|
1
|
Lee RC, Feinbaum RL and Ambros V: The C.
Elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar
|
|
2
|
O'Brien J, Hayder H, Zayed Y and Peng C:
Overview of MicroRNA biogenesis, mechanisms of actions, and
circulation. Front Endocrinol (Lausanne). 9(402)2018.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Shenoy A and Blelloch RH: Regulation of
microRNA function in somatic stem cell proliferation and
differentiation. Nat Rev Mol Cell Biol. 15:565–576. 2014.PubMed/NCBI View
Article : Google Scholar
|
|
4
|
Galagali H and Kim JK: The multifaceted
roles of microRNAs in differentiation. Curr Opin Cell Biol.
67:118–140. 2020.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Hutchins ED, Eckalbar WL, Wolter JM,
Mangone M and Kusumi K: Differential expression of conserved and
novel microRNAs during tail regeneration in the lizard Anolis
carolinensis. BMC Genomics. 17(339)2016.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Peng F, Fan H, Li S, Peng C and Pan X:
MicroRNAs in epithelial-mesenchymal transition process of cancer:
Potential targets for chemotherapy. Int J Mol Sci.
22(7526)2021.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Lin Y, Zeng Y, Zhang F, Xue L, Huang Z, Li
W and Guo M: Characterization of microRNA expression profiles and
the discovery of novel microRNAs involved in cancer during human
embryonic development. PLoS One. 8(e69230)2013.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Ambros V and Ruvkun G: Recent molecular
genetic explorations of Caenorhabditis elegans MicroRNAs. Genetics.
209:651–673. 2018.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Chakrabortty A, Patton DJ, Smith BF and
Agarwal P: miRNAs: Potential as biomarkers and therapeutic targets
for cancer. Genes (Basel). 14(1375)2023.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Zhou X, Li X and Wu M: miRNAs reshape
immunity and inflammatory responses in bacterial infection. Signal
Transduct Target Ther. 3(14)2018.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Roy B, Lee E, Li T and Rampersaud M: Role
of miRNAs in neurodegeneration: From disease cause to tools of
biomarker discovery and therapeutics. Genes (Basel).
13(425)2022.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Hu H, Li J and Zhang J: Dysregulation of
CD69 by overexpression of microRNA-367-3p associated with
post-myocardial infarction cardiac fibrosis. Mol Med Rep.
18:3085–3092. 2018.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Sun Y, Gao Y, Sun J, Liu X, Ma D, Ma C and
Wang Y: Expression profile analysis based on DNA microarray for
patients undergoing off-pump coronary artery bypass surgery. Exp
Ther Med. 11:864–872. 2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Ho PTB, Clark IM and Le LTT:
MicroRNA-based diagnosis and therapy. Int J Mol Sci.
23(7167)2022.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Matias-Garcia PR, Wilson R, Mussack V,
Reischl E, Waldenberger M, Gieger C, Anton G, Peters A and
Kuehn-Steven A: Impact of long-term storage and freeze-thawing on
eight circulating microRNAs in plasma samples. PLoS One.
15(e0227648)2020.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Glinge C, Clauss S, Boddum K, Jabbari R,
Jabbari J, Risgaard B, Tomsits P, Hildebrand B, Kääb S, Wakili R,
et al: Stability of circulating blood-based MicroRNAs-pre-analytic
methodological considerations. PLoS One.
12(e0167969)2017.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Liu J, Wang Y, Ji P and Jin X: Application
of the microRNA-302/367 cluster in cancer therapy. Cancer Sci.
111:1065–1075. 2020.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Gao Z, Zhu X and Dou Y: The miR-302/367
cluster: A comprehensive update on its evolution and functions.
