li J, Price RA Jr, Wang L, Lee CC and Ma CM: The dosimetric impact of dental implants on head-and-neck volumetric modulated arc therapy. Phys Med Biol. 58:1027–1040. 2013.PubMed/NCBI View Article : Google Scholar | |
Mahuvava C and Du Plessis FCP: Dosimetry effects caused by unilateral and bilateral hip prostheses: A monte carlo case study in megavoltage photon radiotherapy for computed tomography data without metal artifacts. J Med Phys. 43:236–246. 2018.PubMed/NCBI View Article : Google Scholar | |
He Xueping and Ni Xinye: Impact of Metal Implants with Two Different Materials on Radiation Dose Distribution. China Medical Devices. 33:54–69. 2018. | |
Bhushan M, Tripathi D, Yadav G, Kumar L, Dewan A and Kumar G: Effect of Hip prosthesis on photon beam characteristics in radiological physics. Asian Pac J Cancer Prev. 21:1731–1738. 2020.PubMed/NCBI View Article : Google Scholar | |
Ozen J, Dirican B, Oysul K, Beyzadeoglu M, Ucok O and Beydemir B: Dosimetric evaluation of the effect of dental implants in head and neck radiotherapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 99:743–747. 2005.PubMed/NCBI View Article : Google Scholar | |
Ade N and du Plessis FCP: Measurement of the influence of titanium hip prosthesis on therapeutic electron beam dose distributions in a novel pelvic phantom. Phys Med. 42:99–107. 2017.PubMed/NCBI View Article : Google Scholar | |
Warburton A, Girdler SJ, Mikhail CM, Ahn A and Cho SK: Biomaterials in spinal implants: A review. Neurospine. 17:101–110. 2020.PubMed/NCBI View Article : Google Scholar | |
Kaur M and Singh K: Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater Sci Eng C Mater Biol Appl. 102:844–862. 2019.PubMed/NCBI View Article : Google Scholar | |
Rana SB and Pokharel S: A dosimetric study of volumetric modulated arc therapy planning techniques for treatment of low-risk prostate cancer in patients with bilateral hip prostheses. South Asian J Cancer. 3:18–21. 2014.PubMed/NCBI View Article : Google Scholar | |
Koutcher L, Ballangrud A, Cordeiro PG, McCormick B, Hunt M, Van Zee KJ, Hudis C and Beal K: Postmastectomy intensity modulated radiation therapy following immediate expander-implant reconstruction. Radiother Oncol. 94:319–323. 2010.PubMed/NCBI View Article : Google Scholar | |
Park SH, Kim YS and Choi J: Dosimetric analysis of the effects of a temporary tissue expander on the radiotherapy technique. Radiol Med. 126:437–444. 2021.PubMed/NCBI View Article : Google Scholar | |
Chen SA, Ogunleye T, Dhabbaan A, Huang EH, Losken A, Gabram S, Davis L and Torres MA: Impact of internal metallic ports in temporary tissue expanders on postmastectomy radiation dose distribution. Int J Radiat Oncol Biol Phys. 85:630–635. 2013.PubMed/NCBI View Article : Google Scholar | |
Shankar RA, Nibhanupudy JR, Sridhar R, Ashton C and Goldson AL: Immediate breast reconstruction-impact on radiation management. J Natl Med Assoc. 95:286–295. 2003.PubMed/NCBI | |
Gee HE, Bignell F, Odgers D, Gill S, Martin D, Toohey J and Carroll S: In vivo dosimetric impact of breast tissue expanders on post-mastectomy radiotherapy. J Med Imaging Radiat Oncol. 60:138–145. 2016.PubMed/NCBI View Article : Google Scholar | |
Da Silva MF, De Oliveira HF, Borges LF, Carrara HHA and Farina JA Jr: Effects of the metallic port in tissue expanders on dose distribution in postmastectomy radiotherapy: A tridimensional experimental model of dosimetry in breast reconstruction. Ann Plast Surg. 80:67–70. 2018.PubMed/NCBI View Article : Google Scholar | |
