
Novel genetic therapeutic approaches for modulating the severity of β‑thalassemia (Review)
- Authors:
- Fareeha Amjad
- Tamseel Fatima
- Tuba Fayyaz
- Muhammad Aslam Khan
- Muhammad Imran Qadeer
-
Affiliations: Department of Microbiology and Molecular Genetics, University of The Punjab, Lahore, Punjab 54590, Pakistan, Sundas Molecular Analysis Centre (SUNMAC), Sundas Foundation, Lahore, Punjab 54000, Pakistan - Published online on: September 2, 2020 https://doi.org/10.3892/br.2020.1355
- Article Number: 48
-
Copyright: © Amjad et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Galanello R and Origa R: Beta-thalassemia. Orphanet J Rare Dis. 5(11)2010.PubMed/NCBI View Article : Google Scholar | |
De Sanctis V, Kattamis C, Canatan D, Soliman AT, Elsedfy H, Karimi M, Daar S, Wali Y, Yassin M, Soliman N, et al: β-Thalassemia distribution in the old world: An ancient disease seen from a historical standpoint. Mediterr J Hematol Infect Dis. 9(e2017018)2017.PubMed/NCBI View Article : Google Scholar | |
Haldane JBS: The rate of mutation of human genes. Hereditas. 35:267–273. 1949. | |
Saeed U and Piracha ZZ: Thalassemia: Impact of consanguineous marriages on most prevalent monogenic disorders of humans. Asian Pacific J Tropical Dis. 6:837–840. 2016. | |
Hu L, Shang X, Yi S, Cai R, Li Z, Liu C, Liang Y, Cai D, Zhang F and Xu X: Two novel copy number variations involving the α-globin gene cluster on chromosome 16 cause thalassemia in two Chinese families. Mol Genet Genomics. 291:1443–1450. 2016.PubMed/NCBI View Article : Google Scholar | |
Muncie HL Jr and Campbell JS: Alpha and beta thalassemia. Am Fam Physician. 80:339–344. 2009.PubMed/NCBI | |
Martin A and Thompson AA: Thalassemias. Pediatr Clin North Am. 60:1383–1391. 2013.PubMed/NCBI View Article : Google Scholar | |
Galanello R and Cao A: Alpha-thalassemia. Genet Med. 13(83)2011. | |
Borgio JF, AbdulAzeez S, Al-Nafie AN, Naserullah ZA, Al-Jarrash S, Al-Madan MS, Al-Muhanna F, Steinberg MH and Al-Ali AK: A novel HBA2 gene conversion in cis or trans: ‘α12 allele’ in a Saudi population. Blood Cells Mol Dis. 53:199–203. 2014.PubMed/NCBI View Article : Google Scholar | |
AbdulAzeez S, Almandil NB, Naserullah ZA, Al-Jarrash S, Al-Suliman AM, ElFakharay HI and Borgio JF: Co-inheritance of alpha globin gene deletion lowering serum iron level in female beta thalassemia patients. Mol Biol Rep. 47:603–606. 2020.PubMed/NCBI View Article : Google Scholar | |
Haghpanah S, Vahdati S and Karimi M: Comparison of quality of life in patients with β-Thalassemia intermedia and β-thalassemia major in Southern Iran. Hemoglobin. 41:169–174. 2017.PubMed/NCBI View Article : Google Scholar | |
Choudhry VP: Thalassemia minor and major: Current management. Indian J Pediatr. 84:607–611. 2017.PubMed/NCBI View Article : Google Scholar | |
Thein SL: The molecular basis of β-thalassemia. Cold Spring Harb Perspect Med. 3(a011700)2013.PubMed/NCBI View Article : Google Scholar | |
Musallam K, Cappellini MD and Taher A: Challenges associated with prolonged survival of patients with thalassemia: Transitioning from childhood to adulthood. Pediatrics. 121:e1426–e1429. 2008.PubMed/NCBI View Article : Google Scholar | |
Ishfaq K, Naeem SB and Ali J: Socio-economic factors of thalassemia major on Patients 'families: A case study of the Children's hospital and the institute of child health Multan, Pakistan. Int J Med Appl Health. 1:2013. | |
Goodnough LT, Brecher ME, Kanter MH and AuBuchon JP: Transfusion medicine-blood transfusion. N Engl J Med. 340:438–447. 1999. | |
Brittenham GM: Iron-chelating therapy for transfusional iron overload. N Engl J Med. 364:146–156. 2011.PubMed/NCBI View Article : Google Scholar | |
Borgna-Pignatti C, Rugolotto S, De Stefano P, Zhao H, Cappellini MD, Del Vecchio GC, Romeo MA, Forni GL, Gamberini MR, Ghilardi R, et al: Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 89:1187–1193. 2004.PubMed/NCBI | |
Low LC: Growth of children with β-thalassemia major. Indian J Pediatr. 72:159–164. 2005.PubMed/NCBI View Article : Google Scholar | |
