|
1
|
Podgornaya OI: Nuclear organization by
satellite DNA, SAF-A/hnRNPU and matrix attachment regions. Semin
Cell Dev Biol. 128:61–68. 2022.PubMed/NCBI View Article : Google Scholar
|
|
2
|
Fackelmayer FO and Richter A:
hnRNP-U/SAF-A is encoded by two differentially polyadenylated mRNAs
in human cells. Biochim Biophys Acta. 1217:232–234. 1994.PubMed/NCBI View Article : Google Scholar
|
|
3
|
Wavelet-Vermuse C, Odnokoz O, Xue Y, Lu X,
Cristofanilli M and Wan Y: CDC20-Mediated hnRNPU ubiquitination
regulates chromatin condensation and anti-cancer drug response.
Cancers (Basel). 14(3732)2022.PubMed/NCBI View Article : Google Scholar
|
|
4
|
Wang H, Liu H, Zhao X and Chen X:
Heterogeneous nuclear ribonucleoprotein U-actin complex derived
from extracellular vesicles facilitates proliferation and migration
of human coronary artery endothelial cells by promoting RNA
polymerase II transcription. Bioengineered. 13:11469–11486.
2022.PubMed/NCBI View Article : Google Scholar
|
|
5
|
Sharp JA, Perea-Resa C, Wang W and Blower
MD: Cell division requires RNA eviction from condensing
chromosomes. J Cell Biol. 219(e201910148)2020.PubMed/NCBI View Article : Google Scholar
|
|
6
|
Kipp M, Gohring F, Ostendorp T, van Drunen
CM, van Driel R, Przybylski M and Fackelmayer FO: SAF-Box, a
conserved protein domain that specifically recognizes scaffold
attachment region DNA. Mol Cell Biol. 20:7480–7489. 2000.PubMed/NCBI View Article : Google Scholar
|
|
7
|
Helbig R and Fackelmayer FO: Scaffold
attachment factor A (SAF-A) is concentrated in inactive X
chromosome territories through its RGG domain. Chromosoma.
112:173–182. 2003.PubMed/NCBI View Article : Google Scholar
|
|
8
|
Nozawa RS, Boteva L, Soares DC, Naughton
C, Dun AR, Buckle A, Ramsahoye B, Bruton PC, Saleeb RS, Arnedo M,
et al: SAF-A Regulates Interphase Chromosome Structure through
Oligomerization with Chromatin-Associated RNAs. Cell. 169:1214–1227
e18. 2017.PubMed/NCBI View Article : Google Scholar
|
|
9
|
Spraggon L, Dudnakova T, Slight J,
Lustig-Yariv O, Cotterell J, Hastie H and Miles C: hnRNP-U directly
interacts with WT1 and modulates WT1 transcriptional activation.
Oncogene. 26:1484–1491. 2007.PubMed/NCBI View Article : Google Scholar
|
|
10
|
Puvvula PK and Moon AM: Novel
cell-penetrating peptides derived from scaffold-attachment-factor a
inhibits cancer cell proliferation and survival. Front Oncol.
11(621825)2021.PubMed/NCBI View Article : Google Scholar
|
|
11
|
Zhu X, Huang B, Zhao F, Lian J, He L,
Zhang Y, Ji L, Zhang J, Yan X, Zeng T, et al: p38-mediated FOXN3
phosphorylation modulates lung inflammation and injury through the
NF-κB signaling pathway. Nucleic Acids Res. 51:2195–2214.
2023.PubMed/NCBI View Article : Google Scholar
|
|
12
|
Liu BY, Yu XJ and Zhou CM: SAFA initiates
innate immunity against cytoplasmic RNA virus SFTSV infection. PLoS
Pathog. 17(e1010070)2021.PubMed/NCBI View Article : Google Scholar
|
|
13
|
Ghirlando R and Felsenfeld G: CTCF: Making
the right connections. Genes Dev. 30:881–891. 2016.PubMed/NCBI View Article : Google Scholar
|
|
14
|
Fritz AJ, Sehgal N, Pliss A, Xu J and
Berezney R: Chromosome territories and the global regulation of the
genome. Genes Chromosomes Cancer. 58:407–426. 2019.PubMed/NCBI View Article : Google Scholar
|
|
15
|
Wang W, Chandra A, Goldman N, Yoon S,
Ferrari EK, Nguyen SC, Joyce EF and Vahedi G: TCF-1 promotes
chromatin interactions across topologically associating domains in
T cell progenitors. Nat Immunol. 23:1052–1062. 2022.PubMed/NCBI View Article : Google Scholar
|
|
16
|
Krasikova A, Kulikova T, Rodriguez Ramos
JS and Maslova A: Assignment of the somatic A/B compartments to
chromatin domains in giant transcriptionally active lampbrush
chromosomes. Epigenetics Chromatin. 16(24)2023.PubMed/NCBI View Article : Google Scholar
|
|
17
|
Romig H, Fackelmayer FO, Renz A,
Ramsperger U and Richter A: Characterization of SAF-A, a novel
nuclear DNA binding protein from HeLa cells with high affinity for
nuclear matrix/scaffold attachment DNA elements. EMBO J.