Open Biol. 5(150138)2015.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Guo M, Gan L, Si J, Zhang J, Liu Z, Zhao
J, Gou Z and Zhang H: Role of miR-302/367 cluster in human
physiology and pathophysiology. Acta Biochim Biophys Sin
(Shanghai). 52:791–800. 2020.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Kuo CH, Deng JH, Deng Q and Ying SY: A
novel role of miR-302/367 in reprogramming. Biochem Biophys Res
Commun. 417:11–16. 2012.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Pidíkova P, Reis R and Herichova I: miRNA
clusters with down-regulated expression in human colorectal cancer
and their regulation. Int J Mol Sci. 21(4633)2020.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Ha M and Kim VN: Regulation of microRNA
biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014.
|
|
23
|
de Rie D, Abugessaisa I, Alam T, Arner E,
Arner P, Ashoor H, Åström G, Babina M, Bertin N, Burroughs AM, et
al: An integrated expression atlas of miRNAs and their promoters in
human and mouse. Nat Biotechnol. 35:872–878. 2017.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Macfarlane LA and Murphy PR: MicroRNA:
Biogenesis, function and role in cancer. Curr Genomics. 11:537–561.
2010.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Filippov V, Solovyev V, Filippova M and
Gill SS: A novel type of RNase III family proteins in eukaryotes.
Gene. 245:213–221. 2000.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Wahid F, Shehzad A, Khan T and Kim YY:
MicroRNAs: Synthesis, mechanism, function, and recent clinical
trials. Biochim Biophys Acta. 1803:1231–1243. 2010.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J,
Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase
III Drosha initiates microRNA processing. Nature. 425:415–419.
2003.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Bohnsack MT, Czaplinski K and Gorlich D:
Exportin 5 is a RanGTP-dependent dsRNA-binding protein that
mediates nuclear export of pre-miRNAs. RNA. 10:185–191.
2004.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Jonas S and Izaurralde E: Towards a
molecular understanding of microRNA-mediated gene silencing. Nat
Rev Genet. 16:421–433. 2015.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Yang B, Wang YW, Qian LH, Xu Y, Chen X,
Chen YD, Liu C, Tian YR and Zhang K: Downregulated miR-367-3p,
miR-548aq-5p, and miR-4710 in human whole blood: Potential
biomarkers for breast cancer with axillary lymph node metastasis.
Clin Breast Cancer. 23:189–198. 2023.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Liu B, Pan J and Fu C: Correlation of
microRNA-367 in the clinicopathologic features and prognosis of
breast cancer patients. Medicine (Baltimore).
100(e26103)2021.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Raikundalia S, Sa'Dom SAFM, Few LL and See
Too WCS: MicroRNA-367-3p induces apoptosis and suppresses migration
of MCF-7 cells by downregulating the expression of human choline
kinase α. Oncol Lett. 21(183)2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Bin Z, Dedong H, Xiangjie F, Hongwei X and
Qinghui Y: The microRNA-367 inhibits the invasion and metastasis of
gastric cancer by directly repressing Rab23. Genet Test Mol
Biomarkers. 19:69–74. 2015.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Tao Y, Wan X, Fan Q, Wang Y, Sun H, Ma L,
Sun C and Wu Y: Long non-coding RNA OIP5-AS1 promotes the growth of
gastric cancer through the miR-367-3p/HMGA2 axis. Dig Liver Dis.
52:773–779. 2020.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Du W, Li D, Xie J and Tang P: miR-367-3p
downregulates Rab23 expression and inhibits Hedgehog signaling
resulting in the inhibition of the proliferation, migration, and
invasion of prostate cancer cells. Oncol Rep.
46(192)2021.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249.
2021.PubMed/NCBI View Article : Google Scholar
|
|
37
|
O'Bryan S, Dong S, Mathis JM and Alahari
SK: The roles of oncogenic miRNAs and their therapeutic importance
in breast cancer. Eur J Cancer. 72:1–11. 2017.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Pan B, Liu B, Pan J, Xin J and Fu C:
MicroRNA-367 inhibits breast cancer and promotes apoptosis by
targeting AT-rich interactive domain-containing protein 1B. J
Biomater Tissue Eng. 12:717–723. 2022.
