Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
July-2020 Volume 13 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2020 Volume 13 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review)

  • Authors:
    • María Isabela Avila‑Rodríguez
    • David Meléndez‑Martínez
    • Cuauhtemoc Licona‑Cassani
    • José Manuel Aguilar‑Yañez
    • Jorge Benavides
    • Mirna Lorena Sánchez
  • View Affiliations / Copyright

    Affiliations: Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León 64849, Mexico, Laboratorio de Materiales Biotecnológicos, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-Imbice-Conicet-Cicpba, Bernal, Buenos Aires B1876BXD, Argentina
    Copyright: © Avila‑Rodríguez et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 3-14
    |
    Published online on: April 27, 2020
       https://doi.org/10.3892/br.2020.1300
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Skin wounds have been extensively studied as their healing represents a critical step towards achieving homeostasis following a traumatic event. Dependent on the severity of the damage, wounds are categorized as either acute or chronic. To date, chronic wounds have the highest economic impact as long term increases wound care costs. Chronic wounds affect 6.5 million patients in the United States with an annual estimated expense of $25 billion for the health care system. Among wound treatment categories, active wound care represents the fastest‑growing category due to its specific actions and lower costs. Within this category, proteases from various sources have been used as successful agents in debridement wound care. The wound healing process is predominantly mediated by matrix metalloproteinases (MMPs) that, when dysregulated, result in defective wound healing. Therapeutic activity has been described for animal secretions including fish epithelial mucus, maggot secretory products and snake venom, which contain secreted proteases (SPs). No further alternatives for use, sources or types of proteases used for wound healing have been found in the literature to date. Through the present review, the context of enzymatic wound care alternatives will be discussed. In addition, substrate homology of SPs and human MMPs will be compared and contrasted. The purpose of these discussions is to identify and propose the stages of wound healing in which SPs may be used as therapeutic agents to improve the wound healing process.
View Figures

Figure 1

View References

1 

Dhivya S, Padma VV and Santhini E: Wound dressings-a review. Biomedicine (Taipei). 5(22)2015.PubMed/NCBI View Article : Google Scholar

2 

Nicoli Aldini N, Fini M and Giardino R: From Hippocrates to tissue engineering: Surgical strategies in wound treatment. World J Surg. 32:2114–2121. 2008.PubMed/NCBI View Article : Google Scholar

3 

Sen CK: Human wounds and its burden: An updated compendium of estimates. Adv Wound Care (New Rochelle). 8:39–48. 2019.PubMed/NCBI View Article : Google Scholar

4 

Järbrink K, Ni G, Sönnergren H, Schmidtchen A, Pang C, Bajpai R and Car J: Prevalence and incidence of chronic wounds and related complications: A protocol for a systematic review. Syst Rev. 5(152)2016.PubMed/NCBI View Article : Google Scholar

5 

Brem H, Stojadinovic O, Diegelmann RF, Entero H, Lee B, Pastar I, Golinko M, Rosenberg H and Tomic-Canic M: Molecular markers in patients with chronic wounds to guide surgical debridement. Mol Med. 13:30–39. 2007.PubMed/NCBI View Article : Google Scholar

6 

Anderson K and Hamm RL: Factors that impair wound healing. J Am Coll Clin Wound Spec. 4:84–91. 2014.PubMed/NCBI View Article : Google Scholar

7 

Nussbaum SR, Carter MJ, Fife CE, DaVanzo J, Haught R, Nusgart M and Cartwright D: An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds. Value Health. 21:27–32. 2018.PubMed/NCBI View Article : Google Scholar

8 

Avila Rodríguez MI, Rodríguez Barroso LG and Sánchez ML: Collagen: A review on its sources and potential cosmetic applications. J Cosmet Dermatol. 17:20–26. 2018.PubMed/NCBI View Article : Google Scholar

9 

Malik M: Advanced wound care market by product type (Infection Management, Exudate Management, Active Wound Care, Therapy Devices), application (Chronic Wounds and Acute Wounds), end user (Hospitals and Community Centers)-global opportunity analysis and industry forecast, 2014-2022. 2016.

10 

Khan W and Morgan-Jones R: Debridement: Defining something we all do. J Trauma Orthop. 4(48)2016.

11 

Kwan SH and Ismail MN: Identification of the potential bio-active proteins associated with wound healing properties in snakehead fish (Channa striata) mucus. Curr Proteomics. 15:299–312. 2018. View Article : Google Scholar

12 

Fatima L and Fatah C: Pathophysiological and pharmacological effects of snake venom components: Molecular targets. J Clin Toxicol. 4(190)2014.

13 

Fierro-Arias L, Campos-Cornejo NG, Contreras-Ruiz J, Espinosa-Maceda S, López-Gehrke I, Márquez-Cárdenas R, Ramírez-Padilla M, Veras-Castillo E and Rodríguez-Alcocer AN: Productos enzimáticos (hialuronidasa, colagenasa y lipasa) y su uso en dermatología. Dermatol Rev Mex. 61:206–219. 2017.

14 

Klasen HJ: A review on the nonoperative removal of necrotic tissue from burn wounds. Burns. 26:207–222. 2000.PubMed/NCBI View Article : Google Scholar

15 

Gill SE and Parks WC: Metalloproteinases and their inhibitors: Regulators of wound healing. Int J Biochem Cell Biol. 40:1334–1347. 2008.PubMed/NCBI View Article : Google Scholar

16 

Ayuk SM, Abrahamse H and Houreld NN: The role of matrix metalloproteinases in diabetic wound healing in relation to photobiomodulation. J Diabetes Res. 2016(2897656)2016.PubMed/NCBI View Article : Google Scholar

17 

Mclennan SV, Min D and Yue DK: Matrix metalloproteinases and their roles in poor wound healing in diabetes. Wound Pract Res. 16:116–120. 2008.

18 

De Marco Almeida F, de Castro Pimenta AM, Oliveira MC and De Lima ME: Venoms, toxins and derivatives from the Brazilian fauna: Valuable sources for drug discovery. Sheng Li Xue Bao. 67:261–270. 2015.PubMed/NCBI

19 

Riley KN and Herman IM: Collagenase promotes the cellular responses to injury and wound healing in vivo. J Burns Wounds. 4(e8)2005.PubMed/NCBI

20 

Muhammad I, Shaikh SA and Rashid HU: Role of papaya dressings in the management of diabetic foot ulcers. J Rawalpindi Med College. 18:87–89. 2014.