11:3431–3440. 1992.PubMed/NCBI View Article : Google Scholar
|
|
18
|
Fan H, Lv P, Huo X, Wu J, Wang Q, Cheng L,
Liu Y, Tang QQ, Zhang L, Zhang F, et al: The nuclear matrix protein
HNRNPU maintains 3D genome architecture globally in mouse
hepatocytes. Genome Res. 28:192–202. 2018.PubMed/NCBI View Article : Google Scholar
|
|
19
|
Jiao W, Chen Y, Song H, Li D, Mei H, Yang
F, Fang E, Wang X, Huang K, Zheng L and Tong Q: HPSE enhancer RNA
promotes cancer progression through driving chromatin looping and
regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene. 37:2728–2745.
2018.PubMed/NCBI View Article : Google Scholar
|
|
20
|
Cao L, Luo Y, Guo X, Liu S, Li S, Li J,
Zhang Z, Zhao Y, Zhang Q, Gao F, et al: SAFA facilitates chromatin
opening of immune genes through interacting with anti-viral host
RNAs. PLoS Pathog. 18(e1010599)2022.PubMed/NCBI View Article : Google Scholar
|
|
21
|
Kolpa HJ, Creamer KM, Hall LL and Lawrence
JB: SAF-A mutants disrupt chromatin structure through dominant
negative effects on RNAs associated with chromatin. Mamm Genome.
33:366–381. 2022.PubMed/NCBI View Article : Google Scholar
|
|
22
|
Lobov IB, Tsutsui K, Mitchell AR and
Podgornaya OI: Specificity of SAF-A and lamin B binding in vitro
correlates with the satellite DNA bending state. J Cell Biochem.
83:218–229. 2001.PubMed/NCBI View Article : Google Scholar
|
|
23
|
Cramer P: Organization and regulation of
gene transcription. Nature. 573:45–54. 2019.PubMed/NCBI View Article : Google Scholar
|
|
24
|
Altendorfer E, Mochalova Y and Mayer A:
BRD4: A general regulator of transcription elongation.
Transcription. 13:70–81. 2022.PubMed/NCBI View Article : Google Scholar
|
|
25
|
Haberle V and Stark A: Eukaryotic core
promoters and the functional basis of transcription initiation. Nat
Rev Mol Cell Biol. 19:621–637. 2018.PubMed/NCBI View Article : Google Scholar
|
|
26
|
Gibbons MD, Fang Y, Spicola AP, Linzer N,
Jones SM, Johnson BR, Li L, Xie M and Bungert J: Enhancer-mediated
formation of nuclear transcription initiation domains. Int J Mol
Sci. 23(9290)2022.PubMed/NCBI View Article : Google Scholar
|
|
27
|
Sokolova M, Moore HM, Prajapati B, Dopie
J, Merilainen L, Honkanen M, Matos RC, Poukkula M, Hietakangas V
and Vartiainen MK: Nuclear actin is required for transcription
during drosophila oogenesis. iScience. 9:63–70. 2018.PubMed/NCBI View Article : Google Scholar
|
|
28
|
Knoll KR, Eustermann S, Niebauer V,
Oberbeckmann E, Stoehr G, Schall K, Tosi A, Schwarz M, Buchfellner
A, Korber P and Hopfner KP: The nuclear actin-containing Arp8
module is a linker DNA sensor driving INO80 chromatin remodeling.