Mizuno N, Takahashi H, Kawamori J, Nakamura N, Ogita M, Hatanaka S, Yamauchi R, Hariu M and Sekiguchi K: Determination of the appropriate physical density of internal metallic ports in temporary tissue expanders for the treatment planning of post-mastectomy radiation therapy. J Radiat Res. 59:190–197. 2018.PubMed/NCBI View Article : Google Scholar | |
Park JM, Kim K, Park JI, Shin KH, Jin US and Kim JI: Dosimetric effect of internal metallic ports in temporary tissue expanders on postmastectomy radiation therapy: A Monte Carlo study. Phys Med Biol. 62:4623–4636. 2017.PubMed/NCBI View Article : Google Scholar | |
Tomé WA and Fowler JF: On cold spots in tumor subvolumes. Med Phys. 29:1590–1598. 2002.PubMed/NCBI View Article : Google Scholar | |
Kovacs DG, Rechner LA, Appelt AL, Berthelsen AK, Costa JC, Friborg J, Persson GF, Bangsgaard JP, Specht L and Aznar MC: Metal artefact reduction for accurate tumour delineation in radiotherapy. Radiother Oncol. 126:479–486. 2018.PubMed/NCBI View Article : Google Scholar | |
Rousselle A, Amelot A, Thariat J, Jacob J, Mercy G, De Marzi L and Feuvret L: Metallic implants and CT artefacts in the CTV area: Where are we in 2020 ? Cancer Radiother. 24:658–666. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang Y, Qian B, Li B, Qin G, Zhou Z, Qiu Y, Sun X and Zhu B: Metal artifacts reduction using monochromatic images from spectral CT: Evaluation of pedicle screws in patients with scoliosis. Eur J Radiol. 82:e360–e366. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhou C, Zhao YE, Luo S, Shi H, Li L, Zheng L, Zhang LJ and Lu G: Monoenergetic imaging of dual-energy CT reduces artifacts from implanted metal orthopedic devices in patients with factures. Acad Radiol. 18:1252–1257. 2011.PubMed/NCBI View Article : Google Scholar | |
Morsbach F, Bickelhaupt S, Wanner GA, Krauss A, Schmidt B and Alkadhi H: Reduction of metal artifacts from hip prostheses on CT images of the pelvis: Value of iterative reconstructions. Radiology. 268:237–244. 2013.PubMed/NCBI View Article : Google Scholar | |
Conti D, Baruffaldi F, Erani P, Festa A, Durante S and Santoro M: Dual-Energy Computed Tomography Applications to Reduce Metal Artifacts in Hip Prostheses: A Phantom Study. Diagnostics (Basel). 13(50)2022.PubMed/NCBI View Article : Google Scholar | |
Axente M, Paidi A, Von Eyben R, Zeng C, Bani-Hashemi A, Krauss A and Hristov D: Clinical evaluation of the iterative metal artifact reduction algorithm for CT simulation in radiotherapy. Med Phys. 42:1170–1183. 2015.PubMed/NCBI View Article : Google Scholar | |
Metal Artifact Reduction for Orthopedic Implants (O-MAR), Philips Healthc 1-12, 2011. | |
Gondim Teixeira PA, Meyer JB, Baumann C, Raymond A, Sirveaux F, Coudane H and Blum A: Total hip prosthesis CT with single-energy projection-based metallic artifact reduction: impact on the visualization of specific periprosthetic soft tissue structures. Skeletal Radiol. 43:1237–1246. 2014.PubMed/NCBI View Article : Google Scholar | |
Guilfoile C, Rampant P and House M: The impact of smart metal artefact reduction algorithm for use in radiotherapy treatment planning. Australas Phys Eng Sci Med. 40:385–394. 2017.PubMed/NCBI View Article : Google Scholar | |