21 

Esteban MÁ: An overview of the immunological defenses in fish skin. ISRN Immunol. 2012(853470)2012. View Article : Google Scholar

22 

Horobin AJ, Shakesheff KM and Pritchard DI: Maggots and wound healing: an investigation of the effects of secretions from Lucilia sericata larvae upon the migration of human dermal fibroblasts over a fibronectin-coated surface. Wound Repair Regen. 13:422–433. 2005.PubMed/NCBI View Article : Google Scholar

23 

Rajesh R, Raghavendra Gowda CD, Nataraju A, Dhananjaya BL, Kemparaju K and Vishwanath BS: Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon. 46:84–92. 2005.PubMed/NCBI View Article : Google Scholar

24 

White R: The costs of wound debridement and exudate management. Br J Health Care Manag. 21:172–175. 2015. View Article : Google Scholar

25 

Han G and Ceilley R: Chronic wound healing: A review of current management and treatments. Adv Ther. 34:599–610. 2017.PubMed/NCBI View Article : Google Scholar

26 

Sinclair RD and Ryan TJ: Proteolytic enzymes in wound healing: The role of enzymatic debridement. Australas J Dermatol. 35:35–41. 1994.PubMed/NCBI View Article : Google Scholar

27 

Glyantsev SP, Savvina TV and Zayets TL: Comparative study of proteolytic enzymes used for debridement of purulent wounds. Bull Exp Biol Med. 121:646–650. 1996. View Article : Google Scholar

28 

Gray D, Acton C, Chadwick P, Fumarola S, Leaper D, Morris C, Stang D, Vowden K, Vowden P and Young T: Consensus guidance for the use of debridement techniques in the UK. Wounds UK. 7:77–84. 2011.

29 

Atkin L: Understanding methods of wound debridement. Br J Nurs. (23)S10-S12, S14-S15:2014.PubMed/NCBI View Article : Google Scholar

30 

Dabiri G, Damstetter E and Phillips T: Choosing a wound dressing based on common wound characteristics. Adv Wound Care (New Rochelle). 5:32–41. 2016.PubMed/NCBI View Article : Google Scholar

31 

Manna B and Morrison CA: Wond debridement. StatPearls. 2019.

32 

Cutting K and White R: Maceration of the skin and wound bed. 1: Its nature and causes. J Wound Care. 11:275–278. 2002. View Article : Google Scholar

33 

Mahoney J and Ward J: Surgical debridement. In: Surgery in wounds. Téot L, Banwell PE and Ziegler UE (eds.) Springer Berlin Heidelberg, Berlin, Heidelberg. 67–71. 2004.

34 

Bekara F, Vitse J, Fluieraru S, Masson R, Runz A, Georgescu V, Bressy G, Labbé JL, Chaput B and Herlin C: New techniques for wound management: A systematic review of their role in the management of chronic wounds. Arch Plast Surg. 45:102–110. 2018.PubMed/NCBI View Article : Google Scholar

35 

Liu W, Ma K, Kwon SH, Garg R, Patta YR, Fujiwara T and Gurtner GC: The abnormal architecture of healed diabetic ulcers is the result of FAK degradation by calpain 1. J Invest Dermatol. 137:1155–1165. 2017. View Article : Google Scholar

36 

Ayello EA and Cuddigan JE: Debridement: Controlling the necrotic/cellular burden. Adv Skin Wound Care. 17:66–75. quiz:76–78. 2004.PubMed/NCBI View Article : Google Scholar

37 

Whitaker IS, Twine C, Whitaker MJ, Welck M, Brown CS and Shandall A: Larval therapy from antiquity to the present day: Mechanisms of action, clinical applications and future potential. Postgrad Med J. 83:409–413. 2007.PubMed/NCBI View Article : Google Scholar

38 

Gray M: Is larval (maggot) debridement effective for removal of necrotic tissue from chronic wounds? J Wound Ostomy Continence Nurs. 35:378–384. 2008.PubMed/NCBI View Article : Google Scholar

39 

Jordan A, Khiyani N, Bowers SR, Lukaszczyk JJ and Stawicki SP: Maggot debridement therapy: A practical review. Int J Acad Med. 4:21–34. 2018. View Article : Google Scholar

40 

Brown A, Horobin A, Blount DG, Hill PJ, English J, Rich A, Williams PM and Pritchard DI: Blow fly Lucilia sericata nuclease digests DNA associated with wound slough/eschar and with Pseudomonas aeruginosa biofilm. Med Vet Entomol. 26:432–439. 2012.PubMed/NCBI View Article : Google Scholar

41 

Harris LG, Nigam Y, Sawyer J, Mack D and Pritchard DI: Lucilia sericata chymotrypsin disrupts protein adhesin-mediated staphylococcal biofilm formation. Appl Environ Microbiol. 79:1393–1395. 2013.PubMed/NCBI View Article : Google Scholar

42 

Parnés A and Lagan KM: Larval therapy in wound management: A review. Int J Clin Pract. 61:488–493. 2007.PubMed/NCBI View Article : Google Scholar

43 

Cazander G, Pritchard DI, Nigam Y, Jung W and Nibbering PH: Multiple actions of Lucilia sericata larvae in hard-to-heal wounds: Larval secretions contain molecules that accelerate wound healing, reduce chronic inflammation and inhibit bacterial infection. Bioessays. 35:1083–1092. 2013.PubMed/NCBI View Article : Google Scholar

44 

van der Plas MJ, Jukema GN, Wai SW, Dogterom-Ballering HC, Lagendijk EL, van Gulpen C, van Dissel JT, Bloemberg GV and Nibbering PH: Maggot excretions/secretions are differentially effective against biofilms of Staphylococcus aureus and Pseudomonas aeruginosa. J Antimicrob Chemother. 61:117–122. 2008.PubMed/NCBI View Article : Google Scholar

45 

Pritchard DI and Brown AP: Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity. Int Wound J. 12:414–421. 2015.PubMed/NCBI View Article : Google Scholar

46 

Arabloo J, Grey S, Mobinizadeh M, Olyaeemanesh A, Hamouzadeh P and Khamisabadi K: Safety, effectiveness and economic aspects of maggot debridement therapy for wound healing. Med J Islam Repub Iran. 30(319)2016.PubMed/NCBI