|
|
39
|
Wu JL, Tseng HS, Yang LH, Wu HK, Kuo SJ,
Chen ST and Chen DR: Prediction of axillary lymph node metastases
in breast cancer patients based on pathologic information of the
primary tumor. Med Sci Monit. 20:577–581. 2014.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Necula L, Matei L, Dragu D, Neagu AI,
Mambet C, Nedeianu S, Bleotu C, Diaconu CC and Chivu-Economescu M:
Recent advances in gastric cancer early diagnosis. World J
Gastroenterol. 25:2029–2044. 2019.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Ishiguro H, Kimura M and Takeyama H: Role
of microRNAs in gastric cancer. World J Gastroenterol.
20:5694–5699. 2014.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Liu H, Liu Y, Bian Z, Zhang J, Zhang R,
Chen X, Huang Y, Wang Y and Zhu J: Circular RNA YAP1 inhibits the
proliferation and invasion of gastric cancer cells by regulating
the miR-367-5p/p27Kip1 axis. Mol Cancer.
17(151)2018.
|
|
43
|
Jing Y, Zhang L, Zhang Y, Wei GJ, Yang HJ
and Huang LZ: miR-367-3p enhanced gastric cancer progression by
targeting Smad7 to regulate the transforming growth factor-1/Smad3
pathway. Res Sq, 2020. DOI: https://doi.org/10.21203/rs.2.24158/v1.
|
|
44
|
Siegel RL, Miller KD, Fuchs HE and Jemal
A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33.
2021.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Ali HEA, Gaballah MSA, Gaballa R, Mahgoub
S, Hassan ZA, Toraih EA, Drake BF and Abd Elmageed ZY: Small
extracellular vesicle-derived microRNAs stratify prostate cancer
patients according to gleason score, race and associate with
survival of African American and Caucasian men. Cancers (Basel).
13(5236)2021.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Guo Y, Cui J, Ji Z, Cheng C, Zhang K,
Zhang C, Chu M, Zhao Q, Yu Z, Zhang Y, et al: miR-302/367/LATS2/YAP
pathway is essential for prostate tumor-propagating cells and
promotes the development of castration resistance. Oncogene.
36:6336–6347. 2017.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Zenner ML, Baumann B and Nonn L: Oncogenic
and tumor-suppressive microRNAs in prostate cancer. Curr Opin
Endocr Metab Res. 10:50–59. 2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Zhang W, Yu F, Wang Y, Zhang Y, Meng L and
Chi Y: Rab23 promotes the cisplatin resistance of ovarian cancer
via the Shh-Gli-ABCG2 signaling pathway. Oncol Lett. 15:5155–5160.
2018.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Kaid C, Jordan D, Bueno HMDS, Araujo BHS,
Assoni A and Okamoto OK: miR-367 as a therapeutic target in
stem-like cells from embryonal central nervous system tumors. Mol
Oncol. 13:2574–2587. 2019.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Hosseinpour-Soleimani F, Khamisipour G,
Derakhshan Z and Ahmadi B: Expression analysis of circulating
miR-22, miR-122, miR-217 and miR-367 as promising biomarkers of
acute lymphoblastic leukemia. Mol Biol Rep. 50:255–265.
2023.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Ma J, Li D, Kong FF, Yang D, Yang H and Ma
XX: miR-302a-5p/367-3p-HMGA2 axis regulates malignant processes
during endometrial cancer development. J Exp Clin Cancer Res.
37(19)2018.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Long J, Luo J and Yin X: miR-367 enhances
the proliferation and invasion of cutaneous malignant melanoma by
regulating phosphatase and tensin homolog expression. Mol Med Rep.
17:6526–6532. 2018.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Yu Q, Luo J, Zhang J, Chen Y, Chen K, Lin
J, Sun S and Lin X: Oxymatrine inhibits the development of
non-small cell lung cancer through miR-367-3p upregulation and
target gene SGK3 downregulation. Am J Transl Res. 12:5538–5550.
