Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
April-2020 Volume 12 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2020 Volume 12 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Identification of potential key genes in gastric cancer using bioinformatics analysis

  • Authors:
    • Wei Wang
    • Ying He
    • Qi Zhao
    • Xiaodong Zhao
    • Zhihong Li
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610075, P.R. China, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 178-192
    |
    Published online on: February 20, 2020
       https://doi.org/10.3892/br.2020.1281
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Gastric cancer (GC) is one of the most common types of cancer worldwide. Patients must be identified at an early stage of tumor progression for treatment to be effective. The aim of the present study was to identify potential biomarkers with diagnostic value in patients with GC. To examine potential therapeutic targets for GC, four Gene Expression Omnibus (GEO) datasets were downloaded and screened for differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were subsequently performed to study the function and pathway enrichment of the identified DEGs. A protein‑protein interaction (PPI) network was constructed. The CytoHubba plugin of Cytoscape was used to calculate the degree of connectivity of proteins in the PPI network, and the two genes with the highest degree of connectivity were selected for further analysis. Additionally, the two DEGs with the largest and smallest log Fold Change values were selected. These six key genes were further examined using Oncomine and the Kaplan‑Meier plotter platform. A total of 99 upregulated and 172 downregulated genes common to all four GEO datasets were screened. The DEGs were primarily enriched in the Biological Process terms: ‘extracellular matrix organization’, ‘collagen catabolic process’ and ‘cell adhesion’. These three KEGG pathways were significantly enriched in the categories: ‘ECM‑receptor interaction’, ‘protein digestion and absorption’, and ‘focal adhesion’. Based on Oncomine, expression of ATP4A and ATP4B were downregulated in GC, whereas expression of the other genes were all upregulated. The Kaplan‑Meier plotter platform confirmed that upregulated expression of the identified key genes was significantly associated with worse overall survival of patients with GC. The results of the present study suggest that FN1, COL1A1, INHBA and CST1 may be potential biomarkers and therapeutic targets for GC. Additional studies are required to explore the potential value of ATP4A and ATP4B in the treatment of GC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Shi J, Qu YP and Hou P: Pathogenetic mechanisms in gastric cancer. World J Gastroenterol. 20:13804–13819. 2014.PubMed/NCBI View Article : Google Scholar

2 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018.PubMed/NCBI View Article : Google Scholar

3 

Van Cutsem E, Sagaert X, Topal B, Haustermans K and Prenen H: Gastric cancer. Lancet. 388:2654–2664. 2016.PubMed/NCBI View Article : Google Scholar

4 

In H, Solsky I, Palis B, Langdon-Embry M, Ajani J and Sano T: Validation of the 8th Edition of the AJCC TNM staging system for gastric cancer using the national cancer database. Ann Surg Oncol. 24:3683–3691. 2017.PubMed/NCBI View Article : Google Scholar

5 

Peng H, Deng Y, Wang L, Cheng Y, Xu Y, Liao J and Wu H: Identification of potential biomarkers with diagnostic value in pituitary adenomas using prediction analysis for microarrays method. J Mol Neurosci. 69:399–410. 2019.PubMed/NCBI View Article : Google Scholar

6 

Wu Y, Jamal M, Xie T, Sun J, Song T, Yin Q, Li J, Pan S, Zeng X, Xie S and Zhang Q: Uridine-cytidine kinase 2 (UCK2): A potential diagnostic and prognostic biomarker for lung cancer. Cancer Sci. 110:2734–2747. 2019.PubMed/NCBI View Article : Google Scholar

7 

Chen Z, Zhou Y, Luo R, Liu K and Chen Z: Trophinin-associated protein expression is an independent prognostic biomarker in lung adenocarcinoma. J Thorac Dis. 11:2043–2050. 2019.PubMed/NCBI View Article : Google Scholar