Wu K, Tsai F and Peng C: Growth hormone (GH) deficiency in patients with β-thalassemia major and the efficacy of recombinant GH treatment. Ann Hematol. 82:637–640. 2003.PubMed/NCBI View Article : Google Scholar | |
de Dreuzy E, Bhukhai K, Leboulch P and Payen E: Current and future alternative therapies for beta-thalassemia major. Biomed J. 39:24–38. 2016.PubMed/NCBI View Article : Google Scholar | |
de Montalembert M, Ribeil JA, Brousse V, Guerci-Bresler A, Stamatoullas A, Vannier JP, Dumesnil C, Lahary A, Touati M, Bouabdallah K, et al: Cardiac iron overload in chronically transfused patients with thalassemia, sickle cell anemia, or myelodysplastic syndrome. PLoS One. 12(e0172147)2017.PubMed/NCBI View Article : Google Scholar | |
Wang M, Liu R, Liang Y, Yang G, Huang Y, Yu C, Sun K, Lai Y and Xia Y: Iron overload correlates with serum liver fibrotic markers and liver dysfunction: Potential new methods to predict iron overload-related liver fibrosis in thalassemia patients. United European Gastroenterol J. 5:94–103. 2017.PubMed/NCBI View Article : Google Scholar | |
Iqbal A, Ansari SH, Parveen S, Khan IA, Siddiqui AJ and Musharraf SG: Hydroxyurea treated β-thalassemia children demonstrate a shift in metabolism towards healthy pattern. Sci Rep. 8(15152)2018.PubMed/NCBI View Article : Google Scholar | |
Pilo F and Angelucci E: Iron toxicity and hemopoietic cell transplantation: Time to change the paradigm. Mediterr J Hematol Infect Dis. 11(e2019030)2019.PubMed/NCBI View Article : Google Scholar | |
Anurathapan U, Locatelli F, Kwiatkowski JL, Rasko JEJ, Schiller GJ, Porter J, Sauer MG, Thrasher AJ, Chabannon C, Elliot H, et al: Lentiglobin gene therapy for transfusion-dependent β-thalassemia: Outcomes from the phase 1/2 Northstar and phase 3 Northstar-2 studies. Biol Blood Marrow Transplantation. 25 (Suppl):S66–S67. 2019. | |
Ribeil JA, Arlet JB, Dussiot M, Moura IC, Courtois G and Hermine O: Ineffective erythropoiesis in β-thalassemia. ScientificWorldJournal. 2013(394295)2013. | |
Al-Sharifi LM, Murtadha J, Shahad A, Mohammed Y, Sura J, Waleed Z, Raheeq M, Sura A, Ehab H, Shahad M, et al: Prevalence of hepatitis B and C in thalassemic patients and its relation with type of thalassemia, frequency of blood transfusion, and spleen status. Med J Babylon. 16:108–111. 2019. | |
Mettananda S, Pathiraja H, Peiris R, Wickramarathne N, Bandara D, de Silva U, Mettananda C and Premawardhena A: Blood transfusion therapy for β-thalassemia major and hemoglobin E β-thalassemia: Adequacy, trends, and determinants in Sri Lanka. Pediatr Blood Cancer. 66(e27643)2019.PubMed/NCBI View Article : Google Scholar | |
Sharma S, Sharma P and Tyler LN: Transfusion of blood and blood products: Indications and complications. Am Fam Physician. 83:719–724. 2011.PubMed/NCBI | |
Roberts DJ, Field S, Delaney M and Bates I: Problems and approaches for blood transfusion in the developing countries. Hematol Oncol Clin North Am. 30:477–495. 2016.PubMed/NCBI View Article : Google Scholar | |
Mahmoud RA, El-Mazary AA and Khodeary A: Seroprevalence of hepatitis C, hepatitis B, cytomegalovirus, and human immunodeficiency viruses in multitransfused thalassemic children in upper Egypt. Adv Hematol. 2016(9032627)2016.PubMed/NCBI View Article : Google Scholar | |
Stainsby D: ABO incompatible transfusions-experience from the UK Serious Hazards of Transfusion (SHOT) scheme: Transfusions ABO incompatible. Transfus Clin Biol. 12:385–388. 2005.PubMed/NCBI View Article : Google Scholar | |
Bird EM, Parameswaran U, William T, Khoo TM, Grigg MJ, Aziz A, Marfurt J, Yeo TW, Auburn S, Anstey NM and Barber BE: Transfusion-transmitted severe Plasmodium knowlesi malaria in a splenectomized patient with beta-thalassaemia major in Sabah, Malaysia: A case report. Malar J. 15(357)2016.PubMed/NCBI View Article : Google Scholar | |
Stainsby D, Jones H, Asher D, Atterbury C, Boncinelli A, Brant L, Chapman CE, Davison K, Gerrard R, Gray A, et al: Serious hazards of transfusion: A decade of hemovigilance in the UK. Transfus Med Rev. 20:273–282. 2006.PubMed/NCBI View Article : Google Scholar | |
