|
1
|
Dhivya S, Padma VV and Santhini E: Wound
dressings-a review. Biomedicine (Taipei). 5(22)2015.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Nicoli Aldini N, Fini M and Giardino R:
From Hippocrates to tissue engineering: Surgical strategies in
wound treatment. World J Surg. 32:2114–2121. 2008.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Sen CK: Human wounds and its burden: An
updated compendium of estimates. Adv Wound Care (New Rochelle).
8:39–48. 2019.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Järbrink K, Ni G, Sönnergren H,
Schmidtchen A, Pang C, Bajpai R and Car J: Prevalence and incidence
of chronic wounds and related complications: A protocol for a
systematic review. Syst Rev. 5(152)2016.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Brem H, Stojadinovic O, Diegelmann RF,
Entero H, Lee B, Pastar I, Golinko M, Rosenberg H and Tomic-Canic
M: Molecular markers in patients with chronic wounds to guide
surgical debridement. Mol Med. 13:30–39. 2007.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Anderson K and Hamm RL: Factors that
impair wound healing. J Am Coll Clin Wound Spec. 4:84–91.
2014.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Nussbaum SR, Carter MJ, Fife CE, DaVanzo
J, Haught R, Nusgart M and Cartwright D: An economic evaluation of
the impact, cost, and medicare policy implications of chronic
nonhealing wounds. Value Health. 21:27–32. 2018.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Avila Rodríguez MI, Rodríguez Barroso LG
and Sánchez ML: Collagen: A review on its sources and potential
cosmetic applications. J Cosmet Dermatol. 17:20–26. 2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Malik M: Advanced wound care market by
product type (Infection Management, Exudate Management, Active
Wound Care, Therapy Devices), application (Chronic Wounds and Acute
Wounds), end user (Hospitals and Community Centers)-global
opportunity analysis and industry forecast, 2014-2022. 2016.
|
|
10
|
Khan W and Morgan-Jones R: Debridement:
Defining something we all do. J Trauma Orthop. 4(48)2016.
|
|
11
|
Kwan SH and Ismail MN: Identification of
the potential bio-active proteins associated with wound healing
properties in snakehead fish (Channa striata) mucus. Curr
Proteomics. 15:299–312. 2018. View Article : Google Scholar
|
|
12
|
Fatima L and Fatah C: Pathophysiological
and pharmacological effects of snake venom components: Molecular
targets. J Clin Toxicol. 4(190)2014.
|
|
13
|
Fierro-Arias L, Campos-Cornejo NG,
Contreras-Ruiz J, Espinosa-Maceda S, López-Gehrke I,
Márquez-Cárdenas R, Ramírez-Padilla M, Veras-Castillo E and
Rodríguez-Alcocer AN: Productos enzimáticos (hialuronidasa,
colagenasa y lipasa) y su uso en dermatología. Dermatol Rev Mex.
61:206–219. 2017.
|
|
14
|
Klasen HJ: A review on the nonoperative
removal of necrotic tissue from burn wounds. Burns. 26:207–222.
2000.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Gill SE and Parks WC: Metalloproteinases
and their inhibitors: Regulators of wound healing. Int J Biochem
Cell Biol. 40:1334–1347. 2008.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Ayuk SM, Abrahamse H and Houreld NN: The
role of matrix metalloproteinases in diabetic wound healing in
relation to photobiomodulation. J Diabetes Res.
2016(2897656)2016.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Mclennan SV, Min D and Yue DK: Matrix
metalloproteinases and their roles in poor wound healing in
diabetes. Wound Pract Res. 16:116–120. 2008.
|
|
18
|
De Marco Almeida F, de Castro Pimenta AM,
Oliveira MC and De Lima ME: Venoms, toxins and derivatives from the
Brazilian fauna: Valuable sources for drug discovery. Sheng Li Xue
Bao. 67:261–270. 2015.PubMed/NCBI
|
|
19
|
Riley KN and Herman IM: Collagenase
promotes the cellular responses to injury and wound healing in
vivo. J Burns Wounds. 4(e8)2005.PubMed/NCBI
|
|
20
|
Muhammad I, Shaikh SA and Rashid HU: Role
of papaya dressings in the management of diabetic foot ulcers. J
Rawalpindi Med College. 18:87–89. 2014.
|
|
21
|
Esteban MÁ: An overview of the
immunological defenses in fish skin. ISRN Immunol.
2012(853470)2012. View Article : Google Scholar
|
|
22
|
Horobin AJ, Shakesheff KM and Pritchard
DI: Maggots and wound healing: an investigation of the effects of
secretions from Lucilia sericata larvae upon the migration of human
dermal fibroblasts over a fibronectin-coated surface. Wound Repair
Regen. 13:422–433. 2005.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Rajesh R, Raghavendra Gowda CD, Nataraju
A, Dhananjaya BL, Kemparaju K and Vishwanath BS: Procoagulant
activity of Calotropis gigantea latex associated with
fibrin(ogen)olytic activity. Toxicon. 46:84–92. 2005.PubMed/NCBI View Article : Google Scholar
|
|
24
|
White R: The costs of wound debridement
and exudate management. Br J Health Care Manag. 21:172–175. 2015.
View Article : Google Scholar
|
|
25
|
Han G and Ceilley R: Chronic wound
healing: A review of current management and treatments. Adv Ther.
34:599–610. 2017.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Sinclair RD and Ryan TJ: Proteolytic
enzymes in wound healing: The role of enzymatic debridement.
Australas J Dermatol. 35:35–41. 1994.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Glyantsev SP, Savvina TV and Zayets TL:
Comparative study of proteolytic enzymes used for debridement of
purulent wounds. Bull Exp Biol Med. 121:646–650. 1996. View Article : Google Scholar
|
|
28
|
Gray D, Acton C, Chadwick P, Fumarola S,
Leaper D, Morris C, Stang D, Vowden K, Vowden P and Young T:
Consensus guidance for the use of debridement techniques in the UK.