8 

Li D, Lin C, Li N, Du Y, Yang C, Bai Y, Feng Z, Su C, Wu R, Song S, et al: PLAGL2 and POFUT1 are regulated by an evolutionarily conserved bidirectional promoter and are collaboratively involved in colorectal cancer by maintaining stemness. EBioMedicine. 45:124–138. 2019.PubMed/NCBI View Article : Google Scholar

9 

Yong L, YuFeng Z and Guang B: Association between PPP2CA expression and colorectal cancer prognosis tumor marker prognostic study. Int J Surg. 59:80–89. 2018.PubMed/NCBI View Article : Google Scholar

10 

Troiano G, Guida A, Aquino G, Botti G, Losito NS, Papagerakis S, Pedicillo MC, Ionna F, Longo F, Cantile M, et al: Integrative histologic and bioinformatics analysis of BIRC5/Survivin expression in oral squamous cell carcinoma. Int J Mol Sci. 19(E2664)2018.PubMed/NCBI View Article : Google Scholar

11 

D'Errico M, de Rinaldis E, Blasi MF, Viti V, Falchetti M, Calcagnile A, Sera F, Saieva C, Ottini L, Palli D, et al: Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 45:461–469. 2009.PubMed/NCBI View Article : Google Scholar

12 

Wang Q, Wen YG, Li DP, Xia J, Zhou CZ, Yan DW, Tang HM and Peng ZH: Upregulated INHBA expression is associated with poor survival in gastric cancer. Med Oncol. 29:77–83. 2012.PubMed/NCBI View Article : Google Scholar

13 

Li L, Zhu Z, Zhao Y, Zhang Q, Wu X, Miao B, Cao J and Fei S: FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics. Sci Rep. 9(7827)2019.PubMed/NCBI View Article : Google Scholar

14 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al: Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat Genet. 25:25–29. 2000.PubMed/NCBI View Article : Google Scholar

15 

The Gene Ontology Consortium: The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 47: D330.D338, 2019.

16 

Kanehisa M: ‘Post-genome Informatics’, Oxford University Press (2000). https://www.kanehisa.jp/docs/archive/PGI-contents.html.

17 

Huang da W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009.PubMed/NCBI View Article : Google Scholar

18 

Huang da W, Sherman BT and Lempicki RA: Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37:1–13. 2009.PubMed/NCBI View Article : Google Scholar

19 

Xu W, Wang Y, Wang Y, Lv S, Xu X and Dong X: Screening of differentially expressed genes and identification of NUF2 as a prognostic marker in breast cancer. Int J Mol Med. 44:390–404. 2019.PubMed/NCBI View Article : Google Scholar

20 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47:D607–D613. 2019.PubMed/NCBI View Article : Google Scholar

21 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003.PubMed/NCBI View Article : Google Scholar

22 

Chin CH, Chen SH, Wu HH, Ho CW, Ko MT and Lin CY: cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8 (Suppl 4): S11, 2014.

23 

Liu Y, Cui S, Li W, Zhao Y, Yan X and Xu J: PAX3 is a biomarker and prognostic factor in melanoma: Database mining. Oncol Lett. 17:4985–4993. 2019.PubMed/NCBI View Article : Google Scholar

24 

Nagy Á, Lánczky A, Menyhárt O and Győrffy B: Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep. 8(9227)2018.PubMed/NCBI View Article : Google Scholar

25 

Rausei S, Ruspi L, Galli F, Pappalardo V, Di Rocco G, Martignoni F, Frattini F, Rovera F, Boni L and Dionigi G: Seventh tumor-node-metastasis staging of gastric cancer: Five-year follow-up. World J Gastroenterol. 22:7748–7753. 2016.PubMed/NCBI View Article : Google Scholar

26 

Chen X, Leung SY, Yuen ST, Chu KM, Ji J, Li R, Chan AS, Law S, Troyanskaya OG, Wong J, et al: Variation in gene expression patterns in human gastric cancers. Mol Biol Cell. 14:3208–3215. 2003.PubMed/NCBI View Article : Google Scholar