47 

Evans H: A treatment of last resort. Nurs Times. 93:62–65. 1997.PubMed/NCBI

48 

Ramundo J and Gray M: Enzymatic wound debridement. J Wound Ostomy Continence Nurs. 35:273–280. 2008.PubMed/NCBI View Article : Google Scholar

49 

Madhok BM, Vowden K and Vowden P: New techniques for wound debridement. Int Wound J. 10:247–251. 2013.PubMed/NCBI View Article : Google Scholar

50 

Ziegler B, Hundeshagen G, Cordts T, Kneser U and Hirche C: State of the art in enzymatic debridement. Plast Aesthet Res. 5(33)2018. View Article : Google Scholar

51 

Waheed H, Moin SF and Choudhary MI: Snake venom: From deadly toxins to life-saving therapeutics. Curr Med Chem. 24:1874–1891. 2017.PubMed/NCBI View Article : Google Scholar

52 

Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB and Chan WY: Snake venom toxins: Toxicity and medicinal applications. Appl Microbiol Biotechnol. 100:6165–6181. 2016.PubMed/NCBI View Article : Google Scholar

53 

Smith RG: Enzymatic debriding agents: An evaluation of the medical literature. Ostomy Wound Manage. 54:16–34. 2008.PubMed/NCBI

54 

Costa-Neto EM: Implications and applications of folk zootherapy in the state of Bahia, Northeastern Brazil. Sust Dev. 12:161–174. 2004. View Article : Google Scholar

55 

Manan Mat Jais A: Pharmacognosy and pharmacology of Haruan (Channa striatus), a medicinal fish with wound healing properties. Bol Latinoam Caribe Plant Med Aromaticas. 6:52–60. 2007.

56 

Akunne TC, Okafor SN, Okechukwu DC, Nwankwor SS, Emene JO and Okoro BN: Catfish (Clarias gariepinus) slime coat possesses antimicrobial and wound healing activities. UK J Pharm Biosci. 4:81–87. 2016. View Article : Google Scholar

57 

Al-Hassan J, Thomson M and Griddle RS: Accelerated wound healing by a preparation from skin of the Arabian gulf catfish. Lancet. 321:1043–1044. 1983.PubMed/NCBI View Article : Google Scholar

58 

Ferreira BA, Deconte SR, de Moura FBR, Tomiosso TC, Clissa PB, Andrade SP and Araújo FA: Inflammation, angiogenesis and fibrogenesis are differentially modulated by distinct domains of the snake venom metalloproteinase jararhagin. Int J Biol Macromol. 119:1179–1187. 2018.PubMed/NCBI View Article : Google Scholar

59 

Ferreira RS Jr, de Barros LC, Abbade LPF, Barraviera SRCS, Silvares MRC, de Pontes LG, Dos Santos LD and Barraviera B: Heterologous fibrin sealant derived from snake venom: From bench to bedside-an overview. J Venom Anim Toxins Incl Trop Dis. 23(21)2017.PubMed/NCBI View Article : Google Scholar

60 

Wang PH, Huang BS, Horng HC, Yeh CC and Chen YJ: Wound healing. J Chin Med Assoc. 81:94–101. 2018.PubMed/NCBI View Article : Google Scholar

61 

Sorg H, Tilkorn DJ, Hager S, Hauser J and Mirastschijski U: Skin wound healing: An update on the current knowledge and concepts. Eur Surg Res. 58:81–94. 2017.PubMed/NCBI View Article : Google Scholar

62 

Clark RAF: Wound repair: Overview and general considerations. In: Clark RAF (ed): The molecular, cellular biology of wound repair, Plenum Press, New York. 3–55. 1996.

63 

Martin P and Nunan R: Cellular and molecular mechanisms of repair in acute and chronic wound healing. Br J Dermatol. 173:370–378. 2015.PubMed/NCBI View Article : Google Scholar

64 

Cui N, Hu M and Khalil RA: Biochemical and biological attributes of matrix metalloproteinases. Prog Mol Biol Transl Sci. 147:1–73. 2017.PubMed/NCBI View Article : Google Scholar

65 

Greaves NS, Ashcroft KJ, Baguneid M and Bayat A: Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatol Sci. 72:206–217. 2013.PubMed/NCBI View Article : Google Scholar

66 

Caley MP, Martins VL and O'Toole EA: Metalloproteinases and wound healing. Adv Wound Care (New Rochelle). 4:225–234. 2015.PubMed/NCBI View Article : Google Scholar

67 

Krampert M, Bloch W, Sasaki T, Bugnon P, Rülicke T, Wolf E, Aumailley M, Parks WC and Werner S: Activities of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix degradation and keratinocyte organization in wounded skin. Mol Biol Cell. 15:5242–5254. 2004.PubMed/NCBI View Article : Google Scholar

68 

Matziari M, Dive V and Yiotakis A: Matrix metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic inhibitors. Med Res Rev. 27:528–552. 2007.PubMed/NCBI View Article : Google Scholar

69 

Gomis-Rüth FX: Structural aspects of the metzincin clan of metalloendopeptidases. Mol Biotechnol. 24:157–202. 2003.PubMed/NCBI View Article : Google Scholar

70 

Subramanian S, MacKinnon SL and Ross NW: A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp Biochem Physiol B Biochem Mol Biol. 148:256–263. 2007.PubMed/NCBI View Article : Google Scholar

71 

Franta Z, Vogel H, Lehmann R, Rupp O, Goesmann A and Vilcinskas A: Next generation sequencing identifies five major classes of potentially therapeutic enzymes secreted by Lucilia sericata medical maggots. Biomed Res Int. 2016(8285428)2016. View Article : Google Scholar

72 

Valachova I, Majtan T, Takac P and Majtan J: Identification and characterisation of different proteases in Lucilia sericata medicinal maggots involved in maggot debridement therapy. J Appl Biomed. 12:171–177. 2014. View Article : Google Scholar

73 

Tasoulis T and Isbister GK: A review and database of snake venom proteomes. Toxins (Basel). 9(pii: E290)2017.PubMed/NCBI View Article : Google Scholar