Wounds UK. 7:77–84. 2011.
|
|
29
|
Atkin L: Understanding methods of wound
debridement. Br J Nurs. (23)S10-S12, S14-S15:2014.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Dabiri G, Damstetter E and Phillips T:
Choosing a wound dressing based on common wound characteristics.
Adv Wound Care (New Rochelle). 5:32–41. 2016.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Manna B and Morrison CA: Wond debridement.
StatPearls. 2019.
|
|
32
|
Cutting K and White R: Maceration of the
skin and wound bed. 1: Its nature and causes. J Wound Care.
11:275–278. 2002. View Article : Google Scholar
|
|
33
|
Mahoney J and Ward J: Surgical
debridement. In: Surgery in wounds. Téot L, Banwell PE and Ziegler
UE (eds.) Springer Berlin Heidelberg, Berlin, Heidelberg. 67–71.
2004.
|
|
34
|
Bekara F, Vitse J, Fluieraru S, Masson R,
Runz A, Georgescu V, Bressy G, Labbé JL, Chaput B and Herlin C: New
techniques for wound management: A systematic review of their role
in the management of chronic wounds. Arch Plast Surg. 45:102–110.
2018.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Liu W, Ma K, Kwon SH, Garg R, Patta YR,
Fujiwara T and Gurtner GC: The abnormal architecture of healed
diabetic ulcers is the result of FAK degradation by calpain 1. J
Invest Dermatol. 137:1155–1165. 2017. View Article : Google Scholar
|
|
36
|
Ayello EA and Cuddigan JE: Debridement:
Controlling the necrotic/cellular burden. Adv Skin Wound Care.
17:66–75. quiz:76–78. 2004.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Whitaker IS, Twine C, Whitaker MJ, Welck
M, Brown CS and Shandall A: Larval therapy from antiquity to the
present day: Mechanisms of action, clinical applications and future
potential. Postgrad Med J. 83:409–413. 2007.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Gray M: Is larval (maggot) debridement
effective for removal of necrotic tissue from chronic wounds? J
Wound Ostomy Continence Nurs. 35:378–384. 2008.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Jordan A, Khiyani N, Bowers SR, Lukaszczyk
JJ and Stawicki SP: Maggot debridement therapy: A practical review.
Int J Acad Med. 4:21–34. 2018. View Article : Google Scholar
|
|
40
|
Brown A, Horobin A, Blount DG, Hill PJ,
English J, Rich A, Williams PM and Pritchard DI: Blow fly Lucilia
sericata nuclease digests DNA associated with wound slough/eschar
and with Pseudomonas aeruginosa biofilm. Med Vet Entomol.
26:432–439. 2012.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Harris LG, Nigam Y, Sawyer J, Mack D and
Pritchard DI: Lucilia sericata chymotrypsin disrupts protein
adhesin-mediated staphylococcal biofilm formation. Appl Environ
Microbiol. 79:1393–1395. 2013.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Parnés A and Lagan KM: Larval therapy in
wound management: A review. Int J Clin Pract. 61:488–493.
2007.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Cazander G, Pritchard DI, Nigam Y, Jung W
and Nibbering PH: Multiple actions of Lucilia sericata larvae in
hard-to-heal wounds: Larval secretions contain molecules that
accelerate wound healing, reduce chronic inflammation and inhibit
bacterial infection. Bioessays. 35:1083–1092. 2013.PubMed/NCBI View Article : Google Scholar
|
|
44
|
van der Plas MJ, Jukema GN, Wai SW,
Dogterom-Ballering HC, Lagendijk EL, van Gulpen C, van Dissel JT,
Bloemberg GV and Nibbering PH: Maggot excretions/secretions are
differentially effective against biofilms of Staphylococcus aureus
and Pseudomonas aeruginosa. J Antimicrob Chemother. 61:117–122.
2008.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Pritchard DI and Brown AP: Degradation of
MSCRAMM target macromolecules in VLU slough by Lucilia sericata
chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase
activity. Int Wound J. 12:414–421. 2015.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Arabloo J, Grey S, Mobinizadeh M,
Olyaeemanesh A, Hamouzadeh P and Khamisabadi K: Safety,
effectiveness and economic aspects of maggot debridement therapy
for wound healing. Med J Islam Repub Iran. 30(319)2016.PubMed/NCBI
|
|
47
|
Evans H: A treatment of last resort. Nurs
Times. 93:62–65. 1997.PubMed/NCBI
|
|
48
|
Ramundo J and Gray M: Enzymatic wound
debridement. J Wound Ostomy Continence Nurs. 35:273–280.
2008.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Madhok BM, Vowden K and Vowden P: New
techniques for wound debridement. Int Wound J. 10:247–251.
2013.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Ziegler B, Hundeshagen G, Cordts T, Kneser
U and Hirche C: State of the art in enzymatic debridement. Plast
Aesthet Res. 5(33)2018. View Article : Google Scholar
|
|
51
|
Waheed H, Moin SF and Choudhary MI: Snake
venom: From deadly toxins to life-saving therapeutics. Curr Med
Chem. 24:1874–1891. 2017.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Chan YS, Cheung RCF, Xia L, Wong JH, Ng TB
and Chan WY: Snake venom toxins: Toxicity and medicinal
applications. Appl Microbiol Biotechnol. 100:6165–6181.
2016.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Smith RG: Enzymatic debriding agents: An
evaluation of the medical literature. Ostomy Wound Manage.
54:16–34. 2008.PubMed/NCBI
|
|
54
|
Costa-Neto EM: Implications and
applications of folk zootherapy in the state of Bahia, Northeastern
Brazil. Sust Dev. 12:161–174. 2004. View
Article : Google Scholar
|
|
55
|
Manan Mat Jais A: Pharmacognosy and
pharmacology of Haruan (Channa striatus), a medicinal fish with
wound healing properties. Bol Latinoam Caribe Plant Med Aromaticas.