27 

Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, Kim SB, Kim H, Hong SW, Park YN, et al: Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res. 17:1850–1857. 2011.PubMed/NCBI View Article : Google Scholar

28 

Cui J, Chen Y, Chou WC, Sun L, Chen L, Suo J, Ni Z, Zhang M, Kong X, Hoffman LL, et al: An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res. 39:1197–207. 2011.PubMed/NCBI View Article : Google Scholar

29 

Serra O, Galán M, Ginesta MM, Calvo M, Sala N and Salazar R: Comparison and applicability of molecular classifications for gastric cancer. Cancer Treat Rev. 77:29–34. 2019.PubMed/NCBI View Article : Google Scholar

30 

Gilkes DM, Semenza GL and Wirtz D: Hypoxia and the extracellular matrix: Drivers of tumour metastasis. Nat Rev Cancer. 14:430–439. 2014.PubMed/NCBI View Article : Google Scholar

31 

Climent M, Pera M, Aymar I, Ramón JM, Grande L and Nogués X: Bone health in long-term gastric cancer survivors: A prospective study of high-dose vitamin D supplementation using an easy administration scheme. J Bone Miner Metab. 36:462–469. 2018.PubMed/NCBI View Article : Google Scholar

32 

Zhou ZH, Ji CD, Xiao HL, Zhao HB, Cui YH and Bian XW: Reorganized collagen in the tumor microenvironment of gastric cancer and its association with prognosis. J Cancer. 8:1466–1476. 2017.PubMed/NCBI View Article : Google Scholar

33 

Jang M, Koh I, Lee SJ, Cheong JH and Kim P: Droplet-based microtumor model to assess cell-ECM interactions and drug resistance of gastric cancer cells. Sci Rep. 7(41541)2017.PubMed/NCBI View Article : Google Scholar

34 

Liu X and Chu KM: E-cadherin and gastric cancer: Cause, consequence, and applications. Biomed Res Int. 2014(637308)2014.PubMed/NCBI View Article : Google Scholar

35 

Hayashi Y, Bardsley MR, Toyomasu Y, Milosavljevic S, Gajdos GB, Choi KM, Reid-Lombardo KM, Kendrick ML, Bingener-Casey J, Tang CM, et al: Platelet-derived growth factor receptor-α regulates proliferation of gastrointestinal stromal tumor cells with mutations in KIT by stabilizing ETV1. Gastroenterology. 149:420–432.e16. 2015.PubMed/NCBI View Article : Google Scholar

36 

Rahbari NN, Kedrin D, Incio J, Liu H, Ho WW, Nia HT, Edrich CM, Jung K, Daubriac J, Chen I, et al: Anti-VEGF therapy induces ECM remodeling and mechanical barriers to therapy in colorectal cancer liver metastases. Sci Transl Med. 8(360ra135)2016.PubMed/NCBI View Article : Google Scholar

37 

Andersen MK, Rise K, Giskeødegård GF, Richardsen E, Bertilsson H, Størkersen Ø, Bathen TF, Rye M and Tessem MB: Integrative metabolic and transcriptomic profiling of prostate cancer tissue containing reactive stroma. Sci Rep. 8(14269)2018.PubMed/NCBI View Article : Google Scholar

38 

Bao Y, Wang L, Shi L, Yun F, Liu X, Chen Y, Chen C, Ren Y and Jia Y: Transcriptome profiling revealed multiple genes and ECM-receptor interaction pathways that may be associated with breast cancer. Cell Mol Biol Lett. 24(38)2019.PubMed/NCBI View Article : Google Scholar

39 

Zhu H, Chen H, Wang J, Zhou L and Liu S: Collagen stiffness promoted non-muscle-invasive bladder cancer progression to muscle-invasive bladder cancer. Onco Targets Ther. 12:3441–3457. 2019.PubMed/NCBI View Article : Google Scholar

40 

Jin GH, Xu W, Shi Y and Wang LB: Celecoxib exhibits an anti-gastric cancer effect by targeting focal adhesion and leukocyte transendothelial migration-associated genes. Oncol Lett. 12:2345–2350. 2016.PubMed/NCBI View Article : Google Scholar

