|
1
|
Nakamura T, Nishizawa T, Hagiya M, Seki T,
Shimonishi M, Sugimura A, Tashiro K and Shimizu S: Molecular
cloning and expression of human hepatocyte growth factor. Nature.
342:440–443. 1989. View
Article : Google Scholar : PubMed/NCBI
|
|
2
|
Miyazawa K, Tsubouchi H, Naka D, Takahashi
K, Okigaki M, Arakaki N, Nakayama H, Hirono S, Sakiyama O,
Takahashi K, et al: Molecular cloning and sequence analysis of cDNA
for human hepatocyte growth factor. Biochem Biophys Res Commun.
163:967–973. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Stoker M, Gherardi E, Perryman M and Gray
J: Scatter factor is a fibroblast-derived modulator of epithelial
cell mobility. Nature. 327:239–242. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zarnegar R, Petersen B, DeFrances MC and
Michalopoulos G: Localization of hepatocyte growth factor (HGF)
gene on human chromosome 7. Genomics. 12:147–150. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Fukuyama R, Ichijoh Y, Minoshima S,
Kitamura N and Shimizu N: Regional localization of the hepatocyte
growth factor (HGF) gene to human chromosome 7 band q21.1.
Genomics. 11:410–415. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Seki T, Hagiya M, Shimonishi M, Nakamura T
and Shimizu S: Organization of the human hepatocyte growth
factor-encoding gene. Gene. 102:213–219. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Andermarcher E, Surani MA and Gherardi E:
Co-expression of the HGF/SF and c-met genes during early mouse
embryogenesis precedes reciprocal expression in adjacent tissues
during organogenesis. Dev Genet. 18:254–266. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Matsumoto K, Funakoshi H, Takahashi H and
Sakai K: HGF-Met pathway in regeneration and drug discovery.
Biomedicines. 2:275–300. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Fajardo-Puerta AB, Mato Prado M, Frampton
AE and Jiao LR: Gene of the month: HGF. J Clin Pathol. 69:575–579.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Matsumoto K, Tajima H, Okazaki H and
Nakamura T: Negative regulation of hepatocyte growth factor gene
expression in human lung fibroblasts and leukemic cells by
transforming growth factor-beta 1 and glucocorticoids. J Biol Chem.
267:24917–24920. 1992.PubMed/NCBI
|
|
11
|
Harrison P, Bradley L and Bomford A:
Mechanism of regulation of HGF/SF gene expression in fibroblasts by
TGF-beta1. Biochem Biophys Res Commun. 271:203–211. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Han S, Stuart LA and Degen SJ:
Characterization of the DNF15S2 locus on human chromosome 3:
Identification of a gene coding for four kringle domains with
homology to hepatocyte growth factor. Biochemistry. 30:9768–9780.
1991. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Leonard EJ and Skeel A: A serum protein
that stimulates macrophage movement, chemotaxis and spreading. Exp
Cell Res. 102:434–438. 1976. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Skeel A, Yoshimura T, Showalter SD, Tanaka
S, Appella E and Leonard EJ: Macrophage stimulating protein:
Purification, partial amino acid sequence, and cellular activity. J
Exp Med. 173:1227–1234. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Shimamoto A, Kimura T, Matsumoto K and
Nakamura T: Hepatocyte growth factor-like protein is identical to
macrophage stimulating protein. FEBS Lett. 333:61–66. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Bottaro DP, Rubin JS, Faletto DL, Chan AM,
Kmiecik TE, Vande Woude GF and Aaronson SA: Identification of the
hepatocyte growth factor receptor as the c-met proto-oncogene
product. Science. 251:802–804. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Naldini L, Vigna E, Narsimhan RP, Gaudino
G, Zarnegar R, Michalopoulos GK and Comoglio PM: Hepatocyte growth
factor (HGF) stimulates the tyrosine kinase activity of the
receptor encoded by the proto-oncogene c-MET. Oncogene. 6:501–504.
1991.PubMed/NCBI
|
|
18
|
Liu Y: The human hepatocyte growth factor
receptor gene: Complete structural organization and promoter
characterization. Gene. 215:159–169. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Niemann HH: Structural insights into Met
receptor activation. Eur J Cell Biol. 90:972–981. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Stamos J, Lazarus RA, Yao X, Kirchhofer D
and Wiesmann C: Crystal structure of the HGF beta-chain in complex
with the Sema domain of the Met receptor. EMBO J. 23:2325–2335.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Rodrigues GA and Park M:
Autophosphorylation modulates the kinase activity and oncogenic
potential of the Met receptor tyrosine kinase. Oncogene.