6:52–60. 2007.
|
|
56
|
Akunne TC, Okafor SN, Okechukwu DC,
Nwankwor SS, Emene JO and Okoro BN: Catfish (Clarias gariepinus)
slime coat possesses antimicrobial and wound healing activities. UK
J Pharm Biosci. 4:81–87. 2016. View Article : Google Scholar
|
|
57
|
Al-Hassan J, Thomson M and Griddle RS:
Accelerated wound healing by a preparation from skin of the Arabian
gulf catfish. Lancet. 321:1043–1044. 1983.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Ferreira BA, Deconte SR, de Moura FBR,
Tomiosso TC, Clissa PB, Andrade SP and Araújo FA: Inflammation,
angiogenesis and fibrogenesis are differentially modulated by
distinct domains of the snake venom metalloproteinase jararhagin.
Int J Biol Macromol. 119:1179–1187. 2018.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Ferreira RS Jr, de Barros LC, Abbade LPF,
Barraviera SRCS, Silvares MRC, de Pontes LG, Dos Santos LD and
Barraviera B: Heterologous fibrin sealant derived from snake venom:
From bench to bedside-an overview. J Venom Anim Toxins Incl Trop
Dis. 23(21)2017.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Wang PH, Huang BS, Horng HC, Yeh CC and
Chen YJ: Wound healing. J Chin Med Assoc. 81:94–101.
2018.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Sorg H, Tilkorn DJ, Hager S, Hauser J and
Mirastschijski U: Skin wound healing: An update on the current
knowledge and concepts. Eur Surg Res. 58:81–94. 2017.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Clark RAF: Wound repair: Overview and
general considerations. In: Clark RAF (ed): The molecular, cellular
biology of wound repair, Plenum Press, New York. 3–55. 1996.
|
|
63
|
Martin P and Nunan R: Cellular and
molecular mechanisms of repair in acute and chronic wound healing.
Br J Dermatol. 173:370–378. 2015.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Cui N, Hu M and Khalil RA: Biochemical and
biological attributes of matrix metalloproteinases. Prog Mol Biol
Transl Sci. 147:1–73. 2017.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Greaves NS, Ashcroft KJ, Baguneid M and
Bayat A: Current understanding of molecular and cellular mechanisms
in fibroplasia and angiogenesis during acute wound healing. J
Dermatol Sci. 72:206–217. 2013.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Caley MP, Martins VL and O'Toole EA:
Metalloproteinases and wound healing. Adv Wound Care (New
Rochelle). 4:225–234. 2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Krampert M, Bloch W, Sasaki T, Bugnon P,
Rülicke T, Wolf E, Aumailley M, Parks WC and Werner S: Activities
of the matrix metalloproteinase stromelysin-2 (MMP-10) in matrix
degradation and keratinocyte organization in wounded skin. Mol Biol
Cell. 15:5242–5254. 2004.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Matziari M, Dive V and Yiotakis A: Matrix
metalloproteinase 11 (MMP-11; stromelysin-3) and synthetic
inhibitors. Med Res Rev. 27:528–552. 2007.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Gomis-Rüth FX: Structural aspects of the
metzincin clan of metalloendopeptidases. Mol Biotechnol.
24:157–202. 2003.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Subramanian S, MacKinnon SL and Ross NW: A
comparative study on innate immune parameters in the epidermal
mucus of various fish species. Comp Biochem Physiol B Biochem Mol
Biol. 148:256–263. 2007.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Franta Z, Vogel H, Lehmann R, Rupp O,
Goesmann A and Vilcinskas A: Next generation sequencing identifies
five major classes of potentially therapeutic enzymes secreted by
Lucilia sericata medical maggots. Biomed Res Int.
2016(8285428)2016. View Article : Google Scholar
|
|
72
|
Valachova I, Majtan T, Takac P and Majtan
J: Identification and characterisation of different proteases in
Lucilia sericata medicinal maggots involved in maggot debridement
therapy. J Appl Biomed. 12:171–177. 2014. View Article : Google Scholar
|
|
73
|
Tasoulis T and Isbister GK: A review and
database of snake venom proteomes. Toxins (Basel). 9(pii:
E290)2017.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Chambers L, Woodrow S, Brown AP, Harris
PD, Phillips D, Hall M, Church JC and Pritchard DI: Degradation of
extracellular matrix components by defined proteinases from the
greenbottle larva Lucilia sericata used for the clinical
debridement of non-healing wounds. Br J Dermatol. 148:14–23.
2003.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Polakovicova S, Polák Š, Kuniaková M,
Čambal M, Čaplovičová M, Kozánek M, Danišovič L and Kopáni M: The
effect of salivary gland extract of Lucilia sericata maggots on
human dermal fibroblast proliferation within collagen/hyaluronan
membrane in vitro: Transmission electron microscopy study. Adv Skin
Wound Care. 28:221–226. 2015.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Li PN, Li H, Zhong LX, Sun Y, Yu LJ, Wu
ML, Zhang LL, Kong QY, Wang SY and Lv DC: Molecular events
underlying maggot extract promoted rat in vivo and human in vitro
skin wound healing. Wound Repair Regen. 23:65–73. 2015.PubMed/NCBI View Article : Google Scholar
|
|
77
|
van der Plas MJA, van der Does AM, Baldry
M, Dogterom-Ballering HC, van Gulpen C, van Dissel JT, Nibbering PH
and Jukema GN: Maggot excretions/secretions inhibit multiple
neutrophil pro-inflammatory responses. Microbes Infect. 9:507–514.
2007.PubMed/NCBI View Article : Google Scholar
|
|
78
|
van der Plas MJ, van Dissel JT and
Nibbering PH: Maggot secretions skew monocyte-macrophage
differentiation away from a pro-inflammatory to a pro-angiogenic
type. PLoS One. 4(e8071)2009.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Honda K, Okamoto K, Mochida Y, Ishioka K,
Oka M, Maesato K, Ikee R, Moriya H, Hidaka S, Ohtake T, et al: A
novel mechanism in maggot debridement therapy: Protease in
excretion/secretion promotes hepatocyte growth factor production.