41 

He WQ, Gu JW, Li CY, Kuang YQ, Kong B, Cheng L, Zhang JH, Cheng JM and Ma Y: The PPI network and clusters analysis in glioblastoma. Eur Rev Med Pharmacol Sci. 19:4784–4790. 2015.PubMed/NCBI

42 

Miryala SK, Anbarasu A and Ramaiah S: Discerning molecular interactions: A comprehensive review on biomolecular interaction databases and network analysis tools. Gene. 642:84–94. 2018.PubMed/NCBI View Article : Google Scholar

43 

Yan H, Zheng G, Qu J, Liu Y, Huang X, Zhang E and Cai Z: Identification of key candidate genes and pathways in multiple myeloma by integrated bioinformatics analysis. J Cell Physiol. 234:23785–23797. 2019.PubMed/NCBI View Article : Google Scholar

44 

Zhang H, Sun Z, Li Y, Fan D and Jiang H: MicroRNA-200c binding to FN1 suppresses the proliferation, migration and invasion of gastric cancer cells. Biomed Pharmacother. 88:285–292. 2017.PubMed/NCBI View Article : Google Scholar

45 

Kun-Peng Z, Chun-Lin Z, Xiao-Long M and Lei Z: Fibronectin-1 modulated by the long noncoding RNA OIP5-AS1/miR-200b-3p axis contributes to doxorubicin resistance of osteosarcoma cells. J Cell Physiol. 234:6927–6939. 2019.PubMed/NCBI View Article : Google Scholar

46 

Liao YX, Zhang ZP, Zhao J and Liu JP: Effects of fibronectin 1 on cell proliferation, senescence and apoptosis of human glioma cells through the PI3K/AKT signaling pathway. Cell Physiol Biochem. 48:1382–1396. 2018.PubMed/NCBI View Article : Google Scholar

47 

Cai X, Liu C, Zhang TN, Zhu YW, Dong X and Xue P: Down-regulation of FN1 inhibits colorectal carcinogenesis by suppressing proliferation, migration, and invasion. J Cell Biochem. 119:4717–4728. 2018.PubMed/NCBI View Article : Google Scholar

48 

Yan P, He Y, Xie K, Kong S and Zhao W: In silico analyses for potential key genes associated with gastric cancer. PeerJ. 6(e6092)2018.PubMed/NCBI View Article : Google Scholar

49 

Jiang K, Liu H, Xie D and Xiao Q: Differentially expressed genes ASPN, COL1A1, FN1, VCAN and MUC5AC are potential prognostic biomarkers for gastric cancer. Oncol Lett. 17:3191–3202. 2019.PubMed/NCBI View Article : Google Scholar

50 

Sun S, Wang Y, Wu Y, Gao Y, Li Q, Abdulrahman AA, Liu XF, Ji GQ, Gao J, Li L, et al: Identification of COL1A1 as an invasion-related gene in malignant astrocytoma. Int J Oncol. 53:2542–2554. 2018.PubMed/NCBI View Article : Google Scholar

51 

Liu J, Shen JX, Wu HT, Li XL, Wen XF, Du CW and Zhang GJ: Collagen 1A1 (COL1A1) promotes metastasis of breast cancer and is a potential therapeutic target. Discov Med. 25:211–223. 2018.PubMed/NCBI

52 

Huang C, Yang X, Han L, Fan Z, Liu B, Zhang C and Lu T: The prognostic potential of alpha-1 type I collagen expression in papillary thyroid cancer. Biochem Biophys Res Commun. 515:125–132. 2019.PubMed/NCBI View Article : Google Scholar

53 

Zhang QN, Zhu HL, Xia MT, Liao J, Huang XT, Xiao JW and Yuan C: A panel of collagen genes are associated with prognosis of patients with gastric cancer and regulated by microRNA-29c-3p: An integrated bioinformatics analysis and experimental validation. Cancer Manag Res. 11:4757–4772. 2019.PubMed/NCBI View Article : Google Scholar