Nat Struct Mol Biol. 25:823–832. 2018.PubMed/NCBI View Article : Google Scholar
|
|
29
|
Almuzzaini B, Sarshad AA, Rahmanto AS,
Hansson ML, Von Euler A, Sangfelt O, Visa N, Farrants AK and
Percipalle P: In β-actin knockouts, epigenetic reprogramming and
rDNA transcription inactivation lead to growth and proliferation
defects. FASEB J. 30:2860–2873. 2016.PubMed/NCBI View Article : Google Scholar
|
|
30
|
Al-Sayegh MA, Mahmood SR, Khair SBA, Xie
X, El Gindi M, Kim T, Almansoori A and Percipalle P: beta-actin
contributes to open chromatin for activation of the adipogenic
pioneer factor CEBPA during transcriptional reprograming. Mol Biol
Cell. 31:2511–2521. 2020.PubMed/NCBI View Article : Google Scholar
|
|
31
|
Bi HS, Yang XY, Yuan JH, Yang F, Xu D, Guo
YJ, Zhang L, Zhou CC, Wang F and Sun SH: H19 inhibits RNA
polymerase II-mediated transcription by disrupting the hnRNP
U-actin complex. Biochim Biophys Acta. 1830:4899–4906.
2013.PubMed/NCBI View Article : Google Scholar
|
|
32
|
Wen Y, Ma X, Wang X, Wang F, Dong J, Wu Y,
Lv C, Liu K, Zhang Y, Zhang Z and Yuan S: hnRNPU in Sertoli cells
cooperates with WT1 and is essential for testicular development by
modulating transcriptional factors Sox8/9. Theranostics.
11:10030–10046. 2021.PubMed/NCBI View Article : Google Scholar
|
|
33
|
Liu L, Hu L, Long H, Zheng M, Hu Z, He Y,
Gao X, Du P, Zhao H, Yu D, et al: LncRNA IL21-AS1 interacts with
hnRNPU protein to promote IL21 overexpression and aberrant
differentiation of Tfh cells in systemic lupus erythematosus. Clin
Transl Med. 12(e1117)2022.PubMed/NCBI View Article : Google Scholar
|
|
34
|
Vizlin-Hodzic D, Johansson H, Ryme J,
Simonsson T and Simonsson S: SAF-A has a role in transcriptional
regulation of Oct4 in ES cells through promoter binding. Cell
Reprogram. 13:13–27. 2011.PubMed/NCBI View Article : Google Scholar
|
|
35
|
Obrdlik A, Kukalev A, Louvet E, Farrants
AK, Caputo L and Percipalle P: The histone acetyltransferase PCAF
associates with actin and hnRNP U for RNA polymerase II
transcription. Mol Cell Biol. 28:6342–6357. 2008.PubMed/NCBI View Article : Google Scholar
|
|
36
|
Kim MK and Nikodem VM: hnRNP U inhibits
carboxy-terminal domain phosphorylation by TFIIH and represses RNA
polymerase II elongation. Mol Cell Biol. 19:6833–6844.
1999.PubMed/NCBI View Article : Google Scholar
|
|
37
|
Ye J, Beetz N, O'Keeffe S, Tapia JC,
Macpherson L, Chen WV, Bassel-Duby R, Olson EN and Maniatis T:
hnRNP U protein is required for normal pre-mRNA splicing and
postnatal heart development and function. Proc Natl Acad Sci USA.
112:E3020–E3029. 2015.PubMed/NCBI View Article : Google Scholar
|
|
38
|
Sapir T, Kshirsagar A, Gorelik A, Olender
T, Porat Z, Scheffer IE, Goldstein DB, Devinsky O and Reiner O:
Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the
developing mouse cortex. Nat Commun. 13(4209)2022.PubMed/NCBI View Article : Google Scholar
|
|
39
|
Xiao R, Tang P, Yang B, Huang J, Zhou Y,
Shao C, Li H, Sun H, Zhang Y and Fu XD: Nuclear matrix factor hnRNP
U/SAF-A exerts a global control of alternative splicing by
regulating U2 snRNP maturation. Mol Cell. 45:656–668.
2012.PubMed/NCBI View Article : Google Scholar
|
|
40
|
Vu NT, Park MA, Shultz JC, Goehe RW,
Hoeferlin LA, Shultz MD, Smith SA, Lynch KW and Chalfant CE: hnRNP
U enhances caspase-9 splicing and is modulated by AKT-dependent
phosphorylation of hnRNP L. J Biol Chem. 288:8575–8584.