Am J Physiol Cell Physiol. 301(C1423-C1430)2011.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Andersen AS, Sandvang D, Schnorr KM, Kruse
T, Neve S, Joergensen B, Karlsmark T and Krogfelt KA: A novel
approach to the antimicrobial activity of maggot debridement
therapy. J Antimicrob Chemother. 65:1646–1654. 2010.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Margolin L and Gialanella P: Assessment of
the antimicrobial properties of maggots. Int Wound J. 7:202–204.
2010.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Pöppel AK, Kahl M, Baumann A, Wiesner J,
Gökçen A, Beckert A, Preissner KT, Vilcinskas A and Franta Z: A
Jonah-like chymotrypsin from the therapeutic maggot Lucilia
sericata plays a role in wound debridement and coagulation. Insect
Biochem Mol Biol. 70:138–147. 2016.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Mukherjee S, Gomes A and Dasgupta S: Zoo
therapeutic uses of snake body parts in folk & traditional
medicine. J Zool Res. 1:1–9. 2017.
|
|
84
|
Shephard KL: Functions for fish mucus. Rev
Fish Biol Fisheries. 4:401–429. 1994. View Article : Google Scholar
|
|
85
|
Dash S, Das SK, Samal J and Thatoi HN:
Epidermal mucus, a major determinant in fish health: A review. Iran
J Vet Res. 19:72–81. 2018.PubMed/NCBI
|
|
86
|
Sveen L, Timmerhaus GF, Torgersen J,
Ytteborg E, Jørgensen SM, Handeland SO, Stefansson SO, Nilsen TO,
Calabrese S, Ebbesson LOE, et al: Impact of fish density and
specific water flow on skin properties in Atlantic salmon (Salmo
salar L.) post-smolts. Aquaculture. 464:629–637. 2016. View Article : Google Scholar
|
|
87
|
Al-Hassan JM, Thomson M, Criddle KR,
Summers B and Criddle RS: Catfish epidermal secretions in response
to threat or injury. Marine Biol. 88:117–123. 1985. View Article : Google Scholar
|
|
88
|
Krasnov A, Skugor S, Todorcevic M, Glover
KA and Nilsen F: Gene expression in Atlantic salmon skin in
response to infection with the parasitic copepod Lepeophtheirus
salmonis, cortisol implant, and their combination. BMC Genomics.
13(130)2012.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Schütte A, Lottaz D, Sterchi EE, Stöcker W
and Becker-Pauly C: Two alpha subunits and one beta subunit of
meprin zinc-endopeptidases are differentially expressed in the
zebrafish Danio rerio. Biol Chem. 388:523–531. 2007.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Nguyen TT, Mobashery S and Chang M: Roles
of Matrix Metalloproteinases in Cutaneous Wound Healing. Wound
Healing-New insights into Ancient Challenges. 2016.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Sterchi EE, Stöcker W and Bond JS:
Meprins, membrane-bound and secreted astacin metalloproteinases.
Mol Aspects Med. 29:309–328. 2008.PubMed/NCBI View Article : Google Scholar
|
|
92
|
Bertenshaw GP, Turk BE, Hubbard SJ,
Matters GL, Bylander JE, Crisman JM, Cantley LC and Bond JS: Marked
differences between metalloproteases meprin A and B in substrate
and peptide bond specificity. J Biol Chem. 276:13248–13255.
2001.PubMed/NCBI View Article : Google Scholar
|
|
93
|
Kruse MN, Becker C, Lottaz D, Köhler D,
Yiallouros I, Krell HW, Sterchi EE and Stöcker W: Human meprin
alpha and beta homo-oligomers: Cleavage of basement membrane
proteins and sensitivity to metalloprotease inhibitors. Biochem J.
378:383–389. 2004.PubMed/NCBI View Article : Google Scholar
|
|
94
|
Sun H, Lou X, Shan Q, Zhang J, Zhu X,
Zhang J, Wang Y, Xie Y, Xu N and Liu S: Proteolytic characteristics
of cathepsin D related to the recognition and cleavage of its
target proteins. PLoS One. 8(e65733)2013.PubMed/NCBI View Article : Google Scholar
|
|
95
|
Wolters BK: Cathepsin L and V in human
keratinocytes. J Univ. 2006.PubMed/NCBI View Article : Google Scholar
|
|
96
|
Vidak E, Javoršek U, Vizovišek M and Turk
B: Cysteine cathepsins and their extracellular roles: Shaping the
microenvironment. Cells. 8(pii: E264)2019.PubMed/NCBI View Article : Google Scholar
|
|
97
|
Reinheckel T, Hagemann S, Dollwet-Mack S,
Martinez E, Lohmüller T, Zlatkovic G, Tobin DJ, Maas-Szabowski N
and Peters C: The lysosomal cysteine protease cathepsin L regulates
keratinocyte proliferation by control of growth factor recycling. J
Cell Sci. 118:3387–3395. 2005.PubMed/NCBI View Article : Google Scholar
|
|
98
|
Mason RW: Interaction of lysosomal
cysteine proteinases with α2-macroglobulin: Conclusive evidence for
the endopeptidase activities of cathepsins B and H. Arch Biochem
Bioph. 273:367–374. 1989.PubMed/NCBI View Article : Google Scholar
|
|
99
|
Maciewicz RA, Etherington DJ, Kos J and
Turk V: Collagenolytic cathepsins of rabbit spleen: A kinetic
analysis of collagen degradation and inhibition by chicken
cystatin. Coll Relat Res. 7:295–304. 1987. View Article : Google Scholar
|
|
100
|
Benes P, Vetvicka V and Fusek M: Cathepsin
D-many functions of one aspartic protease. Crit Rev Oncol Hematol.