9:2019–2027. 1994.PubMed/NCBI
|
|
22
|
Maina F, Casagranda F, Audero E, Simeone
A, Comoglio PM, Klein R and Ponzetto C: Uncoupling of Grb2 from the
Met receptor in vivo reveals complex roles in muscle development.
Cell. 87:531–542. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ponzetto C, Bardelli A, Zhen Z, Maina F,
dalla Zonca P, Giordano S, Graziani A, Panayotou G and Comoglio PM:
A multifunctional docking site mediates signaling and
transformation by the hepatocyte growth factor/scatter factor
receptor family. Cell. 77:261–271. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Sachs M, Weidner KM, Brinkmann V, Walther
I, Obermeier A, Ullrich A and Birchmeier W: Motogenic and
morphogenic activity of epithelial receptor tyrosine kinases. J
Cell Biol. 133:1095–1107. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Pennacchietti S, Michieli P, Galluzzo M,
Mazzone M, Giordano S and Comoglio PM: Hypoxia promotes invasive
growth by transcriptional activation of the met protooncogene.
Cancer Cell. 3:347–361. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Palka HL, Park M and Tonks NK: Hepatocyte
growth factor receptor tyrosine kinase met is a substrate of the
receptor protein-tyrosine phosphatase DEP-1. J Biol Chem.
278:5728–5735. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sangwan V, Paliouras GN, Cheng A, Dubé N,
Tremblay ML and Park M: Protein-tyrosine phosphatase 1B deficiency
protects against Fas-induced hepatic failure. J Biol Chem.
281:221–228. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Peschard P and Park M: Escape from
Cbl-mediated downregulation: A recurrent theme for oncogenic
deregulation of receptor tyrosine kinases. Cancer Cell. 3:519–523.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Abella JV, Peschard P, Naujokas MA, Lin T,
Saucier C, Urbé S and Park M: Met/hepatocyte growth factor receptor
ubiquitination suppresses transformation and is required for Hrs
phosphorylation. Mol Cell Biol. 25:9632–9645. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Schmidt C, Bladt F, Goedecke S, Brinkmann
V, Zschiesche W, Sharpe M, Gherardi E and Birchmeier C: Scatter
factor/hepatocyte growth factor is essential for liver development.
Nature. 373:699–702. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Uehara Y, Minowa O, Mori C, Shiota K, Kuno
J, Noda T and Kitamura N: Placental defect and embryonic lethality
in mice lacking hepatocyte growth factor/scatter factor. Nature.
373:702–705. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Bladt F, Riethmacher D, Isenmann S, Aguzzi
A and Birchmeier C: Essential role for the c-met receptor in the
migration of myogenic precursor cells into the limb bud. Nature.
376:768–771. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Borowiak M, Garratt AN, Wüstefeld T,
Strehle M, Trautwein C and Birchmeier C: Met provides essential
signals for liver regeneration. Proc Natl Acad Sci USA. 101:pp.
10608–10613. 2004, View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Huh CG, Factor VM, Sánchez A, Uchida K,
Conner EA and Thorgeirsson SS: Hepatocyte growth factor/c-met
signaling pathway is required for efficient liver regeneration and
repair. Proc Natl Acad Sci USA. 101:pp. 4477–4482. 2004, View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Factor VM, Seo D, Ishikawa T, Kaposi-Novak
P, Marquardt JU, Andersen JB, Conner EA and Thorgeirsson SS: Loss
of c-Met disrupts gene expression program required for G2/M
progression during liver regeneration in mice. PLoS One.
5:e127392010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Gómez-Quiroz LE, Factor VM, Kaposi-Novak
P, Coulouarn C, Conner EA and Thorgeirsson SS: Hepatocyte-specific
c-Met deletion disrupts redox homeostasis and sensitizes to
Fas-mediated apoptosis. J Biol Chem. 283:14581–14589. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kroy DC, Schumacher F, Ramadori P, Hatting
M, Bergheim I, Gassler N, Boekschoten MV, Müller M, Streetz KL and
Trautwein C: Hepatocyte specific deletion of c-Met leads to the
development of severe non-alcoholic steatohepatitis in mice. J
Hepatol. 61:883–890. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Takami T, Kaposi-Novak P, Uchida K,
Gomez-Quiroz LE, Conner EA, Factor VM and Thorgeirsson SS: Loss of
hepatocyte growth factor/c-Met signaling pathway accelerates early
stages of N-nitrosodiethylamine induced hepatocarcinogenesis.
