Dysregulated expression of miR‑367 in disease development and its prospects as a therapeutic target and diagnostic biomarker (Review)
- Authors:
- Shaleniprieya Muniandy
- Ling Ling Few
- Boon Yin Khoo
- Siti Asma' Hassan
- Get Bee Yvonne-Τee
- Wei Cun See Too
-
Affiliations: School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia, Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia - Published online on: October 10, 2023 https://doi.org/10.3892/br.2023.1673
- Article Number: 91
This article is mentioned in:
Abstract
![]() |
Lee RC, Feinbaum RL and Ambros V: The C. Elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 75:843–854. 1993.PubMed/NCBI View Article : Google Scholar | |
O'Brien J, Hayder H, Zayed Y and Peng C: Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9(402)2018.PubMed/NCBI View Article : Google Scholar | |
Shenoy A and Blelloch RH: Regulation of microRNA function in somatic stem cell proliferation and differentiation. Nat Rev Mol Cell Biol. 15:565–576. 2014.PubMed/NCBI View Article : Google Scholar | |
Galagali H and Kim JK: The multifaceted roles of microRNAs in differentiation. Curr Opin Cell Biol. 67:118–140. 2020.PubMed/NCBI View Article : Google Scholar | |
Hutchins ED, Eckalbar WL, Wolter JM, Mangone M and Kusumi K: Differential expression of conserved and novel microRNAs during tail regeneration in the lizard Anolis carolinensis. BMC Genomics. 17(339)2016.PubMed/NCBI View Article : Google Scholar | |
Peng F, Fan H, Li S, Peng C and Pan X: MicroRNAs in epithelial-mesenchymal transition process of cancer: Potential targets for chemotherapy. Int J Mol Sci. 22(7526)2021.PubMed/NCBI View Article : Google Scholar | |
Lin Y, Zeng Y, Zhang F, Xue L, Huang Z, Li W and Guo M: Characterization of microRNA expression profiles and the discovery of novel microRNAs involved in cancer during human embryonic development. PLoS One. 8(e69230)2013.PubMed/NCBI View Article : Google Scholar | |
Ambros V and Ruvkun G: Recent molecular genetic explorations of Caenorhabditis elegans MicroRNAs. Genetics. 209:651–673. 2018.PubMed/NCBI View Article : Google Scholar | |
Chakrabortty A, Patton DJ, Smith BF and Agarwal P: miRNAs: Potential as biomarkers and therapeutic targets for cancer. Genes (Basel). 14(1375)2023.PubMed/NCBI View Article : Google Scholar | |
Zhou X, Li X and Wu M: miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther. 3(14)2018.PubMed/NCBI View Article : Google Scholar | |
Roy B, Lee E, Li T and Rampersaud M: Role of miRNAs in neurodegeneration: From disease cause to tools of biomarker discovery and therapeutics. Genes (Basel). 13(425)2022.PubMed/NCBI View Article : Google Scholar | |
Hu H, Li J and Zhang J: Dysregulation of CD69 by overexpression of microRNA-367-3p associated with post-myocardial infarction cardiac fibrosis. Mol Med Rep. 18:3085–3092. 2018.PubMed/NCBI View Article : Google Scholar | |
Sun Y, Gao Y, Sun J, Liu X, Ma D, Ma C and Wang Y: Expression profile analysis based on DNA microarray for patients undergoing off-pump coronary artery bypass surgery. Exp Ther Med. 11:864–872. 2016.PubMed/NCBI View Article : Google Scholar | |
Ho PTB, Clark IM and Le LTT: MicroRNA-based diagnosis and therapy. Int J Mol Sci. 23(7167)2022.PubMed/NCBI View Article : Google Scholar | |
Matias-Garcia PR, Wilson R, Mussack V, Reischl E, Waldenberger M, Gieger C, Anton G, Peters A and Kuehn-Steven A: Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One. 15(e0227648)2020.PubMed/NCBI View Article : Google Scholar | |
Glinge C, Clauss S, Boddum K, Jabbari R, Jabbari J, Risgaard B, Tomsits P, Hildebrand B, Kääb S, Wakili R, et al: Stability of circulating blood-based MicroRNAs-pre-analytic methodological considerations. PLoS One. 12(e0167969)2017.PubMed/NCBI View Article : Google Scholar | |