68:12–28. 2008.PubMed/NCBI View Article : Google Scholar
|
|
101
|
Cavallo-Medved D, Moin K and Sloane B:
Cathepsin B: Basis sequence: Mouse. AFCS Nat Mol Pages. 2011(pii:
A000508)2011.PubMed/NCBI
|
|
102
|
Krejner A, Litwiniuk M and Grzela T:
Matrix metalloproteinases in the wound microenvironment:
Therapeutic perspectives. Chronic Wound Care Manag Res. 3:29–39.
2016. View Article : Google Scholar
|
|
103
|
Kim GY, Kim HY, Kim HT, Moon JM, Kim CH,
Kang S and Rhim H: HtrA1 is a novel antagonist controlling
fibroblast growth factor (FGF) signaling via cleavage of FGF8. Mol
Cell Biol. 32:4482–4492. 2012. View Article : Google Scholar
|
|
104
|
Meyer-Hoffert U and Schröder JM: Epidermal
proteases in the pathogenesis of rosacea. J Investig Dermatol Symp
Proc. 15:16–23. 2011.PubMed/NCBI View Article : Google Scholar
|
|
105
|
Kim SK, Park PJ, Kim JB and Shahidi F:
Purification and characterization of a collagenolytic protease from
the filefish, Novoden modestrus. J Biochem Mol Biol. 35:165–171.
2002.PubMed/NCBI View Article : Google Scholar
|
|
106
|
Coughlin SR: Thrombin signalling and
protease-activated receptors. Nature. 407:258–264. 2000.PubMed/NCBI View Article : Google Scholar
|
|
107
|
Perona JJ and Craik CS: Structural basis
of substrate specificity in the serine proteases. Protein Sci.
4:337–360. 1995.PubMed/NCBI View Article : Google Scholar
|
|
108
|
Rawlings AV and Voegeli R: Stratum corneum
proteases and dry skin conditions. Cell Tissue Res. 351:217–235.
2013.PubMed/NCBI View Article : Google Scholar
|
|
109
|
Gutiérrez JM, Escalante T, Rucavado A,
Herrera C and Fox JW: A Comprehensive view of the structural and
functional alterations of extracellular matrix by snake venom
metalloproteinases (SVMPs): Novel perspectives on the
pathophysiology of envenoming. Toxins (Basel). 8(pii:
E304)2016.PubMed/NCBI View Article : Google Scholar
|
|
110
|
Kini RM and Koh CY: Metalloproteases
affecting blood coagulation, fibrinolysis and platelet aggregation
from snake venoms: Definition and nomenclature of interaction
sites. Toxins (Basel). 8(pii: E284)2016.PubMed/NCBI View Article : Google Scholar
|
|
111
|
Silva MB, Schattner M, Ramos CR,
Junqueira-de-Azevedo IL, Guarnieri MC, Lazzari MA, Sampaio CA,
Pozner RG, Ventura JS, Ho PL and Chudzinski-Tavassi AM: A
prothrombin activator from Bothrops erythromelas (jararaca-da-seca)
snake venom: Characterization and molecular cloning. Biochem J.
369:129–139. 2003.PubMed/NCBI View Article : Google Scholar
|
|
112
|
Sanchez EF, Richardson M, Gremski LH,
Veiga SS, Yarleque A, Niland S, Lima AM, Estevao-Costa MI and Eble
JA: Data for a direct fibrinolytic metalloproteinase,
barnettlysin-I from Bothrops barnetti (barnett(,)s pitviper) snake
venom with anti-thrombotic effect. Data Brief. 7:1609–1613.
2016.PubMed/NCBI View Article : Google Scholar
|
|
113
|
Kamiguti AS: Platelets as targets of snake
venom metalloproteinases. Toxicon. 45:1041–1049. 2005.PubMed/NCBI View Article : Google Scholar
|
|
114
|
Howes JM, Kamiguti AS, Theakston RD,
Wilkinson MC and Laing GD: Effects of three novel
metalloproteinases from the venom of the West African saw-scaled
viper, Echis ocellatus on blood coagulation and platelets. Biochim
Biophys Acta. 1724:194–202. 2005.PubMed/NCBI View Article : Google Scholar
|
|
115
|
Fernandes CM, Zamuner SR, Zuliani JP,
Rucavado A, Gutiérrez JM and Teixeira Cde F: Inflammatory effects
of BaP1 a metalloproteinase isolated from Bothrops asper snake
venom: Leukocyte recruitment and release of cytokines. Toxicon.
47:549–559. 2006.PubMed/NCBI View Article : Google Scholar
|
|
116
|
Silva A, Gunawardena P, Weilgama D,
Maduwage K and Gawarammana I: Comparative in-vivo toxicity of
venoms from South Asian hump-nosed pit vipers (Viperidae:
Crotalinae: Hypnale). BMC Res Notes. 5(471)2012.PubMed/NCBI View Article : Google Scholar
|
|
117
|
Mariano-Oliveira A, Coelho ALJ, Terruggi
CH, Selistre-de-Araújo HS, Barja-Fidalgo C and De Freitas MS:
Alternagin-C, a nonRGD-disintegrin, induces neutrophil migration
via integrin signaling. Eur J Biochem. 270:4799–4808.
2003.PubMed/NCBI View Article : Google Scholar
|
|
118
|
Silva CA, Zuliani JP, Assakura MT, Mentele
R, Camargo ACM, Teixeira CFP and Serrano SMT: Activation of
αMβ2-mediated phagocytosis by HF3, a P-III class metalloproteinase
isolated from the venom of Bothrops jararaca. Biochem Biophys Res
Commun. 322:950–956. 2004. View Article : Google Scholar
|
|
119
|
Tseng YL, Lee CJ and Huang TF: Effects of
a snake venom metalloproteinase, triflamp, on platelet aggregation,
platelet-neutrophil and neutrophil-neutrophil interactions:
Involvement of platelet GPIbalpha and neutrophil PSGL-1. Thromb
Haemost. 91:315–324. 2004.PubMed/NCBI View Article : Google Scholar
|
|
120
|
Bernardes CP, Menaldo DL, Camacho E, Rosa
JC, Escalante T, Rucavado A, Lomonte B, Gutiérrez JM and Sampaio
SV: Proteomic analysis of Bothrops pirajai snake venom and
characterization of BpirMP, a new P-I metalloproteinase. J
Proteomics. 80:250–267. 2013.PubMed/NCBI View Article : Google Scholar
|
|
121
|
Zigrino P, Kamiguti AS, Eble J, Drescher
C, Nischt R, Fox JW and Mauch C: The reprolysin jararhagin, a snake
venom metalloproteinase, functions as a fibrillar collagen agonist
involved in fibroblast cell adhesion and signaling. J Biol Chem.