Cancer Res. 67:9844–9851. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ishikawa T, Factor VM, Marquardt JU, Raggi
C, Seo D, Kitade M, Conner EA and Thorgeirsson SS: Hepatocyte
growth factor/c-met signaling is required for stem-cell-mediated
liver regeneration in mice. Hepatology. 55:1215–1226. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ishibe S, Karihaloo A, Ma H, Zhang J,
Marlier A, Mitobe M, Togawa A, Schmitt R, Czyczk J, Kashgarian M,
et al: Met and the epidermal growth factor receptor act
cooperatively to regulate final nephron number and maintain
collecting duct morphology. Development. 136:337–345. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ma H, Saenko M, Opuko A, Togawa A, Soda K,
Marlier A, Moeckel GW, Cantley LG and Ishibe S: Deletion of the Met
receptor in the collecting duct decreases renal repair following
ureteral obstruction. Kidney Int. 76:868–876. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dai C, Saleem MA, Holzman LB, Mathieson P
and Liu Y: Hepatocyte growth factor signaling ameliorates podocyte
injury and proteinuria. Kidney Int. 77:962–973. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Finisguerra V, Di Conza G, Di Matteo M,
Serneels J, Costa S, Thompson AA, Wauters E, Walmsley S, Prenen H,
Granot Z, et al: MET is required for the recruitment of
anti-tumoural neutrophils. Nature. 522:349–353. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Song Y, Su M, Panchatsharam P, Rood D and
Lai L: c-Met signalling is required for efficient postnatal thymic
regeneration and repair. Immunology. 144:245–253. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Thompson BL and Levitt P: Complete or
partial reduction of the Met receptor tyrosine kinase in distinct
circuits differentially impacts mouse behavior. J Neurodev Disord.
7:352015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Judson MC, Eagleson KL, Wang L and Levitt
P: Evidence of cell-nonautonomous changes in dendrite and dendritic
spine morphology in the met-signaling-deficient mouse forebrain. J
Comp Neurol. 518:4463–4478. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Qiu S, Anderson CT, Levitt P and Shepherd
GM: Circuit-specific intracortical hyperconnectivity in mice with
deletion of the autism-associated Met receptor tyrosine kinase. J
Neurosci. 31:5855–5864. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Qiu S, Lu Z and Levitt P: MET receptor
tyrosine kinase controls dendritic complexity, spine morphogenesis,
and glutamatergic synapse maturation in the hippocampus. J
Neurosci. 34:16166–16179. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Avetisyan M, Wang H, Schill EM, Bery S,
Grider JR, Hassell JA, Stappenbeck T and Heuckeroth RO: Hepatocyte
growth factor and met support mouse enteric nervous system
development, the peristaltic response, and intestinal epithelial
proliferation in response to injury. J Neurosci. 35:11543–11558.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yamamoto H, Yun EJ, Gerber HP, Ferrara N,
Whitsett JA and Vu TH: Epithelial-vascular cross talk mediated by
VEGF-A and HGF signaling directs primary septae formation during
distal lung morphogenesis. Dev Biol. 308:44–53. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Calvi C, Podowski M, Lopez-Mercado A,
Metzger S, Misono K, Malinina A, Dikeman D, Poonyagariyon H,
Ynalvez L, Derakhshandeh R, et al: Hepatocyte growth factor, a
determinant of airspace homeostasis in the murine lung. PLoS Genet.
9:e10032282013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Roccisana J, Reddy V, Vasavada RC,
Gonzalez-Pertusa JA, Magnuson MA and Garcia-Ocaña A: Targeted
inactivation of hepatocyte growth factor receptor c-met in
beta-cells leads to defective insulin secretion and GLUT-2
downregulation without alteration of beta-cell mass. Diabetes.