74 

Chambers L, Woodrow S, Brown AP, Harris PD, Phillips D, Hall M, Church JC and Pritchard DI: Degradation of extracellular matrix components by defined proteinases from the greenbottle larva Lucilia sericata used for the clinical debridement of non-healing wounds. Br J Dermatol. 148:14–23. 2003.PubMed/NCBI View Article : Google Scholar

75 

Polakovicova S, Polák Š, Kuniaková M, Čambal M, Čaplovičová M, Kozánek M, Danišovič L and Kopáni M: The effect of salivary gland extract of Lucilia sericata maggots on human dermal fibroblast proliferation within collagen/hyaluronan membrane in vitro: Transmission electron microscopy study. Adv Skin Wound Care. 28:221–226. 2015.PubMed/NCBI View Article : Google Scholar

76 

Li PN, Li H, Zhong LX, Sun Y, Yu LJ, Wu ML, Zhang LL, Kong QY, Wang SY and Lv DC: Molecular events underlying maggot extract promoted rat in vivo and human in vitro skin wound healing. Wound Repair Regen. 23:65–73. 2015.PubMed/NCBI View Article : Google Scholar

77 

van der Plas MJA, van der Does AM, Baldry M, Dogterom-Ballering HC, van Gulpen C, van Dissel JT, Nibbering PH and Jukema GN: Maggot excretions/secretions inhibit multiple neutrophil pro-inflammatory responses. Microbes Infect. 9:507–514. 2007.PubMed/NCBI View Article : Google Scholar

78 

van der Plas MJ, van Dissel JT and Nibbering PH: Maggot secretions skew monocyte-macrophage differentiation away from a pro-inflammatory to a pro-angiogenic type. PLoS One. 4(e8071)2009.PubMed/NCBI View Article : Google Scholar

79 

Honda K, Okamoto K, Mochida Y, Ishioka K, Oka M, Maesato K, Ikee R, Moriya H, Hidaka S, Ohtake T, et al: A novel mechanism in maggot debridement therapy: Protease in excretion/secretion promotes hepatocyte growth factor production. Am J Physiol Cell Physiol. 301(C1423-C1430)2011.PubMed/NCBI View Article : Google Scholar

80 

Andersen AS, Sandvang D, Schnorr KM, Kruse T, Neve S, Joergensen B, Karlsmark T and Krogfelt KA: A novel approach to the antimicrobial activity of maggot debridement therapy. J Antimicrob Chemother. 65:1646–1654. 2010.PubMed/NCBI View Article : Google Scholar

81 

Margolin L and Gialanella P: Assessment of the antimicrobial properties of maggots. Int Wound J. 7:202–204. 2010.PubMed/NCBI View Article : Google Scholar

82 

Pöppel AK, Kahl M, Baumann A, Wiesner J, Gökçen A, Beckert A, Preissner KT, Vilcinskas A and Franta Z: A Jonah-like chymotrypsin from the therapeutic maggot Lucilia sericata plays a role in wound debridement and coagulation. Insect Biochem Mol Biol. 70:138–147. 2016.PubMed/NCBI View Article : Google Scholar

83 

Mukherjee S, Gomes A and Dasgupta S: Zoo therapeutic uses of snake body parts in folk & traditional medicine. J Zool Res. 1:1–9. 2017.

84 

Shephard KL: Functions for fish mucus. Rev Fish Biol Fisheries. 4:401–429. 1994. View Article : Google Scholar

85 

Dash S, Das SK, Samal J and Thatoi HN: Epidermal mucus, a major determinant in fish health: A review. Iran J Vet Res. 19:72–81. 2018.PubMed/NCBI

86 

Sveen L, Timmerhaus GF, Torgersen J, Ytteborg E, Jørgensen SM, Handeland SO, Stefansson SO, Nilsen TO, Calabrese S, Ebbesson LOE, et al: Impact of fish density and specific water flow on skin properties in Atlantic salmon (Salmo salar L.) post-smolts. Aquaculture. 464:629–637. 2016. View Article : Google Scholar

87 

Al-Hassan JM, Thomson M, Criddle KR, Summers B and Criddle RS: Catfish epidermal secretions in response to threat or injury. Marine Biol. 88:117–123. 1985. View Article : Google Scholar

88 

Krasnov A, Skugor S, Todorcevic M, Glover KA and Nilsen F: Gene expression in Atlantic salmon skin in response to infection with the parasitic copepod Lepeophtheirus salmonis, cortisol implant, and their combination. BMC Genomics. 13(130)2012.PubMed/NCBI View Article : Google Scholar

89 

Schütte A, Lottaz D, Sterchi EE, Stöcker W and Becker-Pauly C: Two alpha subunits and one beta subunit of meprin zinc-endopeptidases are differentially expressed in the zebrafish Danio rerio. Biol Chem. 388:523–531. 2007.PubMed/NCBI View Article : Google Scholar

90 

Nguyen TT, Mobashery S and Chang M: Roles of Matrix Metalloproteinases in Cutaneous Wound Healing. Wound Healing-New insights into Ancient Challenges. 2016.PubMed/NCBI View Article : Google Scholar

91 

Sterchi EE, Stöcker W and Bond JS: Meprins, membrane-bound and secreted astacin metalloproteinases. Mol Aspects Med. 29:309–328. 2008.PubMed/NCBI View Article : Google Scholar

92 

Bertenshaw GP, Turk BE, Hubbard SJ, Matters GL, Bylander JE, Crisman JM, Cantley LC and Bond JS: Marked differences between metalloproteases meprin A and B in substrate and peptide bond specificity. J Biol Chem. 276:13248–13255. 2001.PubMed/NCBI View Article : Google Scholar

93 

Kruse MN, Becker C, Lottaz D, Köhler D, Yiallouros I, Krell HW, Sterchi EE and Stöcker W: Human meprin alpha and beta homo-oligomers: Cleavage of basement membrane proteins and sensitivity to metalloprotease inhibitors. Biochem J. 378:383–389. 2004.PubMed/NCBI View Article : Google Scholar

94 

Sun H, Lou X, Shan Q, Zhang J, Zhu X, Zhang J, Wang Y, Xie Y, Xu N and Liu S: Proteolytic characteristics of cathepsin D related to the recognition and cleavage of its target proteins. PLoS One. 8(e65733)2013.PubMed/NCBI View Article : Google Scholar

95 

Wolters BK: Cathepsin L and V in human keratinocytes. J Univ. 2006.PubMed/NCBI View Article : Google Scholar