277:40528–40535. 2002.PubMed/NCBI View Article : Google Scholar
|
|
122
|
Costa ÉP and Santos MF: Jararhagin, a
snake venom metalloproteinase-disintegrin, stimulates epithelial
cell migration in an in vitro restitution model. Toxicon.
44:861–870. 2004.PubMed/NCBI View Article : Google Scholar
|
|
123
|
Cominetti MR, Terruggi CH, Ramos OH, Fox
JW, Mariano-Oliveira A, De Freitas MS, Figueiredo CC, Morandi V and
Selistre-de-Araujo HS: Alternagin-C, a disintegrin-like protein,
induces vascular endothelial cell growth factor (VEGF) expression
and endothelial cell proliferation in vitro. J Biol Chem.
279:18247–18255. 2004.PubMed/NCBI View Article : Google Scholar
|
|
124
|
Schattner M, Fritzen M, Ventura Jde S, de
Albuquerque Modesto JC, Pozner RG, Moura-da-Silva AM and
Chudzinski-Tavassi AM: The snake venom metalloproteases
berythractivase and jararhagin activate endothelial cells. Biol
Chem. 386:369–374. 2005.PubMed/NCBI View Article : Google Scholar
|
|
125
|
Siigur E, Tõnismägi K, Trummal K, Samel M,
Vija H, Subbi J and Siigur J: Factor X activator from Vipera
lebetina snake venom, molecular characterization and substrate
specificity. Biochim Biophys Acta. 1568:90–98. 2001.PubMed/NCBI View Article : Google Scholar
|
|
126
|
Markland FS, Kettner C, Schiffman S, Shaw
E, Bajwa SS, Reddy KN, Kirakossian H, Patkos GB, Theodor I and
Pirkle H: Kallikrein-like activity of crotalase, a snake venom
enzyme that clots fibrinogen. Proc Natl Acad Sci USA. 79:1688–1692.
1982.PubMed/NCBI View Article : Google Scholar
|
|
127
|
Zhang Y, Wisner A, Xiong Y and Bon C: A
novel plasminogen activator from snake venom. Purification,
characterization, and molecular cloning. J Biol Chem.
270:10246–10255. 1995.PubMed/NCBI View Article : Google Scholar
|
|
128
|
Serrano SM, Matos MF, Mandelbaum FR and
Sampaio CA: Basic proteinases from Bothrops moojeni (caissaca)
venom-I. Isolation and activity of two serine proteinases, MSP 1
and MSP 2, on synthetic substrates and on platelet aggregation.
Toxicon. 31:471–481. 1993.PubMed/NCBI View Article : Google Scholar
|
|
129
|
Frykberg RG and Banks J: Challenges in the
treatment of chronic wounds. Adv Wound Care (New Rochelle).
4:560–582. 2015.PubMed/NCBI View Article : Google Scholar
|
|
130
|
Telgenhoff D and Shroot B: Cellular
senescence mechanisms in chronic wound healing. Cell Death Differ.
12:695–698. 2005.PubMed/NCBI View Article : Google Scholar
|
|
131
|
Lumbers M: Pressure ulcers: An overview of
risk. Br J Nurs. 26(S49-S50)2017.PubMed/NCBI View Article : Google Scholar
|
|
132
|
Secretariat MA: Management of chronic
pressure ulcers: An evidence-based analysis. Ont Health Technol
Assess Ser. 9:1–203. 2009.PubMed/NCBI
|
|
133
|
Comerota A and Lurie F: Pathogenesis of
venous ulcer. Semin Vasc Surg. 28:6–14. 2015.PubMed/NCBI View Article : Google Scholar
|
|
134
|
Mannello F and Raffetto JD: Matrix
metalloproteinase activity and glycosaminoglycans in chronic venous
disease: The linkage among cell biology, pathology and
translational research. Am J Transl Res. 3:149–158. 2011.PubMed/NCBI
|
|
135
|
van der Plas MJ, Baldry M, van Dissel JT,
Jukema GN and Nibbering PH: Maggot secretions suppress
pro-inflammatory responses of human monocytes through elevation of
cyclic AMP. Diabetologia. 52:1962–1970. 2009.PubMed/NCBI View Article : Google Scholar
|
|
136
|
Wei OY, Xavier R and Marimuthu K:
Screening of antibacterial activity of mucus extract of snakehead
fish, Channa striatus (Bloch). Eur Rev Med Pharmacol Sci.
14:675–681. 2010.PubMed/NCBI
|
|
137
|
Jhamb S, Vangaveti VN and Malabu UH:
Genetic and molecular basis of diabetic foot ulcers: Clinical
review. J Tissue Viability. 25:229–236. 2016.PubMed/NCBI View Article : Google Scholar
|
|
138
|
Su N, Tong N, Du L, Wu B and Xu T: Heparin
and related substances for treating diabetic foot ulcers. Cochrane
Database Syst Rev. 2017(CD011087)2017. View Article : Google Scholar
|
|
139
|
Bruhn-Olszewska B, Korzon-Burakowska A,
Gabig-Ciminska M, Olszewski P, Wegrzyn A and Jakóbkiewicz-Banecka
J: Molecular factors involved in the development of diabetic foot
syndrome. Acta Biochim Pol. 59:507–513. 2012.PubMed/NCBI
|
|
140
|
Blakytny R and Jude EB: Altered molecular
mechanisms of diabetic foot ulcers. Int J Low Extrem Wounds.