Puvanasunthararajah S, Fontanarosa D, Wille ML and Camps SM: The application of metal artifact reduction methods on computed tomography scans for radiotherapy applications: A literature review. J Appl Clin Med Phys. 22:198–223. 2021.PubMed/NCBI View Article : Google Scholar | |
Katsura M, Sato J, Akahane M, Kunimatsu A and Abe O: Current and novel techniques for metal artifact reduction at CT: Practical guide for radiologists. Radiographics. 38:450–461. 2018.PubMed/NCBI View Article : Google Scholar | |
Chang CH, Wu HN, Hsu CH and Lin HH: Virtual monochromatic imaging with projection-based material decomposition algorithm for metal artifacts reduction in photon-counting detector computed tomography. PLoS One. 18(e0282900)2023.PubMed/NCBI View Article : Google Scholar | |
Ceccarelli L, Vara G, Ponti F, Miceli M, Golfieri R and Facchini G: Reduction of metal artifacts caused by titanium peduncular screws in the spine by means of monoenergetic images and the metal artifact reduction software in dual-energy computed tomography. J Med Phys. 47:152–158. 2022.PubMed/NCBI View Article : Google Scholar | |
Fogliata A, Nicolini G, Vanetti E, Clivio A and Cozzi L: Dosimetric validation of the anisotropic analytical algorithm for photon dose calculation: fundamental characterization in water. Phys Med Biol. 51:1421–1438. 2006.PubMed/NCBI View Article : Google Scholar | |
Brualla L, Rodriguez M and Lallena AM: Monte Carlo systems used for treatment planning and dose verification. Strahlenther Onkol. 193:243–259. 2017.PubMed/NCBI View Article : Google Scholar | |
Panettieri V, Barsoum P, Westermark M, Brualla L and Lax I: AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE. Radiother Oncol. 93:94–101. 2009.PubMed/NCBI View Article : Google Scholar | |
Paulu D and Alaei P: Evaluation of dose calculation accuracy of treatment planning systems at hip prosthesis interfaces. J Appl Clin Med Phys. 18:9–15. 2017.PubMed/NCBI View Article : Google Scholar | |
Ade N and du Plessis FCP: Dose comparison between Gafchromic film, XiO, and Monaco treatment planning systems in a novel pelvic phantom that contains a titanium hip prosthesis. J Appl Clin Med Phys. 18:162–173. 2017.PubMed/NCBI View Article : Google Scholar | |
Parenica HM, Mavroidis P, Jones W, Swanson G, Papanikolaou N and Stathakis S: VMAT Optimization and Dose Calculation in the Presence of Metallic Hip Prostheses. Technol Cancer Res Treat. 18(1533033819892255)2019.PubMed/NCBI View Article : Google Scholar | |
Su A, Reft C, Rash C, Price J and Jani AB: A case study of radiotherapy planning for a bilateral metal hip prosthesis prostate cancer patient. Med Dosim. 30:169–175. 2005.PubMed/NCBI View Article : Google Scholar | |
Van Der Est H, Prins P, Heijmen BJ and Dirkx ML: Intensity modulated radiation therapy planning for patients with a metal hip prosthesis based on class solutions. Pract Radiat Oncol. 2:35–40. 2012.PubMed/NCBI View Article : Google Scholar | |
Singh PK, Tripathi D, Singh S, Bhushan M, Kumar L, Raman K, Barik S, Kumar G, Shukla SK and Gairola M: To study the impact of different optimization methods on intensity-modulated radiotherapy and volumetric-modulated Arc therapy plans for Hip prosthesis patients. J Med Phys. 47:262–269. 2022.PubMed/NCBI View Article : Google Scholar | |