96 

Vidak E, Javoršek U, Vizovišek M and Turk B: Cysteine cathepsins and their extracellular roles: Shaping the microenvironment. Cells. 8(pii: E264)2019.PubMed/NCBI View Article : Google Scholar

97 

Reinheckel T, Hagemann S, Dollwet-Mack S, Martinez E, Lohmüller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N and Peters C: The lysosomal cysteine protease cathepsin L regulates keratinocyte proliferation by control of growth factor recycling. J Cell Sci. 118:3387–3395. 2005.PubMed/NCBI View Article : Google Scholar

98 

Mason RW: Interaction of lysosomal cysteine proteinases with α2-macroglobulin: Conclusive evidence for the endopeptidase activities of cathepsins B and H. Arch Biochem Bioph. 273:367–374. 1989.PubMed/NCBI View Article : Google Scholar

99 

Maciewicz RA, Etherington DJ, Kos J and Turk V: Collagenolytic cathepsins of rabbit spleen: A kinetic analysis of collagen degradation and inhibition by chicken cystatin. Coll Relat Res. 7:295–304. 1987. View Article : Google Scholar

100 

Benes P, Vetvicka V and Fusek M: Cathepsin D-many functions of one aspartic protease. Crit Rev Oncol Hematol. 68:12–28. 2008.PubMed/NCBI View Article : Google Scholar

101 

Cavallo-Medved D, Moin K and Sloane B: Cathepsin B: Basis sequence: Mouse. AFCS Nat Mol Pages. 2011(pii: A000508)2011.PubMed/NCBI

102 

Krejner A, Litwiniuk M and Grzela T: Matrix metalloproteinases in the wound microenvironment: Therapeutic perspectives. Chronic Wound Care Manag Res. 3:29–39. 2016. View Article : Google Scholar

103 

Kim GY, Kim HY, Kim HT, Moon JM, Kim CH, Kang S and Rhim H: HtrA1 is a novel antagonist controlling fibroblast growth factor (FGF) signaling via cleavage of FGF8. Mol Cell Biol. 32:4482–4492. 2012. View Article : Google Scholar

104 

Meyer-Hoffert U and Schröder JM: Epidermal proteases in the pathogenesis of rosacea. J Investig Dermatol Symp Proc. 15:16–23. 2011.PubMed/NCBI View Article : Google Scholar

105 

Kim SK, Park PJ, Kim JB and Shahidi F: Purification and characterization of a collagenolytic protease from the filefish, Novoden modestrus. J Biochem Mol Biol. 35:165–171. 2002.PubMed/NCBI View Article : Google Scholar

106 

Coughlin SR: Thrombin signalling and protease-activated receptors. Nature. 407:258–264. 2000.PubMed/NCBI View Article : Google Scholar

107 

Perona JJ and Craik CS: Structural basis of substrate specificity in the serine proteases. Protein Sci. 4:337–360. 1995.PubMed/NCBI View Article : Google Scholar

108 

Rawlings AV and Voegeli R: Stratum corneum proteases and dry skin conditions. Cell Tissue Res. 351:217–235. 2013.PubMed/NCBI View Article : Google Scholar

109 

Gutiérrez JM, Escalante T, Rucavado A, Herrera C and Fox JW: A Comprehensive view of the structural and functional alterations of extracellular matrix by snake venom metalloproteinases (SVMPs): Novel perspectives on the pathophysiology of envenoming. Toxins (Basel). 8(pii: E304)2016.PubMed/NCBI View Article : Google Scholar

110 

Kini RM and Koh CY: Metalloproteases affecting blood coagulation, fibrinolysis and platelet aggregation from snake venoms: Definition and nomenclature of interaction sites. Toxins (Basel). 8(pii: E284)2016.PubMed/NCBI View Article : Google Scholar

111 

Silva MB, Schattner M, Ramos CR, Junqueira-de-Azevedo IL, Guarnieri MC, Lazzari MA, Sampaio CA, Pozner RG, Ventura JS, Ho PL and Chudzinski-Tavassi AM: A prothrombin activator from Bothrops erythromelas (jararaca-da-seca) snake venom: Characterization and molecular cloning. Biochem J. 369:129–139. 2003.PubMed/NCBI View Article : Google Scholar

112 

Sanchez EF, Richardson M, Gremski LH, Veiga SS, Yarleque A, Niland S, Lima AM, Estevao-Costa MI and Eble JA: Data for a direct fibrinolytic metalloproteinase, barnettlysin-I from Bothrops barnetti (barnett(,)s pitviper) snake venom with anti-thrombotic effect. Data Brief. 7:1609–1613. 2016.PubMed/NCBI View Article : Google Scholar

113 

Kamiguti AS: Platelets as targets of snake venom metalloproteinases. Toxicon. 45:1041–1049. 2005.PubMed/NCBI View Article : Google Scholar

114 

Howes JM, Kamiguti AS, Theakston RD, Wilkinson MC and Laing GD: Effects of three novel metalloproteinases from the venom of the West African saw-scaled viper, Echis ocellatus on blood coagulation and platelets. Biochim Biophys Acta. 1724:194–202. 2005.PubMed/NCBI View Article : Google Scholar

115 

Fernandes CM, Zamuner SR, Zuliani JP, Rucavado A, Gutiérrez JM and Teixeira Cde F: Inflammatory effects of BaP1 a metalloproteinase isolated from Bothrops asper snake venom: Leukocyte recruitment and release of cytokines. Toxicon. 47:549–559. 2006.PubMed/NCBI View Article : Google Scholar

116 

Silva A, Gunawardena P, Weilgama D, Maduwage K and Gawarammana I: Comparative in-vivo toxicity of venoms from South Asian hump-nosed pit vipers (Viperidae: Crotalinae: Hypnale). BMC Res Notes. 5(471)2012.PubMed/NCBI View Article : Google Scholar

117 

Mariano-Oliveira A, Coelho ALJ, Terruggi CH, Selistre-de-Araújo HS, Barja-Fidalgo C and De Freitas MS: Alternagin-C, a nonRGD-disintegrin, induces neutrophil migration via integrin signaling. Eur J Biochem. 270:4799–4808. 2003.PubMed/NCBI View Article : Google Scholar