8:95–104. 2009.PubMed/NCBI View Article : Google Scholar
|
|
141
|
Patel S, Srivastava S, Singh MR and Singh
D: Mechanistic insight into diabetic wounds: Pathogenesis,
molecular targets and treatment strategies to pace wound healing.
Biomed Pharmacother. 112(108615)2019.PubMed/NCBI View Article : Google Scholar
|
|
142
|
Sherman RA: Maggot therapy for treating
diabetic foot ulcers unresponsive to conventional therapy. Diabetes
Care. 26:446–451. 2003.PubMed/NCBI View Article : Google Scholar
|
|
143
|
Pasha M, Husin RA and Hassan S: The
influence of oral and topical Channa striatus on laparotomy wound
healing in malnourished wistar rats. Int J Pharm Pharm Sci Invent.
4:37–41. 2015. View Article : Google Scholar
|
|
144
|
Anish S: Skin substitutes in dermatology.
Indian J Dermatol Venereol Leprol. 81:175–178. 2015.PubMed/NCBI View Article : Google Scholar
|
|
145
|
Kordestani SS: Chapter 5-wound care
management. In: Atlas of wound healing. Kordestani SS (ed).
Elsevier. 31–47. 2019.
|
|
146
|
Sun BK, Siprashvili Z and Khavari PA:
Advances in skin grafting and treatment of cutaneous wounds.
Science. 346:941–945. 2014.PubMed/NCBI View Article : Google Scholar
|
|
147
|
Knapik A, Hegland N, Calcagni M, Althaus
M, Vollmar B, Giovanoli P and Lindenblatt N: Metalloproteinases
facilitate connection of wound bed vessels to pre-existing skin
graft vasculature. Microvasc Res. 84:16–23. 2012.PubMed/NCBI View Article : Google Scholar
|
|
148
|
Park YJ, Lee JW, Chong Y and Park TH:
Botulinum toxin A increases allograft tolerance in an experimental
transplantation model: A preliminary study. Biosci Rep. 38(pii:
BSR20171721)2018.PubMed/NCBI View Article : Google Scholar
|
|
149
|
Kucukkaya D, Irkoren S, Ozkan S and
Sivrioglu N: The effects of botulinum toxin A on the wound and skin
graft contraction. J Craniofac Surg. 25:1908–1911. 2014.PubMed/NCBI View Article : Google Scholar
|
|
150
|
Boyko TV, Longaker MT and Yang GP: Review
of the current management of pressure ulcers. Adv Wound Care (New
Rochelle). 7:57–67. 2018.PubMed/NCBI View Article : Google Scholar
|
|
151
|
Ma H, O'Donnell TF Jr, Rosen NA and
Iafrati MD: The real cost of treating venous ulcers in a
contemporary vascular practice. J Vasc Surg Venous Lymphat Disord.
2:355–361. 2014.PubMed/NCBI View Article : Google Scholar
|
|
152
|
Ford CN, Reinhard ER, Yeh D, Syrek D, De
Las Morenas A, Bergman SB, Williams S and Hamori CA: Interim
Analysis of a Prospective, Randomized Trial of Vacuum-Assisted
Closure Versus the Healthpoint System in the Management of Pressure
Ulcers. Ann Plast Surg. 49(1):55–61. 2002.PubMed/NCBI View Article : Google Scholar
|
|
153
|
Yaakobi T, Cohen-Hadar N, Yaron H,
Hirszowicz E, Simantov Y, Bass A and Freeman A: Wound debridement
by continuous streaming of proteolytic enzyme solutions: Effects on
experimental chronic wound model in porcin. Wounds. 19:192–200.
2007.PubMed/NCBI
|
|
154
|
Smith & Nephew, Inc.: Enzymatic
debridement with collagenase SANTYL® Ointment,. 2014.
|
|
155
|
Giudice G, Filoni A, Maggio G, Bonamonte D
and Vestita M: Cost analysis of a novel enzymatic debriding agent
for management of burn wounds. Biomed Res Int. 2017(9567498)2017.
View Article : Google Scholar
|
|
156
|
Gorecki M and Toren A: Debriding
composition from bromelain and methods of production thereof,
Patent Appl Publ. 2005.
|
|
157
|
Klein GKV and Houck JC: Hydrolytic enzyme
material. 1980.
|
|
158
|
Niehaus F, Eck J, Schulze R and Krohn M:
Proteasa para el acondicionamiento de heridas y el cuidado de la
piel. Brain Biotechnol Res Inf Netw. 2012.
|
|
159
|
Niehaus F, Eck J, Schulze R and Krohn M:
Protease for wound conditioning and skin care. Brain Biotechnol Res
Inf Netw. 2012.
|
|
160
|
Rosenberg L: Aparato y procedimientos para
su uso en escarotomía enzimática en síndrome de compartimento
inducido por quemaduras. MediWound. 2012.
|
|
161
|
Freeman A, Hirszowicz E and
Be'eri-lipperman M: Apparatus and method for the enzymatic
debridement of skin lesions, Ramot At Tel-Aviv Univ. 2012.
|
|
162
|
Yaakobi T, Roth D, Chen Y and Freeman A:
Streaming of proteolytic enzyme solutions for wound debridement: A
feasibility study. Wounds. 16:201–205. 2004.
|
|
163
|
Rodeheaver G, Edgerton MT, Elliott MB,
Kurtz LD and Edlich RF: Proteolytic enzymes as adjuncts to
antibiotic prophylaxis of surgical wounds. Am J Surg. 127:564–572.
1974. View Article : Google Scholar
|
|
164
|
Gao M, Nguyen TT, Suckow MA, Wolter WR,
Gooyit M, Mobashery S and Chang M: Acceleration of diabetic wound
healing using a novel protease-anti-protease combination therapy.