Koutsouvelis N, Dipasquale G, Rouzaud M, Dubouloz A, Nouet P, Jaccard M, Miralbell R, Tsoutsou P and Zilli T: Bilateral metallic hip implants: Are avoidance sectors necessary for pelvic VMAT treatments? Z Med Phys. 31:420–427. 2021.PubMed/NCBI View Article : Google Scholar | |
Ng WL, Brunt J, Temple S, Saipillai M, Haridass A, Wong H, Malik Z and Eswar C: Volumetric modulated arc therapy in prostate cancer patients with metallic hip prostheses in a UK centre. Rep Pract Oncol Radiother. 20:273–277. 2015.PubMed/NCBI View Article : Google Scholar | |
Soda R, Hatanaka S, Hariu M, Shimbo M, Yamano T, Nishimura K, Kondo S, Utsumi N and Takahashi T: Evaluation of geometrical uncertainties on localized prostate radiotherapy of patients with bilateral metallic hip prostheses using 3D-CRT, IMRT and VMAT: A planning study. J Xray Sci Technol. 28:243–254. 2020.PubMed/NCBI View Article : Google Scholar | |
Rana S, Cheng C, Zheng Y, His W, Zeidan O, Schreuder N, Vargas C and Larson G: Dosimetric study of uniform scanning proton therapy planning for prostate cancer patients with a metal hip prosthesis, and comparison with volumetric-modulated arc therapy. J Appl Clin Med Phys. 15(4611)2014.PubMed/NCBI View Article : Google Scholar | |
Shimamoto H, Sumida I, Kakimoto N, Marutani K, Okahata R, Usami A, Tsujimoto T, Murakami S, Furukawa S and Tetradis S: Evaluation of the scatter doses in the direction of the buccal mucosa from dental metals. J Appl Clin Med Phys. 16(5374)2015.PubMed/NCBI View Article : Google Scholar | |
Javed A, Pal S, Dash NR, Ahuja V, Mohanti BK, Vishnubhatla S, Sahni P and Chattopadhyay TK: Palliative stenting with or without radiotherapy for inoperable esophageal carcinoma: A randomized trial. J Gastrointest Cancer. 43:63–69. 2012.PubMed/NCBI View Article : Google Scholar | |
Lai A, Lipka S, Kumar A, Sethi S, Bromberg D, Li N, Shen H, Stefaniwsky L and Brady P: Role of esophageal metal stents placement and combination therapy in inoperable esophageal carcinoma: A systematic review and meta-analysis. Dig Dis Sci. 63:1025–1034. 2018.PubMed/NCBI View Article : Google Scholar | |
Sasaki K, Osako Y, Urata M, Noda M, Tsuruda Y, Uchikado Y, Omoto I, Kita Y, Matsushita D, Okubo K, et al: Clinical outcomes of fully covered self-expanding metallic stent placement for palliation of incurable esophageal cancer with or without radiotherapy. Anticancer Res. 41:385–389. 2021.PubMed/NCBI View Article : Google Scholar | |
Machado AA, Martins BC, Josino IR, Chen ATC, Hong CBC, Santos ALDR, Lima GRA, Cordero MAC, Safatle-Ribeiro AV, Pennacchi C, et al: Impact of radiotherapy on adverse events of self-expanding metallic stents in patients with esophageal cancer. Dis Esophagus. 36(doad019)2023.PubMed/NCBI View Article : Google Scholar | |
Hayakawa S, Ito K, Hayakawa J, Murofushi KN and Karasawa K: Safety of biliary stent placement followed by definitive chemoradiotherapy in patients with pancreatic cancer with bile duct obstruction. J Gastrointest Oncol. 12:2260–2267. 2021.PubMed/NCBI View Article : Google Scholar | |
Fischer AM and Hoskin PJ: Radiotherapy-induced toxicity in prostate cancer patients with hip prostheses. Radiat Oncol. 17(9)2022.PubMed/NCBI View Article : Google Scholar | |
Sun L, Quon H, Tran V, Kirkby C and Smith W: External beam radiation therapy treatment factors prognostic of biochemical failure free survival: A multi-institutional retrospective study for prostate cancer. Radiother Oncol. 173:109–118. 2022.PubMed/NCBI View Article : Google Scholar |