Papanikolaou G, Tzilianos M, Christakis JI, Bogdanos D, Tsimirika K, MacFarlane J, Goldberg YP, Sakellaropoulos N, Ganz T and Nemeth E: Hepcidin in iron overload disorders. Blood. 105:4103–4105. 2005.PubMed/NCBI View Article : Google Scholar | |
Williamson L, Lowe S, Love EM, Cohen H, Soldan K, McClelland DB, Skacel P and Barbara JA: Serious hazards of transfusion (SHOT) initiative: Analysis of the first two annual reports. BMJ. 319:16–19. 1999.PubMed/NCBI View Article : Google Scholar | |
Ansari SH, Lassi ZS, Khowaja SM, Adil SO and Shamsi TS: Hydroxyurea (hydroxycarbamide) for transfusion-dependent β-thalassaemia. Cochrane Database Syst Rev. 3(CD012064)2019.PubMed/NCBI View Article : Google Scholar | |
Ansari SH, Lassi ZS, Ali SM, Adil SO and Shamsi TS: Hydroxyurea for β-thalassaemia major. Cochrane Database Syst Rev. 3(CD012064)2016. | |
Chandy M: Stem cell transplantation in India. Bone Marrow Transplant. 42 (Suppl 1):S81–S84. 2008.PubMed/NCBI View Article : Google Scholar | |
Jagannath VA, Fedorowicz Z, Al Hajeri A and Sharma A: Hematopoietic stem cell transplantation for people with β-thalassaemia major. Cochrane Database Syst Rev. 11(CD008708)2016.PubMed/NCBI View Article : Google Scholar | |
Krishnamurti L, Bunn HF, Williams AM and Tolar J: Hematopoietic cell transplantation for hemoglobinopathies. Curr Probl Pediatr Adolesc Health Care. 38:6–18. 2008.PubMed/NCBI View Article : Google Scholar | |
El-Beshlawy A and El-Ghamrawy M: Recent trends in treatment of thalassemia. Blood Cells Mol Dis. 76:53–58. 2019.PubMed/NCBI View Article : Google Scholar | |
Anasetti C: Use of alternative donors for allogeneic stem cell transplantation. Hematology Am Soc Hematol Educ Program. 2015:220–224. 2015.PubMed/NCBI View Article : Google Scholar | |
Angelucci E: Hematopoietic stem cell transplantation in thalassemia. Hematology Am Soc Hematol Educ Program. 2010:456–462. 2010.PubMed/NCBI View Article : Google Scholar | |
Angelucci E: Hematopoietic stem cell transplantation in thalassemia. Hematology. 2010:456–462. 2010.PubMed/NCBI View Article : Google Scholar | |
Kyvernitakis A, Mahale P, Popat UR, Jiang Y, Hosry J, Champlin RE and Torres HA: Hepatitis C virus infection in patients undergoing hematopoietic cell transplantation in the era of direct-acting antiviral agents. Biol Blood Marrow Transplant. 22:717–722. 2016.PubMed/NCBI View Article : Google Scholar | |
Hong KT, Kang HJ, Choi JY, Hong CR, Cheon JE, Park JD, Park KD, Song SH, Yu KS, Jang IJ and Shin HY: Favorable outcome of post-transplantation cyclophosphamide haploidentical peripheral blood stem cell transplantation with targeted Busulfan-based myeloablative conditioning using intensive pharmacokinetic monitoring in pediatric patients. Biol Blood Marrow Transplant. 24:2239–2244. 2018.PubMed/NCBI View Article : Google Scholar | |
Gaziev D, Polchi P, Galimberti M, Angelucci E, Giardini C, Baronciani D, Erer B and Lucarelli G: Graft-versus-host disease after bone marrow transplantation for thalassemia: An analysis of incidence and risk factors. Transplantation. 63:854–860. 1997.PubMed/NCBI View Article : Google Scholar | |
Mehta PA and Faulkner LB: Hematopoietic cell transplantation for thalassemia: A global perspective BMT tandem meeting 2013. Biol Blood Marrow Transplant. 19 (1 Suppl):S70–S73. 2013.PubMed/NCBI View Article : Google Scholar | |
Taher AT, Weatherall DJ and Cappellini MD: Thalassaemia. Lancet. 391:155–167. 2018.PubMed/NCBI View Article : Google Scholar | |
Elborai Y, Uwumugambi A and Lehmann L: Hematopoietic stem cell transplantation for thalassemia. Immunotherapy. 4:947–956. 2012.PubMed/NCBI View Article : Google Scholar | |
Bernaudin F, Pondarré C, Galambrun C and Thuret I: Allogeneic/matched related transplantation for β-thalassemia and sickle cell Anemia. Adv Exp Med Biol. 1013:89–122. 2017. | |