2020.PubMed/NCBI
|
|
54
|
Yuan B, Shen H, Lin L, Su T, Zhong L and
Yang Z: MicroRNA367 negatively regulates the inflammatory response
of microglia by targeting IRAK4 in intracerebral hemorrhage. J
Neuroinflammation. 12(206)2015.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Pernaute B, Spruce T, Smith KM,
Sánchez-Nieto JM, Manzanares M, Cobb B and Rodríguez TA: MicroRNAs
control the apoptotic threshold in primed pluripotent stem cells
through regulation of BIM. Genes Dev. 28:1873–1878. 2014.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Yang SL, Yang M, Herrlinger S, Liang C,
Lai F and Chen JF: MiR-302/367 regulate neural progenitor
proliferation, differentiation timing, and survival in neurulation.
Dev Biol. 408:140–150. 2015.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Li DD, Liu Y, Xue L, Su DY and Pang WY:
Up-regulation of microRNA-367 promotes liver steatosis through
repressing TBL1 in obese mice. Eur Rev Med Pharmacol Sci.
21:1598–1603. 2017.PubMed/NCBI
|
|
58
|
Cao Y and Cui L: Identifying the key
microRNAs implicated in atrial fibrillation. Anatol J Cardiol.
25:429–436. 2021.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Xie M, Li Z, Li X, Ai L, Jin M, Jia N,
Yang Y, Li W, Xue F, Zhang M and Yu Q: Identifying crucial
biomarkers in peripheral blood of schizophrenia and screening
therapeutic agents by comprehensive bioinformatics analysis. J
Psychiatr Res. 152:86–96. 2022.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Svenningsen K, Venø MT, Henningsen K,
Mallien AS, Jensen L, Christensen T, Kjems J, Vollmayr B and Wiborg
O: MicroRNA profiling in the medial and lateral habenula of rats
exposed to the learned helplessness paradigm: Candidate biomarkers
for susceptibility and resilience to inescapable shock. PLoS One.
11(e0160318)2016.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Zhang H, Xue L, Lv Y, Yu X, Zheng Y, Miao
Z and Ding H: Integrated microarray analysis of key genes and a
miRNA-mRNA regulatory network of early-onset preeclampsia. Mol Med
Rep. 22:4772–4782. 2020.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Pei H, Peng Q, Guo S, Gu Y, Sun T, Xu D,
Jiang Y, Xie J, Zhang L and Zhu Z: MiR-367 alleviates inflammatory
injury of microglia by promoting M2 polarization via targeting
CEBPA. In Vitro Cell Dev Biol Anim. 56:878–887. 2020.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Jayaraj RL, Azimullah S, Beiram R, Jalal
FY and Rosenberg GA: Neuroinflammation: Friend and foe for ischemic
stroke. J Neuroinflammation. 16(142)2019.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Todoran R, Falcione SR, Clarke M, Joy T,
Boghozian R and Jickling GC: MicroRNA as a therapeutic for ischemic
stroke. Neurochem Int. 163(105487)2023.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Tabet F, Lee S, Zhu W, Levin MG, Toth CL,
Cuesta Torres LF, Vinh A, Kim HA, Chu HX, Evans MA, et al:
microRNA-367-3p regulation of GPRC5A is suppressed in ischemic
stroke. J Cereb Blood Flow Metab. 40:1300–1315. 2020.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Xu W, Gao L, Zheng J, Li T, Shao A, Reis
C, Chen S and Zhang J: The roles of MicroRNAs in stroke: Possible
therapeutic targets. Cell Transplant. 27:1778–1788. 2018.PubMed/NCBI View Article : Google Scholar
|
|
67
|
de Lemos JA, Newby LK and Mills NL: A
proposal for modest revision of the definition of type 1 and type 2
myocardial infarction. Circulation. 140:1773–1775. 2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Wang B, Zhang Y, Fang S and Wang H: Role
of circRNA circ_0000080 in myocardial hypoxia injury.