54 

Seder CW, Hartojo W, Lin L, Silvers AL, Wang Z, Thomas DG, Giordano TJ, Chen G, Chang AC, Orringer MB, et al: Upregulated INHBA expression may promote cell proliferation and is associated with poor survival in lung adenocarcinoma. Neoplasia. 11:388–396. 2009.PubMed/NCBI View Article : Google Scholar

55 

Yang H, Wu J, Zhang J, Yang Z, Jin W, Li Y, Jin L, Yin L, Liu H and Wang Z: Integrated bioinformatics analysis of key genes involved in progress of colon cancer. Mol Genet Genomic Med. 7(e00588)2019.PubMed/NCBI View Article : Google Scholar

56 

Chen ZL, Qin L, Peng XB, Hu Y and Liu B: INHBA gene silencing inhibits gastric cancer cell migration and invasion by impeding activation of the TGF-β signaling pathway. J Cell Physiol. 234:18065–18074. 2019.PubMed/NCBI View Article : Google Scholar

57 

Katayama Y, Oshima T, Sakamaki K, Aoyama T, Sato T, Masudo K, Shiozawa M, Yoshikawa T, Rino Y, Imada T and Masuda M: Clinical significance of INHBA gene expression in patients with gastric cancer who receive curative resection followed by adjuvant S-1 chemotherapy. In Vivo. 31:565–571. 2017.PubMed/NCBI View Article : Google Scholar

58 

Dai DN, Li Y, Chen B, Du Y, Li SB, Lu SX, Zhao ZP, Zhou AJ, Xue N, Xia TL, et al: Elevated expression of CST1 promotes breast cancer progression and predicts a poor prognosis. J Mol Med (Berl). 95:873–886. 2017.PubMed/NCBI View Article : Google Scholar

59 

Tian A, Pu K, Li B, Li M, Liu X, Gao L and Mao X: Weighted gene coexpression network analysis reveals hub genes involved in cholangiocarcinoma progression and prognosis. Hepatol Res. 49:1195–1206. 2019.PubMed/NCBI View Article : Google Scholar

60 

Kim J, Bae DH, Kim JH, Song KS, Kim YS and Kim SY: HOXC10 overexpression promotes cell proliferation and migration in gastric cancer. Oncol Rep. 42:202–212. 2019.PubMed/NCBI View Article : Google Scholar

61 

Jiang J, Liu HL, Tao L, Lin XY, Yang YD, Tan SW and Wu B: Let-7d inhibits colorectal cancer cell proliferation through the CST1/p65 pathway. Int J Oncol. 53:781–790. 2018.PubMed/NCBI View Article : Google Scholar

62 

Oh SS, Park S, Lee KW, Madhi H, Park SG, Lee HG, Cho YY, Yoo J and Dong Kim K: Extracellular cystatin SN and cathepsin B prevent cellular senescence by inhibiting abnormal glycogen accumulation. Cell Death Dis. 8(e2729)2017.PubMed/NCBI View Article : Google Scholar

63 

Lin S, Lin B, Wang X, Pan Y, Xu Q, He JS, Gong W, Xing R, He Y, Guo L, et al: Silencing of ATP4B of ATPase H+/K+ transporting beta subunit by intragenic epigenetic alteration in human gastric cancer cells. Oncol Res. 25:317–329. 2017.PubMed/NCBI View Article : Google Scholar

64 

Fei HJ, Chen SC, Zhang JY, Li SY, Zhang LL, Chen YY, Chang CX and Xu CM: Identification of significant biomarkers and pathways associated with gastric carcinogenesis by whole genome-wide expression profiling analysis. Int J Oncol. 52:955–966. 2018.PubMed/NCBI View Article : Google Scholar