Pavone ME, Manuel S and Thompson A: Fertility Preservation in a Female Adolescent with a Hemoglobinopathy. In: Textbook of Oncofertility Research and Practice. Woodruff T, Shah D and Vitek W (eds). Springer, Cham, pp551-557, 2019. | |
Naldini L: Gene therapy returns to centre stage. Nature. 526:351–360. 2015.PubMed/NCBI View Article : Google Scholar | |
Kumar SR, Markusic DM, Biswas M, High KA and Herzog RW: Clinical development of gene therapy: Results and lessons from recent successes. Mol Ther Methods Clin Dev. 3(16034)2016.PubMed/NCBI View Article : Google Scholar | |
Nienhuis AW: Development of gene therapy for blood disorders: An update. Blood. 122:1556–1564. 2013.PubMed/NCBI View Article : Google Scholar | |
Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D, Chawla K, Chattopadhyay S, Chandra D, Chilukuri N and Betapudi V: Gene therapy leaves a vicious cycle. Front Oncol. 9(297)2019.PubMed/NCBI View Article : Google Scholar | |
Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, et al: LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 302:415–419. 2003.PubMed/NCBI View Article : Google Scholar | |
Naldini L: Ex vivo gene transfer and correction for cell-based therapies. Nat Rev Genet. 12(301)2011.PubMed/NCBI View Article : Google Scholar | |
Cavazzana-Calvo M, Payen E, Negre O, Wang G, Hehir K, Fusil F, Down J, Denaro M, Brady T, Westerman K, et al: Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature. 467:318–322. 2010.PubMed/NCBI View Article : Google Scholar | |
Srivastava A and Shaji RV: Cure for thalassemia major-from allogeneic hematopoietic stem cell transplantation to gene therapy. Haematologica. 102:214–223. 2017.PubMed/NCBI View Article : Google Scholar | |
Montini E, Cesana D, Schmidt M, Sanvito F, Bartholomae CC, Ranzani M, Benedicenti F, Sergi LS, Ambrosi A, Ponzoni M, et al: The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest. 119:964–975. 2009.PubMed/NCBI View Article : Google Scholar | |
Miccio A, Cesari R, Lotti F, Rossi C, Sanvito F, Ponzoni M, Routledge SJ, Chow CM, Antoniou MN and Ferrari G: In vivo selection of genetically modified erythroblastic progenitors leads to long-term correction of β-thalassemia. Proc Natl Acad Sci USA. 105:10547–10552. 2008.PubMed/NCBI View Article : Google Scholar | |
Roselli EA, Mezzadra R, Frittoli MC, Maruggi G, Biral E, Mavilio F, Mastropietro F, Amato A, Tonon G, Refaldi C, et al: Correction of beta-thalassemia major by gene transfer in haematopoietic progenitors of pediatric patients. EMBO Mol Med. 2:315–328. 2010.PubMed/NCBI View Article : Google Scholar | |
Lidonnici MR, Paleari Y, Tiboni F, Mandelli G, Rossi C, Vezzoli M, Aprile A, Lederer CW, Ambrosi A, Chanut F, et al: Multiple integrated non-clinical studies predict the safety of lentivirus-mediated gene therapy for β-thalassemia. Mol Ther Methods Clin Dev. 11:9–28. 2018.PubMed/NCBI View Article : Google Scholar | |
Rasko J, Walters M, Kwiatkowski J, Hongeng S, Porter J, Sauer M, Thrasher A, Thuret I, Schiller G, Elliot H, et al: Efficacy and safety of LentiGlobin gene therapy in patients with transfusion-dependent β-thalassemia and non-β0/β0 genotypes: Updated results from the completed phase 1/2 Northstar and ongoing phase 3 Northstar-2 studies. Cytotherapy. 21(S14)2019. | |
Morgan RA, Gray D, Lomova A and Kohn DB: Hematopoietic stem cell gene therapy: Progress and lessons learned. Cell Stem Cell. 21:574–590. 2017.PubMed/NCBI View Article : Google Scholar | |
Khosravi MA, Abbasalipour M, Concordet JP, Berg JV, Zeinali S, Arashkia A, Azadmanesh K, Buch T and Karimipoor M: Targeted deletion of BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta thalassemia disease. Eur J Pharmacol. 854:398–405. 2019.PubMed/NCBI View Article : Google Scholar | |
Barzel A, Paulk NK, Shi Y, Huang Y, Chu K, Zhang F, Valdmanis PN, Spector LP, Porteus MH, Gaensler KM, et al: Promoterless gene targeting without nucleases ameliorates haemophilia B in mice. Nature. 517:360–364. 2015.PubMed/NCBI View Article : Google Scholar | |