118 

Silva CA, Zuliani JP, Assakura MT, Mentele R, Camargo ACM, Teixeira CFP and Serrano SMT: Activation of αMβ2-mediated phagocytosis by HF3, a P-III class metalloproteinase isolated from the venom of Bothrops jararaca. Biochem Biophys Res Commun. 322:950–956. 2004. View Article : Google Scholar

119 

Tseng YL, Lee CJ and Huang TF: Effects of a snake venom metalloproteinase, triflamp, on platelet aggregation, platelet-neutrophil and neutrophil-neutrophil interactions: Involvement of platelet GPIbalpha and neutrophil PSGL-1. Thromb Haemost. 91:315–324. 2004.PubMed/NCBI View Article : Google Scholar

120 

Bernardes CP, Menaldo DL, Camacho E, Rosa JC, Escalante T, Rucavado A, Lomonte B, Gutiérrez JM and Sampaio SV: Proteomic analysis of Bothrops pirajai snake venom and characterization of BpirMP, a new P-I metalloproteinase. J Proteomics. 80:250–267. 2013.PubMed/NCBI View Article : Google Scholar

121 

Zigrino P, Kamiguti AS, Eble J, Drescher C, Nischt R, Fox JW and Mauch C: The reprolysin jararhagin, a snake venom metalloproteinase, functions as a fibrillar collagen agonist involved in fibroblast cell adhesion and signaling. J Biol Chem. 277:40528–40535. 2002.PubMed/NCBI View Article : Google Scholar

122 

Costa ÉP and Santos MF: Jararhagin, a snake venom metalloproteinase-disintegrin, stimulates epithelial cell migration in an in vitro restitution model. Toxicon. 44:861–870. 2004.PubMed/NCBI View Article : Google Scholar

123 

Cominetti MR, Terruggi CH, Ramos OH, Fox JW, Mariano-Oliveira A, De Freitas MS, Figueiredo CC, Morandi V and Selistre-de-Araujo HS: Alternagin-C, a disintegrin-like protein, induces vascular endothelial cell growth factor (VEGF) expression and endothelial cell proliferation in vitro. J Biol Chem. 279:18247–18255. 2004.PubMed/NCBI View Article : Google Scholar

124 

Schattner M, Fritzen M, Ventura Jde S, de Albuquerque Modesto JC, Pozner RG, Moura-da-Silva AM and Chudzinski-Tavassi AM: The snake venom metalloproteases berythractivase and jararhagin activate endothelial cells. Biol Chem. 386:369–374. 2005.PubMed/NCBI View Article : Google Scholar

125 

Siigur E, Tõnismägi K, Trummal K, Samel M, Vija H, Subbi J and Siigur J: Factor X activator from Vipera lebetina snake venom, molecular characterization and substrate specificity. Biochim Biophys Acta. 1568:90–98. 2001.PubMed/NCBI View Article : Google Scholar

126 

Markland FS, Kettner C, Schiffman S, Shaw E, Bajwa SS, Reddy KN, Kirakossian H, Patkos GB, Theodor I and Pirkle H: Kallikrein-like activity of crotalase, a snake venom enzyme that clots fibrinogen. Proc Natl Acad Sci USA. 79:1688–1692. 1982.PubMed/NCBI View Article : Google Scholar

127 

Zhang Y, Wisner A, Xiong Y and Bon C: A novel plasminogen activator from snake venom. Purification, characterization, and molecular cloning. J Biol Chem. 270:10246–10255. 1995.PubMed/NCBI View Article : Google Scholar

128 

Serrano SM, Matos MF, Mandelbaum FR and Sampaio CA: Basic proteinases from Bothrops moojeni (caissaca) venom-I. Isolation and activity of two serine proteinases, MSP 1 and MSP 2, on synthetic substrates and on platelet aggregation. Toxicon. 31:471–481. 1993.PubMed/NCBI View Article : Google Scholar

129 

Frykberg RG and Banks J: Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle). 4:560–582. 2015.PubMed/NCBI View Article : Google Scholar

130 

Telgenhoff D and Shroot B: Cellular senescence mechanisms in chronic wound healing. Cell Death Differ. 12:695–698. 2005.PubMed/NCBI View Article : Google Scholar

131 

Lumbers M: Pressure ulcers: An overview of risk. Br J Nurs. 26(S49-S50)2017.PubMed/NCBI View Article : Google Scholar

132 

Secretariat MA: Management of chronic pressure ulcers: An evidence-based analysis. Ont Health Technol Assess Ser. 9:1–203. 2009.PubMed/NCBI

133 

Comerota A and Lurie F: Pathogenesis of venous ulcer. Semin Vasc Surg. 28:6–14. 2015.PubMed/NCBI View Article : Google Scholar

134 

Mannello F and Raffetto JD: Matrix metalloproteinase activity and glycosaminoglycans in chronic venous disease: The linkage among cell biology, pathology and translational research. Am J Transl Res. 3:149–158. 2011.PubMed/NCBI

135 

van der Plas MJ, Baldry M, van Dissel JT, Jukema GN and Nibbering PH: Maggot secretions suppress pro-inflammatory responses of human monocytes through elevation of cyclic AMP. Diabetologia. 52:1962–1970. 2009.PubMed/NCBI View Article : Google Scholar

136 

Wei OY, Xavier R and Marimuthu K: Screening of antibacterial activity of mucus extract of snakehead fish, Channa striatus (Bloch). Eur Rev Med Pharmacol Sci. 14:675–681. 2010.PubMed/NCBI

137 

Jhamb S, Vangaveti VN and Malabu UH: Genetic and molecular basis of diabetic foot ulcers: Clinical review. J Tissue Viability. 25:229–236. 2016.PubMed/NCBI View Article : Google Scholar

138 

Su N, Tong N, Du L, Wu B and Xu T: Heparin and related substances for treating diabetic foot ulcers. Cochrane Database Syst Rev. 2017(CD011087)2017. View Article : Google Scholar

139 

Bruhn-Olszewska B, Korzon-Burakowska A, Gabig-Ciminska M, Olszewski P, Wegrzyn A and Jakóbkiewicz-Banecka J: Molecular factors involved in the development of diabetic foot syndrome. Acta Biochim Pol. 59:507–513. 2012.PubMed/NCBI

140 

Blakytny R and Jude EB: Altered molecular mechanisms of diabetic foot ulcers. Int J Low Extrem Wounds. 8:95–104. 2009.PubMed/NCBI View Article : Google Scholar

141 

Patel S, Srivastava S, Singh MR and Singh D: Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother. 112(108615)2019.PubMed/NCBI View Article : Google Scholar

142 

Sherman RA: Maggot therapy for treating diabetic foot ulcers unresponsive to conventional therapy. Diabetes Care. 26:446–451. 2003.PubMed/NCBI View Article : Google Scholar

143 

Pasha M, Husin RA and Hassan S: The influence of oral and topical Channa striatus on laparotomy wound healing in malnourished wistar rats. Int J Pharm Pharm Sci Invent. 4:37–41. 2015. View Article : Google Scholar

144 

Anish S: Skin substitutes in dermatology. Indian J Dermatol Venereol Leprol. 81:175–178. 2015.PubMed/NCBI View Article : Google Scholar

145 

Kordestani SS: Chapter 5-wound care management. In: Atlas of wound healing. Kordestani SS (ed). Elsevier. 31–47. 2019.