Liu J, Wang Y, Ji P and Jin X: Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci. 111:1065–1075. 2020.PubMed/NCBI View Article : Google Scholar | |
Gao Z, Zhu X and Dou Y: The miR-302/367 cluster: A comprehensive update on its evolution and functions. Open Biol. 5(150138)2015.PubMed/NCBI View Article : Google Scholar | |
Guo M, Gan L, Si J, Zhang J, Liu Z, Zhao J, Gou Z and Zhang H: Role of miR-302/367 cluster in human physiology and pathophysiology. Acta Biochim Biophys Sin (Shanghai). 52:791–800. 2020.PubMed/NCBI View Article : Google Scholar | |
Kuo CH, Deng JH, Deng Q and Ying SY: A novel role of miR-302/367 in reprogramming. Biochem Biophys Res Commun. 417:11–16. 2012.PubMed/NCBI View Article : Google Scholar | |
Pidíkova P, Reis R and Herichova I: miRNA clusters with down-regulated expression in human colorectal cancer and their regulation. Int J Mol Sci. 21(4633)2020.PubMed/NCBI View Article : Google Scholar | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 15:509–524. 2014. | |
de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, Åström G, Babina M, Bertin N, Burroughs AM, et al: An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol. 35:872–878. 2017.PubMed/NCBI View Article : Google Scholar | |
Macfarlane LA and Murphy PR: MicroRNA: Biogenesis, function and role in cancer. Curr Genomics. 11:537–561. 2010.PubMed/NCBI View Article : Google Scholar | |
Filippov V, Solovyev V, Filippova M and Gill SS: A novel type of RNase III family proteins in eukaryotes. Gene. 245:213–221. 2000.PubMed/NCBI View Article : Google Scholar | |
Wahid F, Shehzad A, Khan T and Kim YY: MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochim Biophys Acta. 1803:1231–1243. 2010.PubMed/NCBI View Article : Google Scholar | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003.PubMed/NCBI View Article : Google Scholar | |
Bohnsack MT, Czaplinski K and Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA. 10:185–191. 2004.PubMed/NCBI View Article : Google Scholar | |
Jonas S and Izaurralde E: Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 16:421–433. 2015.PubMed/NCBI View Article : Google Scholar | |
Yang B, Wang YW, Qian LH, Xu Y, Chen X, Chen YD, Liu C, Tian YR and Zhang K: Downregulated miR-367-3p, miR-548aq-5p, and miR-4710 in human whole blood: Potential biomarkers for breast cancer with axillary lymph node metastasis. Clin Breast Cancer. 23:189–198. 2023.PubMed/NCBI View Article : Google Scholar | |
Liu B, Pan J and Fu C: Correlation of microRNA-367 in the clinicopathologic features and prognosis of breast cancer patients. Medicine (Baltimore). 100(e26103)2021.PubMed/NCBI View Article : Google Scholar | |
Raikundalia S, Sa'Dom SAFM, Few LL and See Too WCS: MicroRNA-367-3p induces apoptosis and suppresses migration of MCF-7 cells by downregulating the expression of human choline kinase α. Oncol Lett. 21(183)2021.PubMed/NCBI View Article : Google Scholar | |
Bin Z, Dedong H, Xiangjie F, Hongwei X and Qinghui Y: The microRNA-367 inhibits the invasion and metastasis of gastric cancer by directly repressing Rab23. Genet Test Mol Biomarkers. 19:69–74. 2015.PubMed/NCBI View Article : Google Scholar | |
Tao Y, Wan X, Fan Q, Wang Y, Sun H, Ma L, Sun C and Wu Y: Long non-coding RNA OIP5-AS1 promotes the growth of gastric cancer through the miR-367-3p/HMGA2 axis. Dig Liver Dis. 52:773–779. 2020.PubMed/NCBI View Article : Google Scholar | |
Du W, Li D, Xie J and Tang P: miR-367-3p downregulates Rab23 expression and inhibits Hedgehog signaling resulting in the inhibition of the proliferation, migration, and invasion of prostate cancer cells. Oncol Rep. 46(192)2021.PubMed/NCBI View Article : Google Scholar | |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.PubMed/NCBI View Article : Google Scholar | |