Sadelain M, Rivière I, Wang X, Boulad F, Prockop S, Giardina P, Maggio A, Galanello R, Locatelli F and Yannaki E: Strategy for a multicenter phase I clinical trial to evaluate globin gene transfer in beta-thalassemia. Ann N Y Acad Sci. 1202:52–58. 2010.PubMed/NCBI View Article : Google Scholar | |
Yannaki E and Stamatoyannopoulos G: Hematopoietic stem cell mobilization strategies for gene therapy of beta thalassemia and sickle cell disease. Ann N Y Acad Sci. 1202:59–63. 2010.PubMed/NCBI View Article : Google Scholar | |
Mansilla-Soto J, Riviere I, Boulad F and Sadelain M: Cell and gene therapy for the beta-thalassemias: Advances and prospects. Hum Gene Ther. 27:295–304. 2016.PubMed/NCBI View Article : Google Scholar | |
Wu C and Dunbar CE: Stem cell gene therapy: The risks of insertional mutagenesis and approaches to minimize genotoxicity. Front Med. 5:356–371. 2011.PubMed/NCBI View Article : Google Scholar | |
Karponi G and Zogas N: Gene therapy for beta-thalassemia: Updated perspectives. Appl Clin Genet. 12(167)2019.PubMed/NCBI View Article : Google Scholar | |
European Medicines Agency: Advanced therapy medicinal products: Overview 2018. https://www.ema.europa.eu/en/human-regulatory/overview/advanced-therapy-medicinal-products-overview. Accessed August 1, 2019. | |
Schuessler-Lenz M, Enzmann H and Vamvakas S: Regulators' advice can make a difference: European medicines agency approval of Zynteglo for beta thalassemia. Clin Pharmacol Ther. 107(492)2020.PubMed/NCBI View Article : Google Scholar | |
European Medicines Agency: Zynteglo. https://www.ema.europa.eu/en/medicines/human/EPAR/zynteglo#product-information-section. Accessed June 3, 2019. | |
Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, Katibah GE, Amora R, Boydston EA, Zeitler B, et al: Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 27:851–857. 2009.PubMed/NCBI View Article : Google Scholar | |
Mushtaq M, Bhat JA, Mir ZA, Sakina A, Ali S, Singh AK, Tyagi A, Salgotra RK, Dar AA and Bhat R: CRISPR/Cas approach: A new way of looking at plant-abiotic interactions. J Plant Physiol. 224:156–162. 2018.PubMed/NCBI View Article : Google Scholar | |
Gupta RM and Musunuru K: Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. J Clin Invest. 124:4154–4161. 2014.PubMed/NCBI View Article : Google Scholar | |
Scott CT: The zinc finger nuclease monopoly. Nat Biotechnol. 23:915–918. 2005.PubMed/NCBI View Article : Google Scholar | |
Perez-Pinera P, Ousterout DG and Gersbach CA: Advances in targeted genome editing. Curr Opin Chem Biol. 16:268–277. 2012.PubMed/NCBI View Article : Google Scholar | |
Charpentier E and Doudna JA: Biotechnology: Rewriting a genome. Nature. 495:50–51. 2013.PubMed/NCBI View Article : Google Scholar | |
Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ and Voytas DF: Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. 186:757–761. 2010.PubMed/NCBI View Article : Google Scholar | |
Gaj T, Gersbach CA and Barbas CF III: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397–405. 2013.PubMed/NCBI View Article : Google Scholar | |
Baliou S, Adamaki M, Kyriakopoulos AM, Spandidos DA, Panayiotidis M, Christodoulou I and Zoumpourlis V: CRISPR therapeutic tools for complex genetic disorders and cancer (Review). Int J Oncol. 53:443–468. 2018.PubMed/NCBI View Article : Google Scholar | |
Kim EJ, Kang KH and Ju JH: CRISPR-Cas9: A promising tool for gene editing on induced pluripotent stem cells. Korean J Intern Med. 32:42–61. 2017.PubMed/NCBI View Article : Google Scholar | |
Stella S and Montoya G: The genome editing revolution: A CRISPR-Cas TALE off-target story. Inside Cell. 1:7–16. 2016.PubMed/NCBI View Article : Google Scholar | |
Murugan K, Babu K, Sundaresan R, Rajan R and Sashital DG: The revolution continues: Newly discovered systems expand the CRISPR-Cas toolkit. Mol Cell. 68:15–25. 2017.PubMed/NCBI View Article : Google Scholar | |
Bhattacharyya S and Mukherjee A: CRISPR: The revolutionary gene editing tool with Far-reaching applications. In: Biotechnology Business-Concept to Delivery, Springer, pp47-56, 2020. | |
Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA and Zhang F: Genome engineering using the CRISPR-Cas9 system. Nat Protocols. 8(2281)2013.PubMed/NCBI View Article : Google Scholar | |
Wang T, Wei JJ, Sabatini DM and Lander ES: Genetic screens in human cells using the CRISPR-Cas9 system. Science. 343:80–84. 2014.PubMed/NCBI View Article : Google Scholar | |
van Erp PB, Bloomer G, Wilkinson R and Wiedenheft B: The history and market impact of CRISPR RNA-guided nucleases. Curr Opin Virol. 12:85–90. 2015.PubMed/NCBI View Article : Google Scholar | |
Sontheimer EJ and Barrangou R: The bacterial origins of the CRISPR genome-editing revolution. Hum Gene Ther. 26:413–424. 2015.PubMed/NCBI View Article : Google Scholar | |
Hsu PD, Lander ES and Zhang F: Development and applications of CRISPR-Cas9 for genome editing. Call. 157:1262–1278. 2014.PubMed/NCBI View Article : Google Scholar | |
Makarova KS and Koonin EV: Annotation and classification of CRISPR-Cas systems. In: CRISPR. Springer Protocols, pp47-75, 2015. | |
Ishino Y, Krupovic M and Forterre P: History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol. 200:e00580–17. 2018.PubMed/NCBI View Article : Google Scholar | |
Koonin EV, Makarova KS and Zhang F: Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 37:67–78. 2017.PubMed/NCBI View Article : Google Scholar | |
Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO, Gootenberg JS, Makarova KS, Wolf YI, et al: Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. 15:169–182. 2017.PubMed/NCBI View Article : Google Scholar | |
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, et al: An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. 13:722–736. 2015.PubMed/NCBI View Article : Google Scholar | |
Moon SB, Ko JH and Kim YS: Recent advances in the CRISPR genome editing tool set. Exp Mol Med. 51:1–11. 2019.PubMed/NCBI View Article : Google Scholar | |
Li Y and Peng N: Endogenous CRISPR-Cas System-based genome editing and antimicrobials: Review and prospects. Front Microbiol. 10(2471)2019.PubMed/NCBI View Article : Google Scholar | |
Hidalgo-Cantabrana C and Barrangou R: Characterization and applications of type I CRISPR-Cas systems. Biochem Soc Trans. 28:15–23. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang H and McCarty N: CRISPR-Cas9 technology and its application in haematological disorders. Br J Haematol. 175:208–225. 2016.PubMed/NCBI View Article : Google Scholar | |
Grevet JD, Lan X, Hamagami N, Edwards CR, Sankaranarayanan L, Ji X, Bhardwaj SK, Face CJ, Posocco DF, Abdulmalik O, et al: Domain-focused CRISPR screen identifies HRI as a fetal hemoglobin regulator in human erythroid cells. Science. 361:285–290. 2018.PubMed/NCBI View Article : Google Scholar | |
Dulmovits BM, Appiah-Kubi AO, Papoin J, Hale J, He M, Al-Abed Y, Didier S, Gould M, Husain-Krautter S, Singh SA, et al: Pomalidomide reverses γ-globin silencing through the transcriptional reprogramming of adult hematopoietic progenitors. Blood. 127:1481–1492. 2016.PubMed/NCBI View Article : Google Scholar | |
Sankaran VG, Menne TF, Xu J, Akie TE, Lettre G, Van Handel B, Mikkola HK, Hirschhorn JN, Cantor AB and Orkin SH: Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science. 322:1839–1842. 2008.PubMed/NCBI View Article : Google Scholar | |
Jensen TI, Axelgaard E and Bak RO: Therapeutic gene editing in haematological disorders with CRISPR/Cas9. Br J Haematol. 185:821–835. 2019.PubMed/NCBI View Article : Google Scholar | |
Shariati L, Rohani F, Heidari Hafshejani N, Kouhpayeh S, Boshtam M, Mirian M, Rahimmanesh I, Hejazi Z, Modarres M, Pieper IL and Khanahmad H: Disruption of SOX6 gene using CRISPR/Cas9 technology for gamma-globin reactivation: An approach towards gene therapy of β-thalassemia. J Cell Biochem. 119:9357–9363. 2018.PubMed/NCBI View Article : Google Scholar | |
Savić N and Schwank G: Advances in therapeutic CRISPR/Cas9 genome editing. Transl Res. 168:15–21. 2016.PubMed/NCBI View Article : Google Scholar | |