146 

Sun BK, Siprashvili Z and Khavari PA: Advances in skin grafting and treatment of cutaneous wounds. Science. 346:941–945. 2014.PubMed/NCBI View Article : Google Scholar

147 

Knapik A, Hegland N, Calcagni M, Althaus M, Vollmar B, Giovanoli P and Lindenblatt N: Metalloproteinases facilitate connection of wound bed vessels to pre-existing skin graft vasculature. Microvasc Res. 84:16–23. 2012.PubMed/NCBI View Article : Google Scholar

148 

Park YJ, Lee JW, Chong Y and Park TH: Botulinum toxin A increases allograft tolerance in an experimental transplantation model: A preliminary study. Biosci Rep. 38(pii: BSR20171721)2018.PubMed/NCBI View Article : Google Scholar

149 

Kucukkaya D, Irkoren S, Ozkan S and Sivrioglu N: The effects of botulinum toxin A on the wound and skin graft contraction. J Craniofac Surg. 25:1908–1911. 2014.PubMed/NCBI View Article : Google Scholar

150 

Boyko TV, Longaker MT and Yang GP: Review of the current management of pressure ulcers. Adv Wound Care (New Rochelle). 7:57–67. 2018.PubMed/NCBI View Article : Google Scholar

151 

Ma H, O'Donnell TF Jr, Rosen NA and Iafrati MD: The real cost of treating venous ulcers in a contemporary vascular practice. J Vasc Surg Venous Lymphat Disord. 2:355–361. 2014.PubMed/NCBI View Article : Google Scholar

152 

Ford CN, Reinhard ER, Yeh D, Syrek D, De Las Morenas A, Bergman SB, Williams S and Hamori CA: Interim Analysis of a Prospective, Randomized Trial of Vacuum-Assisted Closure Versus the Healthpoint System in the Management of Pressure Ulcers. Ann Plast Surg. 49(1):55–61. 2002.PubMed/NCBI View Article : Google Scholar

153 

Yaakobi T, Cohen-Hadar N, Yaron H, Hirszowicz E, Simantov Y, Bass A and Freeman A: Wound debridement by continuous streaming of proteolytic enzyme solutions: Effects on experimental chronic wound model in porcin. Wounds. 19:192–200. 2007.PubMed/NCBI

154 

Smith & Nephew, Inc.: Enzymatic debridement with collagenase SANTYL® Ointment,. 2014.

155 

Giudice G, Filoni A, Maggio G, Bonamonte D and Vestita M: Cost analysis of a novel enzymatic debriding agent for management of burn wounds. Biomed Res Int. 2017(9567498)2017. View Article : Google Scholar

156 

Gorecki M and Toren A: Debriding composition from bromelain and methods of production thereof, Patent Appl Publ. 2005.

157 

Klein GKV and Houck JC: Hydrolytic enzyme material. 1980.

158 

Niehaus F, Eck J, Schulze R and Krohn M: Proteasa para el acondicionamiento de heridas y el cuidado de la piel. Brain Biotechnol Res Inf Netw. 2012.

159 

Niehaus F, Eck J, Schulze R and Krohn M: Protease for wound conditioning and skin care. Brain Biotechnol Res Inf Netw. 2012.

160 

Rosenberg L: Aparato y procedimientos para su uso en escarotomía enzimática en síndrome de compartimento inducido por quemaduras. MediWound. 2012.

161 

Freeman A, Hirszowicz E and Be'eri-lipperman M: Apparatus and method for the enzymatic debridement of skin lesions, Ramot At Tel-Aviv Univ. 2012.

162 

Yaakobi T, Roth D, Chen Y and Freeman A: Streaming of proteolytic enzyme solutions for wound debridement: A feasibility study. Wounds. 16:201–205. 2004.

163 

Rodeheaver G, Edgerton MT, Elliott MB, Kurtz LD and Edlich RF: Proteolytic enzymes as adjuncts to antibiotic prophylaxis of surgical wounds. Am J Surg. 127:564–572. 1974. View Article : Google Scholar

164 

Gao M, Nguyen TT, Suckow MA, Wolter WR, Gooyit M, Mobashery S and Chang M: Acceleration of diabetic wound healing using a novel protease-anti-protease combination therapy. Proc Natl Acad Sci USA. 112:15226–15231. 2015.PubMed/NCBI View Article : Google Scholar

165 

Gutiérrez-Fernández A, Fueyo A, Folgueras AR, Garabaya C, Pennington CJ, Pilgrim S, Edwards DR, Holliday DL, Jones JL, Span PN, et al: Matrix metalloproteinase-8 functions as a metastasis suppressor through modulation of tumor cell adhesion and invasion. Cancer Res. 68:2755–2763. 2008.PubMed/NCBI View Article : Google Scholar

166 

Hartenstein B, Dittrich BT, Stickens D, Heyer B, Vu TH, Teurich S, Schorpp-Kistner M, Werb Z and Angel P: Epidermal development and wound healing in matrix metalloproteinase 13-deficient mice. J Invest Dermatol. 126:486–496. 2006.PubMed/NCBI View Article : Google Scholar

167 

Kudo Y, Iizuka S, Yoshida M, Tsunematsu T, Kondo T, Subarnbhesaj A, Deraz EM, Siriwardena SB, Tahara H, Ishimaru N, et al: Matrix metalloproteinase-13 (MMP-13) directly and indirectly promotes tumor angiogenesis. J Biol Chem. 287:38716–38728. 2012.PubMed/NCBI View Article : Google Scholar