Bioengineered. 13:10902–10913. 2022.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Mukhopadhyay P, Seelan RS, Greene RM and
Pisano MM: MicroRNA-mediated regulation of BMP signaling in the
developing neural tube. Microrna. 12:63–81. 2023.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Mukhopadhyay P, Greene RM and Pisano MM:
MicroRNA targeting of the non-canonical planar cell polarity
pathway in the developing neural tube. Cell Biochem Funct.
38:905–920. 2020.PubMed/NCBI View Article : Google Scholar
|
|
71
|
Harada M, Melka J, Sobue Y and Nattel S:
Metabolic considerations in atrial fibrillation-mechanistic
insights and therapeutic opportunities. Circ J. 81:1749–1757.
2017.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Roth GA, Mensah GA, Johnson CO, Addolorato
G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ,
Benziger CP, et al: Global burden of cardiovascular diseases and
risk factors, 1990-2019: Update from the GBD 2019 study. J Am Coll
Cardiol. 76:2982–3021. 2020.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Zulkifly H, Lip GYH and Lane DA:
Epidemiology of atrial fibrillation. Int J Clin Pract.
72(e13070)2018.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Lv X, Li J, Hu Y, Wang S, Yang C, Li C and
Zhong G: Overexpression of miR-27b-3p targeting Wnt3a regulates the
signaling pathway of Wnt/β-catenin and attenuates atrial fibrosis
in rats with atrial fibrillation. Oxid Med Cell Longev.
2019(5703764)2019.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Reilly SN, Liu X, Carnicer R, Recalde A,
Muszkiewicz A, Jayaram R, Carena MC, Wijesurendra R, Stefanini M,
Surdo NC, et al: Up-regulation of miR-31 in human atrial
fibrillation begets the arrhythmia by depleting dystrophin and
neuronal nitric oxide synthase. Sci Transl Med.
8(340ra74)2016.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Liu Z, Zhou C, Liu Y, Wang S, Ye P, Miao X
and Xia J: The expression levels of plasma micoRNAs in atrial
fibrillation patients. PLoS One. 7(e44906)2012.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Menezes Junior ADS, Ferreira LC, Barbosa
LJV, Silva DME, Saddi VA and Silva AMTC: Circulating MicroRNAs as
specific biomarkers in atrial fibrillation: A meta-analysis.
Noncoding RNA. 9(13)2023.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Berk BC, Fujiwara K and Lehoux S: ECM
remodeling in hypertensive heart disease. J Clin Invest.
117:568–575. 2007.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Worthley SG, Osende JI, Helft G, Badimon
JJ and Fuster V: Coronary artery disease: Pathogenesis and acute
coronary syndromes. Mt Sinai J Med. 68:167–181. 2001.PubMed/NCBI
|
|
80
|
Nalysnyk L, Fahrbach K, Reynolds MW, Zhao
SZ and Ross S: Adverse events in coronary artery bypass graft
(CABG) trials: A systematic review and analysis. Heart. 89:767–772.
2003.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Kim NY, Shim JK, Bang SO, Sim JS, Song JW
and Kwak YL: Effects of ulinastatin on coagulation in high-risk
patients undergoing off-pump coronary artery bypass graft surgery.
Korean J Anesthesiol. 64:105–111. 2013.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Rosas Plaza X, van Agthoven T, Meijer C,
van Vugt MATM, de Jong S, Gietema JA and Looijenga LHJ:
miR-371a-3p, miR-373-3p and miR-367-3p as serum biomarkers in
metastatic testicular germ cell cancers before, during and after
chemotherapy. Cells. 8(1221)2019.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Syring I, Bartels J, Holdenrieder S,
Kristiansen G, Müller SC and Ellinger J: Circulating serum miRNA
(miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers
in patients with testicular germ cell cancer. J Urol. 193:331–337.
2015.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Rezania MA, Eghtedari A, Taha MF, Ardekani
AM and Javeri A: A novel role for aspirin in enhancing the
reprogramming function of miR-302/367 cluster and breast tumor
suppression. J Cell Biochem. 123:1077–1090. 2022.PubMed/NCBI View Article : Google Scholar
|