Porter J: Beyond transfusion therapy: New therapies in thalassemia including drugs, alternate donor transplant, and gene therapy. Hematology Am Soc Hematol Educ Program. 2018:361–370. 2018.PubMed/NCBI View Article : Google Scholar | |
Tang XD, Gao F, Liu MJ, Fan QL, Chen DK and Ma WT: Methods for enhancing clustered regularly interspaced short palindromic repeats/Cas9-mediated homology-directed repair efficiency. Front Genet. 10(551)2019.PubMed/NCBI View Article : Google Scholar | |
Dever DP, Bak RO, Reinisch A, Camarena J, Washington G, Nicolas CE, Pavel-Dinu M, Saxena N, Wilkens AB, Mantri S, et al: CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature. 539:384–389. 2016. | |
Chapman JR, Taylor MR and Boulton SJ: Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. 47:497–510. 2012.PubMed/NCBI View Article : Google Scholar | |
Rees HA and Liu DR: Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 19:770–788. 2018.PubMed/NCBI View Article : Google Scholar | |
Malzahn AL Lowder L and Yiping Qi: Plant genome editing with TALEN and CRISPR. Cell Biosci. 7(21)2017.PubMed/NCBI View Article : Google Scholar | |
Bortesi L and Fischer R: The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol Adv. 33:41–52. 2015.PubMed/NCBI View Article : Google Scholar | |
Kim S, Kim D, Cho SW, Kim J and Kim JS: Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24:1012–1019. 2014.PubMed/NCBI View Article : Google Scholar | |
Enkler L, Richer D, Marchand AL, Ferrandon D and Jossinet F: Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system. Sci Rep. 6(35766)2016.PubMed/NCBI View Article : Google Scholar | |
Mou H, Kennedy Z, Anderson DG, Yin H and Xue W: Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med. 7(53)2015.PubMed/NCBI View Article : Google Scholar | |
Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE, Roy S, Steinfeld I, Lunstad BD, Kaiser RJ, Wilkens AB, et al: Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat Biotechnol. 33:985–989. 2015.PubMed/NCBI View Article : Google Scholar | |
Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y, et al: Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell. 8:811–822. 2017.PubMed/NCBI View Article : Google Scholar | |
Zhang XH, Tee LY, Wang XG, Huang QS and Yang SH: Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol Ther Nucleic Acids. 4(e264)2015.PubMed/NCBI View Article : Google Scholar | |
Lai K, Huang G, Su L and He Y: The prevalence of thalassemia in mainland China: Evidence from epidemiological surveys. Sci Rep. 7(920)2017.PubMed/NCBI View Article : Google Scholar | |
Mondal SK and Mandal S: Prevalence of thalassemia and hemoglobinopathy in eastern India: A 10-year high-performance liquid chromatography study of 119,336 cases. Asian J Transfus Sci. 10:105–110. 2016.PubMed/NCBI View Article : Google Scholar | |
Ansari SH, Shamsi TS, Ashraf M, Bohray M, Farzana T, Tahir Khan M, Perveen K, Erum S, Nadeem M, Ahmed M and Raza F: Molecular epidemiology of β-thalassemia in Pakistan: Far reaching implications. Int J Mol Epidemiol Genet. 2:403–408. 2011.PubMed/NCBI | |
Hammoud H, Ghanem H, Abdallah R, Semaan P, Azzi J, Parra Prada E and Haidar Hassan K: Genetic mutations of beta thalassemia in middle east countries *corresponding aurthor. World J Pharm Pharmaceutical Sci. 9:134–150. 2020. | |
Şanlidağ B, Çağin B, Özenli Ö, Şahaloğlu Ö, Dalkan C, Galip N, Babayiğit Hocaoğlu A and Bahçeciler N: Prevalence of thalassemia trait & Iron deficiency anemia during infancy in 2011-2013 in a thalassemia prevalent region: North Cyprus. Iran J Public Health. 45:1038–1043. 2016.PubMed/NCBI | |
Kountouris P, Kousiappa I, Papasavva T, Christopoulos G, Pavlou E, Petrou M, Feleki X, Karitzie E, Phylactides M Fanis P, et al: The molecular spectrum and distribution of haemoglobinopathies in Cyprus: A 20-year retrospective study. Sci Re. 6(26371)2016.PubMed/NCBI View Article : Google Scholar | |
Angastiniotis M, Vives Corrons JL, Soteriades ES and Eleftheriou A: The impact of migrations on the health services for rare diseases in Europe: The example of haemoglobin disorders. The Scientific World Journal. 2013(727905)2013.PubMed/NCBI View Article : Google Scholar | |