54:2090–2102. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dai C, Huh CG, Thorgeirsson SS and Liu Y:
Beta-cell-specific ablation of the hepatocyte growth factor
receptor results in reduced islet size, impaired insulin secretion,
and glucose intolerance. Am J Pathol. 167:429–436. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mellado-Gil J, Rosa TC, Demirci C,
Gonzalez-Pertusa JA, Velazquez-Garcia S, Ernst S, Valle S, Vasavada
RC, Stewart AF, Alonso LC and Garcia-Ocaña A: Disruption of
hepatocyte growth factor/c-Met signaling enhances pancreatic
beta-cell death and accelerates the onset of diabetes. Diabetes.
60:525–536. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Alvarez-Perez JC, Ernst S, Demirci C,
Casinelli GP, Mellado-Gil JM, Rausell-Palamos F, Vasavada RC and
Garcia-Ocaña A: Hepatocyte growth factor/c-Met signaling is
required for β-cell regeneration. Diabetes. 63:216–223. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Arechederra M, Carmona R, González-Nuñez
M, Gutiérrez-Uzquiza A, Bragado P, Cruz-González I, Cano E,
Guerrero C, Sánchez A, López-Novoa JM, et al: Met signaling in
cardiomyocytes is required for normal cardiac function in adult
mice. Biochim Biophys Acta. 1832:2204–2215. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Chmielowiec J, Borowiak M, Morkel M,
Stradal T, Munz B, Werner S, Wehland J, Birchmeier C and Birchmeier
W: c-Met is essential for wound healing in the skin. J Cell Biol.
177:151–162. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Weidner KM, Di Cesare S, Sachs M,
Brinkmann V, Behrens J and Birchmeier W: Interaction between Gab1
and the c-Met receptor tyrosine kinase is responsible for
epithelial morphogenesis. Nature. 384:173–176. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sachs M, Brohmann H, Zechner D, Müller T,
Hülsken J, Walther I, Schaeper U, Birchmeier C and Birchmeier W:
Essential role of Gab1 for signaling by the c-Met receptor in vivo.
J Cell Biol. 150:1375–1384. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Maina F, Panté G, Helmbacher F, Andres R,
Porthin A, Davies AM, Ponzetto C and Klein R: Coupling Met to
specific pathways results in distinct developmental outcomes. Mol
Cell. 7:1293–1306. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sakata H, Takayama H, Sharp R, Rubin JS,
Merlino G and LaRochelle WJ: Hepatocyte growth factor/scatter
factor overexpression induces growth, abnormal development, and
tumor formation in transgenic mouse livers. Cell Growth Differ.
7:1513–1523. 1996.PubMed/NCBI
|
|
62
|
Shiota G, Wang TC, Nakamura T and Schmidt
EV: Hepatocyte growth factor in transgenic mice: Effects on
hepatocyte growth, liver regeneration and gene expression.
Hepatology. 19:962–972. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Di Renzo MF, Olivero M, Martone T, Maffe
A, Maggiora P, Stefani AD, Valente G, Giordano S, Cortesina G and
Comoglio PM: Somatic mutations of the MET oncogene are selected
during metastatic spread of human HNSC carcinomas. Oncogene.
19:1547–1555. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Suzuki H, Toyoda M, Horiguchi N, Kakizaki
S, Ohyama T, Takizawa D, Ichikawa T, Sato K, Takagi H and Mori M:
Hepatocyte growth factor protects against Fas-mediated liver
apoptosis in transgenic mice. Liver Int. 29:1562–1568. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kosone T, Takagi H, Horiguchi N, Ariyama
Y, Otsuka T, Sohara N, Kakizaki S, Sato K and Mori M: HGF
ameliorates a high-fat diet-induced fatty liver. Am J Physiol
Gastrointest Liver Physiol. 293:G204–G210. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
García-Ocaña A, Vasavada RC, Cebrian A,
Reddy V, Takane KK, López-Talavera JC and Stewart AF: Transgenic
overexpression of hepatocyte growth factor in the beta-cell
markedly improves islet function and islet transplant outcomes in
mice. Diabetes. 50:2752–2762. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Alvarez-Perez JC, Rosa TC, Casinelli GP,
Valle SR, Lakshmipathi J, Rosselot C, Rausell-Palamos F, Vasavada
RC and García-Ocaña A: Hepatocyte growth factor ameliorates
hyperglycemia and corrects β-cell mass in IRS2-deficient mice. Mol
Endocrinol. 28:2038–2048. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Garcia-Ocaña A, Takane KK, Syed MA,
Philbrick WM, Vasavada RC and Stewart AF: Hepatocyte growth factor
overexpression in the islet of transgenic mice increases beta cell
proliferation, enhances islet mass, and induces mild hypoglycemia.