O'Bryan S, Dong S, Mathis JM and Alahari SK: The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. Eur J Cancer. 72:1–11. 2017.PubMed/NCBI View Article : Google Scholar | |
Pan B, Liu B, Pan J, Xin J and Fu C: MicroRNA-367 inhibits breast cancer and promotes apoptosis by targeting AT-rich interactive domain-containing protein 1B. J Biomater Tissue Eng. 12:717–723. 2022. | |
Wu JL, Tseng HS, Yang LH, Wu HK, Kuo SJ, Chen ST and Chen DR: Prediction of axillary lymph node metastases in breast cancer patients based on pathologic information of the primary tumor. Med Sci Monit. 20:577–581. 2014.PubMed/NCBI View Article : Google Scholar | |
Necula L, Matei L, Dragu D, Neagu AI, Mambet C, Nedeianu S, Bleotu C, Diaconu CC and Chivu-Economescu M: Recent advances in gastric cancer early diagnosis. World J Gastroenterol. 25:2029–2044. 2019.PubMed/NCBI View Article : Google Scholar | |
Ishiguro H, Kimura M and Takeyama H: Role of microRNAs in gastric cancer. World J Gastroenterol. 20:5694–5699. 2014.PubMed/NCBI View Article : Google Scholar | |
Liu H, Liu Y, Bian Z, Zhang J, Zhang R, Chen X, Huang Y, Wang Y and Zhu J: Circular RNA YAP1 inhibits the proliferation and invasion of gastric cancer cells by regulating the miR-367-5p/p27Kip1 axis. Mol Cancer. 17(151)2018. | |
Jing Y, Zhang L, Zhang Y, Wei GJ, Yang HJ and Huang LZ: miR-367-3p enhanced gastric cancer progression by targeting Smad7 to regulate the transforming growth factor-1/Smad3 pathway. Res Sq, 2020. DOI: https://doi.org/10.21203/rs.2.24158/v1. | |
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2021. CA Cancer J Clin. 71:7–33. 2021.PubMed/NCBI View Article : Google Scholar | |
Ali HEA, Gaballah MSA, Gaballa R, Mahgoub S, Hassan ZA, Toraih EA, Drake BF and Abd Elmageed ZY: Small extracellular vesicle-derived microRNAs stratify prostate cancer patients according to gleason score, race and associate with survival of African American and Caucasian men. Cancers (Basel). 13(5236)2021.PubMed/NCBI View Article : Google Scholar | |
Guo Y, Cui J, Ji Z, Cheng C, Zhang K, Zhang C, Chu M, Zhao Q, Yu Z, Zhang Y, et al: miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance. Oncogene. 36:6336–6347. 2017.PubMed/NCBI View Article : Google Scholar | |
Zenner ML, Baumann B and Nonn L: Oncogenic and tumor-suppressive microRNAs in prostate cancer. Curr Opin Endocr Metab Res. 10:50–59. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Yu F, Wang Y, Zhang Y, Meng L and Chi Y: Rab23 promotes the cisplatin resistance of ovarian cancer via the Shh-Gli-ABCG2 signaling pathway. Oncol Lett. 15:5155–5160. 2018.PubMed/NCBI View Article : Google Scholar | |
Kaid C, Jordan D, Bueno HMDS, Araujo BHS, Assoni A and Okamoto OK: miR-367 as a therapeutic target in stem-like cells from embryonal central nervous system tumors. Mol Oncol. 13:2574–2587. 2019.PubMed/NCBI View Article : Google Scholar | |
Hosseinpour-Soleimani F, Khamisipour G, Derakhshan Z and Ahmadi B: Expression analysis of circulating miR-22, miR-122, miR-217 and miR-367 as promising biomarkers of acute lymphoblastic leukemia. Mol Biol Rep. 50:255–265. 2023.PubMed/NCBI View Article : Google Scholar | |
Ma J, Li D, Kong FF, Yang D, Yang H and Ma XX: miR-302a-5p/367-3p-HMGA2 axis regulates malignant processes during endometrial cancer development. J Exp Clin Cancer Res. 37(19)2018.PubMed/NCBI View Article : Google Scholar | |
Long J, Luo J and Yin X: miR-367 enhances the proliferation and invasion of cutaneous malignant melanoma by regulating phosphatase and tensin homolog expression. Mol Med Rep. 17:6526–6532. 2018.PubMed/NCBI View Article : Google Scholar | |