Guler E, Caliskan U, Ucar Albayrak C and Karacan M: Prevalence of beta-thalassemia and sickle cell anemia trait in premarital screening in Konya urban area, Turkey. J Pediatr Hematol. 29:783–785. 2007.PubMed/NCBI View Article : Google Scholar | |
Mir SA, Alshehri BM, Alaidarous M, Banawas SS, Dukhyil AAAB and Alturki MK: Prevalence of Hemoglobinopathies (β-Thalassemia and Sickle Cell Trait) in the adult population of Al Majma'ah, Saudi Arabia. Hemoglobin. 44:47–50. 2020.PubMed/NCBI View Article : Google Scholar | |
Fucharoen S and Weatherall DJ: Progress toward the control and management of the thalassemias. Hematol Oncol Clin North Am. 30:359–371. 2016.PubMed/NCBI View Article : Google Scholar | |
Persons DA: Gene therapy: Targeting β-thalassaemia. Nature. 467:277–278. 2010. | |
Panigrahi I and Marwaha R: Mutational spectrum of thalassemias in India. Indian J Hum Genet. 13:36–37. 2007.PubMed/NCBI View Article : Google Scholar | |
Ansari SH, Shamsi TS, Ashraf M, Farzana T, Bohray M, Perveen K, Erum S, Ansari I, Ahmed MN, Ahmed M and Raza F: Molecular epidemiology of β-thalassemia in Pakistan: Far reaching implications. Indian J Hum Genet. 18:193–197. 2012.PubMed/NCBI View Article : Google Scholar | |
Al-Sultan A, Phanasgaonkar S, Suliman A, Al-Baqushi M, Nasrullah Z and Al-Ali A: Spectrum of β-thalassemia mutations in the eastern province of Saudi Arabia. Hemoglobin. 35:125–134. 2011.PubMed/NCBI View Article : Google Scholar | |
Hamamy HA and Al-Allawi NA: Epidemiological profile of common haemoglobinopathies in Arab countries. J Community Genet. 4:147–167. 2013.PubMed/NCBI View Article : Google Scholar | |
Amato A, Cappabianca MP, Colosimo A, Perri M, Grisanti P, Zaghis I, Ponzini D and Lerone M: Current genetic epidemiology of β-Thalassemias and structural hemoglobin variants in the lazio region (Central Italy) following recent migration movements. Adv Hematol. 2010(317542)2010.PubMed/NCBI View Article : Google Scholar | |
Boussiou M, Karababa P, Sinopoulou K, Tsaftaridis P, Plata E and Loutradi-Anagnostou A: The molecular heterogeneity of beta-thalassemia in Greece. Blood Cells Mol Dis. 40:317–319. 2008.PubMed/NCBI View Article : Google Scholar | |
Sultana G, Begum R, Akhter H, Shamim Z, Rahim MA and Chubey G: The complete spectrum of beta (β) thalassemia mutations in Bangladeshi population. Austin Biomark Diagn. 3(1024)2016. | |
Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen N, Zheng Z and Joung JK: High-fidelity CRISPR-Cas9 variants with undetectable genome-wide off-targets. Nature. 529:490–495. 2016.PubMed/NCBI View Article : Google Scholar | |
Acharya S, Mishra A, Paul D, Ansari AH, Azhar M, Kumar M, Rauthan R, Sharma N, Aich M, Sinha D, et al: Francisella novicida Cas9 interrogates genomic DNA with very high specificity and can be used for mammalian genome editing. Proc Natl Acad Sci USA. 116:20959–20968. 2019.PubMed/NCBI View Article : Google Scholar | |
Lee CM, Cradick TJ and Bao G: The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells. Mol Ther. 24:645–654. 2016.PubMed/NCBI View Article : Google Scholar | |
Müller M, Lee CM, Gasiunas G, Davis TH, Cradick TJ, Siksnys V, Bao G, Cathomen T and Mussolino C: Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol Ther. 24:636–644. 2016.PubMed/NCBI View Article : Google Scholar | |
Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU, Beisel CL and Sharma CM: CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9. Mol Cell. 69:893–905.e7. 2018.PubMed/NCBI View Article : Google Scholar | |
Moon SB, Lee JM, Kang JG, Lee NE, Ha DI, Kim DY, Kim SH, Yoo K, Kim D, Ko JH, et al: Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3'-overhang. Nat Commun. 9(3651)2018.PubMed/NCBI View Article : Google Scholar | |
Yamano T, Zetsche B, Ishitani R, Zhang F, Nishimasu H and Nureki O: Structural basis for the canonical and non-canonical PAM recognition by CRISPR-Cpf1. Mol Cell. 67:633–645.e3. 2017.PubMed/NCBI View Article : Google Scholar |