Proc Natl Acad Sci USA. 112:15226–15231. 2015.PubMed/NCBI View Article : Google Scholar
|
|
165
|
Gutiérrez-Fernández A, Fueyo A, Folgueras
AR, Garabaya C, Pennington CJ, Pilgrim S, Edwards DR, Holliday DL,
Jones JL, Span PN, et al: Matrix metalloproteinase-8 functions as a
metastasis suppressor through modulation of tumor cell adhesion and
invasion. Cancer Res. 68:2755–2763. 2008.PubMed/NCBI View Article : Google Scholar
|
|
166
|
Hartenstein B, Dittrich BT, Stickens D,
Heyer B, Vu TH, Teurich S, Schorpp-Kistner M, Werb Z and Angel P:
Epidermal development and wound healing in matrix metalloproteinase
13-deficient mice. J Invest Dermatol. 126:486–496. 2006.PubMed/NCBI View Article : Google Scholar
|
|
167
|
Kudo Y, Iizuka S, Yoshida M, Tsunematsu T,
Kondo T, Subarnbhesaj A, Deraz EM, Siriwardena SB, Tahara H,
Ishimaru N, et al: Matrix metalloproteinase-13 (MMP-13) directly
and indirectly promotes tumor angiogenesis. J Biol Chem.
287:38716–38728. 2012.PubMed/NCBI View Article : Google Scholar
|
|
168
|
Rohani MG and Parks WC: Matrix remodeling
by MMPs during wound repair. Matrix Biol. 44–46. 113–121.
2015.PubMed/NCBI View Article : Google Scholar
|
|
169
|
Thirkettle S, Decock J, Arnold H,
Pennington CJ, Jaworski DM and Edwards DR: Matrix Matrix
metalloproteinase 8 (collagenase 2) induces the expression of
interleukins 6 and 8 in breast cancer cells. J Biol Chem.
288:16282–16294. 2013.PubMed/NCBI View Article : Google Scholar
|
|
170
|
Utz ER, Elster EA, Tadaki DK, Gage F,
Perdue PW, Forsberg JA, Stojadinovic A, Hawksworth JS and Brown TS:
Metalloproteinase expression is associated with traumatic wound
failure. J Surg Res. 159:633–639. 2010.PubMed/NCBI View Article : Google Scholar
|
|
171
|
Yamamoto K, Okano H, Miyagawa W, Visse R,
Shitomi Y, Santamaria S, Dudhia J, Troeberg L, Strickland DK,
Hirohata S and Nagase H: MMP-13 is constitutively produced in human
chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the
endocytic receptor LRP1. Matrix Biol. 56:57–73. 2016.PubMed/NCBI View Article : Google Scholar
|
|
172
|
Motrescu ER, Blaise S, Etique N, Messaddeq
N, Chenard MP, Stoll I, Tomasetto C and Rio MC: Matrix
metalloproteinase-11/stromelysin-3 exhibits collagenolytic function
against collagen VI under normal and malignant conditions.
Oncogene. 27:6347–6355. 2008.PubMed/NCBI View Article : Google Scholar
|
|
173
|
Pittayapruek P, Meephansan J, Prapapan O,
Komine M and Ohtsuki M: Role of matrix metalloproteinases in
photoaging and photocarcinogenesis. Int J Mol Sci. 17(pii:
e868)2016.PubMed/NCBI View Article : Google Scholar
|
|
174
|
Saarialho-Kere UK, Pentland AP,
Birkedal-Hansen H, Parks WC and Welgus HG: Distinct populations of
basal keratinocytes express stromelysin-1 and stromelysin-2 in
chronic wounds. J Clin Invest. 94:79–88. 1994.PubMed/NCBI View Article : Google Scholar
|
|
175
|
Sato T, Nomura K and Hashimoto I:
Expression of collagenase and stromelysin in skin fibroblasts from
recessive dystrophic epidermolysis bullosa. Arch Dermatol Res.
287:428–433. 1995.PubMed/NCBI View Article : Google Scholar
|
|
176
|
Kren L, Goncharuk V, Krenová Z, Stratil D,
Hermanová M, Skricková J, Sheehan CE and Ross JS: Expression of
matrix metalloproteinases 3, 10 and 11 (stromelysins 1, 2 and 3)
and matrix metalloproteinase 7 (matrilysin) by cancer cells in
non-small cell lung neoplasms. Clinicopathologic studies. Cesk
Patol. 42:16–19. 2006.PubMed/NCBI
|
|
177
|
Page-McCaw A, Ewald AJ and Werb Z: Matrix
metalloproteinases and the regulation of tissue remodelling. Nat
Rev Mol Cell Biol. 8:221–233. 2007.PubMed/NCBI View Article : Google Scholar
|
|
178
|
Purcell WT and Hidalgo M: Matrix
metalloproteinase inhibitors in cancer therapy. In: Proteases in
tissue remodelling of lung and heart. Lendeckel U and Hooper NM
(eds). Springer US, Boston, MA. pp75–118. 2003.
|
|
179
|
Herouy Y: The role of matrix
metalloproteinases (MMPs) and their inhibitors in venous leg ulcer
healing. Phlebolymphology. 44:231–243. 2004.
|
|
180
|
Lagente V, Manoury B, Nenan S, Le Quement
C, Martin-Chouly C and Boichot E: Role of matrix metalloproteinases
in the development of airway inflammation and remodeling. Braz J
Med Biol Res. 38:1521–1530. 2005.PubMed/NCBI View Article : Google Scholar
|
|
181
|
van Marion MMH: Matrix metalloproteinases
and collagen remodeling. A Literature Review. 2006.
|
|
182
|
Tewari A, Grys K, Kollet J, Sarkany R and
Young AR: Upregulation of MMP12 and its activity by UVA1 in human
skin: potential implications for photoaging. J Invest Dermatol.
134:2598–2609. 2014.PubMed/NCBI View Article : Google Scholar
|