Yu Q, Luo J, Zhang J, Chen Y, Chen K, Lin J, Sun S and Lin X: Oxymatrine inhibits the development of non-small cell lung cancer through miR-367-3p upregulation and target gene SGK3 downregulation. Am J Transl Res. 12:5538–5550. 2020.PubMed/NCBI | |
Yuan B, Shen H, Lin L, Su T, Zhong L and Yang Z: MicroRNA367 negatively regulates the inflammatory response of microglia by targeting IRAK4 in intracerebral hemorrhage. J Neuroinflammation. 12(206)2015.PubMed/NCBI View Article : Google Scholar | |
Pernaute B, Spruce T, Smith KM, Sánchez-Nieto JM, Manzanares M, Cobb B and Rodríguez TA: MicroRNAs control the apoptotic threshold in primed pluripotent stem cells through regulation of BIM. Genes Dev. 28:1873–1878. 2014.PubMed/NCBI View Article : Google Scholar | |
Yang SL, Yang M, Herrlinger S, Liang C, Lai F and Chen JF: MiR-302/367 regulate neural progenitor proliferation, differentiation timing, and survival in neurulation. Dev Biol. 408:140–150. 2015.PubMed/NCBI View Article : Google Scholar | |
Li DD, Liu Y, Xue L, Su DY and Pang WY: Up-regulation of microRNA-367 promotes liver steatosis through repressing TBL1 in obese mice. Eur Rev Med Pharmacol Sci. 21:1598–1603. 2017.PubMed/NCBI | |
Cao Y and Cui L: Identifying the key microRNAs implicated in atrial fibrillation. Anatol J Cardiol. 25:429–436. 2021.PubMed/NCBI View Article : Google Scholar | |
Xie M, Li Z, Li X, Ai L, Jin M, Jia N, Yang Y, Li W, Xue F, Zhang M and Yu Q: Identifying crucial biomarkers in peripheral blood of schizophrenia and screening therapeutic agents by comprehensive bioinformatics analysis. J Psychiatr Res. 152:86–96. 2022.PubMed/NCBI View Article : Google Scholar | |
Svenningsen K, Venø MT, Henningsen K, Mallien AS, Jensen L, Christensen T, Kjems J, Vollmayr B and Wiborg O: MicroRNA profiling in the medial and lateral habenula of rats exposed to the learned helplessness paradigm: Candidate biomarkers for susceptibility and resilience to inescapable shock. PLoS One. 11(e0160318)2016.PubMed/NCBI View Article : Google Scholar | |
Zhang H, Xue L, Lv Y, Yu X, Zheng Y, Miao Z and Ding H: Integrated microarray analysis of key genes and a miRNA-mRNA regulatory network of early-onset preeclampsia. Mol Med Rep. 22:4772–4782. 2020.PubMed/NCBI View Article : Google Scholar | |
Pei H, Peng Q, Guo S, Gu Y, Sun T, Xu D, Jiang Y, Xie J, Zhang L and Zhu Z: MiR-367 alleviates inflammatory injury of microglia by promoting M2 polarization via targeting CEBPA. In Vitro Cell Dev Biol Anim. 56:878–887. 2020.PubMed/NCBI View Article : Google Scholar | |
Jayaraj RL, Azimullah S, Beiram R, Jalal FY and Rosenberg GA: Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation. 16(142)2019.PubMed/NCBI View Article : Google Scholar | |
Todoran R, Falcione SR, Clarke M, Joy T, Boghozian R and Jickling GC: MicroRNA as a therapeutic for ischemic stroke. Neurochem Int. 163(105487)2023.PubMed/NCBI View Article : Google Scholar | |
Tabet F, Lee S, Zhu W, Levin MG, Toth CL, Cuesta Torres LF, Vinh A, Kim HA, Chu HX, Evans MA, et al: microRNA-367-3p regulation of GPRC5A is suppressed in ischemic stroke. J Cereb Blood Flow Metab. 40:1300–1315. 2020.PubMed/NCBI View Article : Google Scholar | |
Xu W, Gao L, Zheng J, Li T, Shao A, Reis C, Chen S and Zhang J: The roles of MicroRNAs in stroke: Possible therapeutic targets. Cell Transplant. 27:1778–1788. 2018.PubMed/NCBI View Article : Google Scholar | |
de Lemos JA, Newby LK and Mills NL: A proposal for modest revision of the definition of type 1 and type 2 myocardial infarction. Circulation. 140:1773–1775. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang B, Zhang Y, Fang S and Wang H: Role of circRNA circ_0000080 in myocardial hypoxia injury. Bioengineered. 13:10902–10913. 2022.PubMed/NCBI View Article : Google Scholar | |