J Biol Chem. 275:1226–1232. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Sun W, Funakoshi H and Nakamura T:
Overexpression of HGF retards disease progression and prolongs life
span in a transgenic mouse model of ALS. J Neurosci. 22:6537–6548.
2002.PubMed/NCBI
|
|
70
|
Kadoyama K, Funakoshi H, Ohya W and
Nakamura T: Hepatocyte growth factor (HGF) attenuates gliosis and
motoneuronal degeneration in the brainstem motor nuclei of a
transgenic mouse model of ALS. Neurosci Res. 59:446–456. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Ding Y, Adachi H, Katsuno M, Huang Z,
Jiang YM, Kondo N, Iida M, Tohnai G, Nakatsuji H, Funakoshi H, et
al: Overexpression of hepatocyte growth factor in SBMA model mice
has an additive effect on combination therapy with castration.
Biochem Biophys Res Commun. 468:677–683. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Kato T, Funakoshi H, Kadoyama K, Noma S,
Kanai M, Ohya-Shimada W, Mizuno S, Doe N, Taniguchi T and Nakamura
T: Hepatocyte growth factor overexpression in the nervous system
enhances learning and memory performance in mice. J Neurosci Res.
90:1743–1755. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Yant J, Buluwela L, Niranjan B, Gusterson
B and Kamalati T: In vivo effects of hepatocyte growth
factor/scatter factor on mouse mammary gland development. Exp Cell
Res. 241:476–481. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fiaschi-Taesch NM, Santos S, Reddy V, Van
Why SK, Philbrick WF, Ortega A, Esbrit P, Orloff JJ and
Garcia-Ocaña A: Prevention of acute ischemic renal failure by
targeted delivery of growth factors to the proximal tubule in
transgenic mice: The efficacy of parathyroid hormone-related
protein and hepatocyte growth factor. J Am Soc Nephrol. 15:112–125.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Toyoda M, Takayama H, Horiguchi N, Otsuka
T, Fukusato T, Merlino G, Takagi H and Mori M: Overexpression of
hepatocyte growth factor/scatter factor promotes vascularization
and granulation tissue formation in vivo. FEBS Lett. 509:95–100.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sanchez-Encinales V, Cozar-Castellano I,
Garcia-Ocaña A and Perdomo G: Targeted delivery of HGF to the
skeletal muscle improves glucose homeostasis in diet-induced obese
mice. J Physiol Biochem. 71:795–805. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Zhou D, Tan RJ, Lin L, Zhou L and Liu Y:
Activation of hepatocyte growth factor receptor, c-met, in renal
tubules is required for renoprotection after acute kidney injury.
Kidney Int. 84:509–520. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mason S, Hader C, Marlier A, Moeckel G and
Cantley LG: Met activation is required for early cytoprotection
after ischemic kidney injury. J Am Soc Nephrol. 25:329–337. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Demirci C, Ernst S, Alvarez-Perez JC, Rosa
T, Valle S, Shridhar V, Casinelli GP, Alonso LC, Vasavada RC and
García-Ocana A: Loss of HGF/c-Met signaling in pancreatic β-cells
leads to incomplete maternal β-cell adaptation and gestational
diabetes mellitus. Diabetes. 61:1143–1152. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Garner OB, Bush KT, Nigam KB, Yamaguchi Y,
Xu D, Esko JD and Nigam SK: Stage-dependent regulation of mammary
ductal branching by heparan sulfate and HGF-cMet signaling. Dev
Biol. 355:394–403. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Webster MT and Fan CM: c-MET regulates
myoblast motility and myocyte fusion during adult skeletal muscle
regeneration. PLoS One. 8:e817572013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kasaoka M, Ma J and Lashkari K: c-Met
modulates RPE migratory response to laser-induced retinal injury.
PLoS One. 7:e407712012. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Baek JH, Birchmeier C, Zenke M and
Hieronymus T: The HGF receptor/Met tyrosine kinase is a key
regulator of dendritic cell migration in skin immunity. J Immunol.
189:1699–1707. 2012. View Article : Google Scholar : PubMed/NCBI
|