168 

Rohani MG and Parks WC: Matrix remodeling by MMPs during wound repair. Matrix Biol. 44–46. 113–121. 2015.PubMed/NCBI View Article : Google Scholar

169 

Thirkettle S, Decock J, Arnold H, Pennington CJ, Jaworski DM and Edwards DR: Matrix Matrix metalloproteinase 8 (collagenase 2) induces the expression of interleukins 6 and 8 in breast cancer cells. J Biol Chem. 288:16282–16294. 2013.PubMed/NCBI View Article : Google Scholar

170 

Utz ER, Elster EA, Tadaki DK, Gage F, Perdue PW, Forsberg JA, Stojadinovic A, Hawksworth JS and Brown TS: Metalloproteinase expression is associated with traumatic wound failure. J Surg Res. 159:633–639. 2010.PubMed/NCBI View Article : Google Scholar

171 

Yamamoto K, Okano H, Miyagawa W, Visse R, Shitomi Y, Santamaria S, Dudhia J, Troeberg L, Strickland DK, Hirohata S and Nagase H: MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix Biol. 56:57–73. 2016.PubMed/NCBI View Article : Google Scholar

172 

Motrescu ER, Blaise S, Etique N, Messaddeq N, Chenard MP, Stoll I, Tomasetto C and Rio MC: Matrix metalloproteinase-11/stromelysin-3 exhibits collagenolytic function against collagen VI under normal and malignant conditions. Oncogene. 27:6347–6355. 2008.PubMed/NCBI View Article : Google Scholar

173 

Pittayapruek P, Meephansan J, Prapapan O, Komine M and Ohtsuki M: Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int J Mol Sci. 17(pii: e868)2016.PubMed/NCBI View Article : Google Scholar

174 

Saarialho-Kere UK, Pentland AP, Birkedal-Hansen H, Parks WC and Welgus HG: Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. J Clin Invest. 94:79–88. 1994.PubMed/NCBI View Article : Google Scholar

175 

Sato T, Nomura K and Hashimoto I: Expression of collagenase and stromelysin in skin fibroblasts from recessive dystrophic epidermolysis bullosa. Arch Dermatol Res. 287:428–433. 1995.PubMed/NCBI View Article : Google Scholar

176 

Kren L, Goncharuk V, Krenová Z, Stratil D, Hermanová M, Skricková J, Sheehan CE and Ross JS: Expression of matrix metalloproteinases 3, 10 and 11 (stromelysins 1, 2 and 3) and matrix metalloproteinase 7 (matrilysin) by cancer cells in non-small cell lung neoplasms. Clinicopathologic studies. Cesk Patol. 42:16–19. 2006.PubMed/NCBI

177 

Page-McCaw A, Ewald AJ and Werb Z: Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 8:221–233. 2007.PubMed/NCBI View Article : Google Scholar

178 

Purcell WT and Hidalgo M: Matrix metalloproteinase inhibitors in cancer therapy. In: Proteases in tissue remodelling of lung and heart. Lendeckel U and Hooper NM (eds). Springer US, Boston, MA. pp75–118. 2003.

179 

Herouy Y: The role of matrix metalloproteinases (MMPs) and their inhibitors in venous leg ulcer healing. Phlebolymphology. 44:231–243. 2004.

180 

Lagente V, Manoury B, Nenan S, Le Quement C, Martin-Chouly C and Boichot E: Role of matrix metalloproteinases in the development of airway inflammation and remodeling. Braz J Med Biol Res. 38:1521–1530. 2005.PubMed/NCBI View Article : Google Scholar

181 

van Marion MMH: Matrix metalloproteinases and collagen remodeling. A Literature Review. 2006.

182 

Tewari A, Grys K, Kollet J, Sarkany R and Young AR: Upregulation of MMP12 and its activity by UVA1 in human skin: potential implications for photoaging. J Invest Dermatol. 134:2598–2609. 2014.PubMed/NCBI View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Avila‑Rodríguez MI, Meléndez‑Martínez D, Licona‑Cassani C, Aguilar‑Yañez JM, Benavides J and Sánchez ML: Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 13: 3-14, 2020.
APA
Avila‑Rodríguez, M.I., Meléndez‑Martínez, D., Licona‑Cassani, C., Aguilar‑Yañez, J.M., Benavides, J., & Sánchez, M.L. (2020). Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomedical Reports, 13, 3-14. https://doi.org/10.3892/br.2020.1300
MLA
Avila‑Rodríguez, M. I., Meléndez‑Martínez, D., Licona‑Cassani, C., Aguilar‑Yañez, J. M., Benavides, J., Sánchez, M. L."Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review)". Biomedical Reports 13.1 (2020): 3-14.
Chicago
Avila‑Rodríguez, M. I., Meléndez‑Martínez, D., Licona‑Cassani, C., Aguilar‑Yañez, J. M., Benavides, J., Sánchez, M. L."Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review)". Biomedical Reports 13, no. 1 (2020): 3-14. https://doi.org/10.3892/br.2020.1300
Copy and paste a formatted citation
x
Spandidos Publications style
Avila‑Rodríguez MI, Meléndez‑Martínez D, Licona‑Cassani C, Aguilar‑Yañez JM, Benavides J and Sánchez ML: Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomed Rep 13: 3-14, 2020.
APA
Avila‑Rodríguez, M.I., Meléndez‑Martínez, D., Licona‑Cassani, C., Aguilar‑Yañez, J.M., Benavides, J., & Sánchez, M.L. (2020). Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review). Biomedical Reports, 13, 3-14. https://doi.org/10.3892/br.2020.1300
MLA
Avila‑Rodríguez, M. I., Meléndez‑Martínez, D., Licona‑Cassani, C., Aguilar‑Yañez, J. M., Benavides, J., Sánchez, M. L."Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review)". Biomedical Reports 13.1 (2020): 3-14.
Chicago
Avila‑Rodríguez, M. I., Meléndez‑Martínez, D., Licona‑Cassani, C., Aguilar‑Yañez, J. M., Benavides, J., Sánchez, M. L."Practical context of enzymatic treatment for wound healing: A secreted protease approach (Review)". Biomedical Reports 13, no. 1 (2020): 3-14. https://doi.org/10.3892/br.2020.1300
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team