Mukhopadhyay P, Seelan RS, Greene RM and Pisano MM: MicroRNA-mediated regulation of BMP signaling in the developing neural tube. Microrna. 12:63–81. 2023.PubMed/NCBI View Article : Google Scholar | |
Mukhopadhyay P, Greene RM and Pisano MM: MicroRNA targeting of the non-canonical planar cell polarity pathway in the developing neural tube. Cell Biochem Funct. 38:905–920. 2020.PubMed/NCBI View Article : Google Scholar | |
Harada M, Melka J, Sobue Y and Nattel S: Metabolic considerations in atrial fibrillation-mechanistic insights and therapeutic opportunities. Circ J. 81:1749–1757. 2017.PubMed/NCBI View Article : Google Scholar | |
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al: Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study. J Am Coll Cardiol. 76:2982–3021. 2020.PubMed/NCBI View Article : Google Scholar | |
Zulkifly H, Lip GYH and Lane DA: Epidemiology of atrial fibrillation. Int J Clin Pract. 72(e13070)2018.PubMed/NCBI View Article : Google Scholar | |
Lv X, Li J, Hu Y, Wang S, Yang C, Li C and Zhong G: Overexpression of miR-27b-3p targeting Wnt3a regulates the signaling pathway of Wnt/β-catenin and attenuates atrial fibrosis in rats with atrial fibrillation. Oxid Med Cell Longev. 2019(5703764)2019.PubMed/NCBI View Article : Google Scholar | |
Reilly SN, Liu X, Carnicer R, Recalde A, Muszkiewicz A, Jayaram R, Carena MC, Wijesurendra R, Stefanini M, Surdo NC, et al: Up-regulation of miR-31 in human atrial fibrillation begets the arrhythmia by depleting dystrophin and neuronal nitric oxide synthase. Sci Transl Med. 8(340ra74)2016.PubMed/NCBI View Article : Google Scholar | |
Liu Z, Zhou C, Liu Y, Wang S, Ye P, Miao X and Xia J: The expression levels of plasma micoRNAs in atrial fibrillation patients. PLoS One. 7(e44906)2012.PubMed/NCBI View Article : Google Scholar | |
Menezes Junior ADS, Ferreira LC, Barbosa LJV, Silva DME, Saddi VA and Silva AMTC: Circulating MicroRNAs as specific biomarkers in atrial fibrillation: A meta-analysis. Noncoding RNA. 9(13)2023.PubMed/NCBI View Article : Google Scholar | |
Berk BC, Fujiwara K and Lehoux S: ECM remodeling in hypertensive heart disease. J Clin Invest. 117:568–575. 2007.PubMed/NCBI View Article : Google Scholar | |
Worthley SG, Osende JI, Helft G, Badimon JJ and Fuster V: Coronary artery disease: Pathogenesis and acute coronary syndromes. Mt Sinai J Med. 68:167–181. 2001.PubMed/NCBI | |
Nalysnyk L, Fahrbach K, Reynolds MW, Zhao SZ and Ross S: Adverse events in coronary artery bypass graft (CABG) trials: A systematic review and analysis. Heart. 89:767–772. 2003.PubMed/NCBI View Article : Google Scholar | |
Kim NY, Shim JK, Bang SO, Sim JS, Song JW and Kwak YL: Effects of ulinastatin on coagulation in high-risk patients undergoing off-pump coronary artery bypass graft surgery. Korean J Anesthesiol. 64:105–111. 2013.PubMed/NCBI View Article : Google Scholar | |
Rosas Plaza X, van Agthoven T, Meijer C, van Vugt MATM, de Jong S, Gietema JA and Looijenga LHJ: miR-371a-3p, miR-373-3p and miR-367-3p as serum biomarkers in metastatic testicular germ cell cancers before, during and after chemotherapy. Cells. 8(1221)2019.PubMed/NCBI View Article : Google Scholar | |
Syring I, Bartels J, Holdenrieder S, Kristiansen G, Müller SC and Ellinger J: Circulating serum miRNA (miR-367-3p, miR-371a-3p, miR-372-3p and miR-373-3p) as biomarkers in patients with testicular germ cell cancer. J Urol. 193:331–337. 2015.PubMed/NCBI View Article : Google Scholar | |
Rezania MA, Eghtedari A, Taha MF, Ardekani AM and Javeri A: A novel role for aspirin in enhancing the reprogramming function of miR-302/367 cluster and breast tumor suppression. J Cell Biochem. 123:1077–1090. 2022.PubMed/NCBI View Article : Google Scholar |