65 

Lozano-Pope I, Sharma A, Matthias M, Doran KS and Obonyo M: Effect of myeloid differentiation primary response gene 88 on expression profiles of genes during the development and progression of Helicobacter-induced gastric cancer. BMC Cancer. 17(133)2017.PubMed/NCBI View Article : Google Scholar

66 

Di Mario F and Goni E: Gastric acid secretion: Changes during a century. Best Pract Res Clin Gastroenterol. 28:953–65. 2014.PubMed/NCBI View Article : Google Scholar

67 

Saha A, Hammond CE, Beeson C, Peek RM Jr and Smolka AJ: Helicobacter pylori represses proton pump expression and inhibits acid secretion in human gastric mucosa. Gut. 59:874–881. 2010.PubMed/NCBI View Article : Google Scholar

68 

Friis-Hansen L: Achlorhydria is associated with gastric microbial overgrowth and development of cancer: Lessons learned from the gastrin knockout mouse. Scand J Clin Lab Invest. 66:607–621. 2006.PubMed/NCBI View Article : Google Scholar

69 

Sáenz JB and Mills JC: Acid and the basis for cellular plasticity and reprogramming in gastric repair and cancer. Nat Rev Gastroenterol Hepatol. 15:257–273. 2018.PubMed/NCBI View Article : Google Scholar

70 

Vinasco K, Mitchell HM, Kaakoush NO and Castaño-Rodríguez N: Microbial carcinogenesis: Lactic acid bacteria in gastric cancer. Biochim Biophys Acta Rev Cancer. 1872(188309)2019.PubMed/NCBI View Article : Google Scholar

71 

Ferreira RM, Pereira-Marques J, Pinto-Ribeiro I, Costa JL, Carneiro F, Machado JC and Figueiredo C: Gastric microbial community profiling reveals a dysbiotic cancer-associated microbiota. Gut. 67:226–236. 2018.PubMed/NCBI View Article : Google Scholar

72 

Wang LL, Liu JX, Yu XJ, Si JL, Zhai YX and Dong QJ: Microbial community reshaped in gastric cancer. Eur Rev Med Pharmacol Sci. 22:7257–7264. 2018.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang W, He Y, Zhao Q, Zhao X and Li Z: Identification of potential key genes in gastric cancer using bioinformatics analysis. Biomed Rep 12: 178-192, 2020.
APA
Wang, W., He, Y., Zhao, Q., Zhao, X., & Li, Z. (2020). Identification of potential key genes in gastric cancer using bioinformatics analysis. Biomedical Reports, 12, 178-192. https://doi.org/10.3892/br.2020.1281
MLA
Wang, W., He, Y., Zhao, Q., Zhao, X., Li, Z."Identification of potential key genes in gastric cancer using bioinformatics analysis". Biomedical Reports 12.4 (2020): 178-192.
Chicago
Wang, W., He, Y., Zhao, Q., Zhao, X., Li, Z."Identification of potential key genes in gastric cancer using bioinformatics analysis". Biomedical Reports 12, no. 4 (2020): 178-192. https://doi.org/10.3892/br.2020.1281
Copy and paste a formatted citation
x
Spandidos Publications style
Wang W, He Y, Zhao Q, Zhao X and Li Z: Identification of potential key genes in gastric cancer using bioinformatics analysis. Biomed Rep 12: 178-192, 2020.
APA
Wang, W., He, Y., Zhao, Q., Zhao, X., & Li, Z. (2020). Identification of potential key genes in gastric cancer using bioinformatics analysis. Biomedical Reports, 12, 178-192. https://doi.org/10.3892/br.2020.1281
MLA
Wang, W., He, Y., Zhao, Q., Zhao, X., Li, Z."Identification of potential key genes in gastric cancer using bioinformatics analysis". Biomedical Reports 12.4 (2020): 178-192.
Chicago
Wang, W., He, Y., Zhao, Q., Zhao, X., Li, Z."Identification of potential key genes in gastric cancer using bioinformatics analysis". Biomedical Reports 12, no. 4 (2020): 178-192. https://doi.org/10.3892/br.2020.1281
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team