2013.PubMed/NCBI View Article : Google Scholar
|
|
41
|
Zhao W, Wang L, Zhang M, Wang P, Qi J,
Zhang L and Gao C: Nuclear to cytoplasmic translocation of
heterogeneous nuclear ribonucleoprotein U enhances TLR-induced
proinflammatory cytokine production by stabilizing mRNAs in
macrophages. J Immunol. 188:3179–3187. 2012.PubMed/NCBI View Article : Google Scholar
|
|
42
|
Yugami M, Kabe Y, Yamaguchi Y, Wada T and
Handa H: hnRNP-U enhances the expression of specific genes by
stabilizing mRNA. FEBS Lett. 581:1–7. 2007.PubMed/NCBI View Article : Google Scholar
|
|
43
|
Pan J, Tang Y, Liu S, Li L, Yu B, Lu Y and
Wang Y: LIMD1-AS1 suppressed non-small cell lung cancer progression
through stabilizing LIMD1 mRNA via hnRNP U. Cancer Med.
9:3829–3839. 2020.PubMed/NCBI View Article : Google Scholar
|
|
44
|
Lu Y, Liu X, Xie M, Liu M, Ye M, Li M,
Chen XM, Li X and Zhou R: The NF-κB-Responsive Long Noncoding RNA
FIRRE Regulates Posttranscriptional Regulation of Inflammatory Gene
Expression through Interacting with hnRNPU. J Immunol.
199:3571–3582. 2017.PubMed/NCBI View Article : Google Scholar
|
|
45
|
Bredemeyer AL, Helmink BA, Innes CL,
Calderon B, McGinnis LM, Mahowald GK, Gapud EJ, Walker LM, Collins
JB, Weaver BK, et al: DNA double-strand breaks activate a
multi-functional genetic program in developing lymphocytes. Nature.
456:819–823. 2008.PubMed/NCBI View Article : Google Scholar
|
|
46
|
Cannan WJ, Tsang BP, Wallace SS and
Pederson DS: Nucleosomes suppress the formation of double-strand
DNA breaks during attempted base excision repair of clustered
oxidative damages. J Biol Chem. 289:19881–19893. 2014.PubMed/NCBI View Article : Google Scholar
|
|
47
|
Nickoloff JA, Sharma N and Taylor L:
Clustered DNA Double-Strand Breaks: Biological effects and
relevance to cancer radiotherapy. Genes (Basel).
11(99)2020.PubMed/NCBI View Article : Google Scholar
|
|
48
|
Hegde ML, Banerjee S, Hegde PM, Bellot LJ,
Hazra TK, Boldogh I and Mitra S: Enhancement of NEIL1
protein-initiated oxidized DNA base excision repair by
heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct
interaction. J Biol Chem. 287:34202–34211. 2012.PubMed/NCBI View Article : Google Scholar
|
|
49
|
Dutta A, Yang C, Sengupta S, Mitra S and
Hegde ML: New paradigms in the repair of oxidative damage in human
genome: Mechanisms ensuring repair of mutagenic base lesions during
replication and involvement of accessory proteins. Cell Mol Life
Sci. 72:1679–1698. 2015.PubMed/NCBI View Article : Google Scholar
|
|
50
|
Banerjee D, Mandal SM, Das A, Hegde ML,
Das S, Bhakat KK, Boldogh I, Sarkar PS, Mitra S and Hazra TK:
Preferential repair of oxidized base damage in the transcribed
genes of mammalian cells. J Biol Chem. 286:6006–6016.
2011.PubMed/NCBI View Article : Google Scholar
|
|
51
|
Hammel M, Yu Y, Radhakrishnan SK, Chokshi
C, Tsai MS, Matsumoto Y, Kuzdovich M, Remesh SG, Fang S, Tomkinson
AE, et al: An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and
XRCC4-DNA Ligase IV in an extended flexible non-homologous end
joining complex. J Biol Chem. 291:26987–27006. 2016.PubMed/NCBI View Article : Google Scholar
|
|
52
|
Weterings E, Verkaik NS, Keijzers G,
Florea BI, Wang SY, Ortega LG, Uematsu N, Chen DJ and van Gent DC:
The Ku80 carboxy terminus stimulates joining and artemis-mediated
processing of DNA ends. Mol Cell Biol. 29:1134–1142.
2009.PubMed/NCBI View Article : Google Scholar
|
|
53
|
Xing M and Oksenych V: Genetic interaction
between DNA repair factors PAXX, XLF, XRCC4 and DNA-PKcs in human
cells. FEBS Open Bio. 9:1315–1326. 2019.PubMed/NCBI View Article : Google Scholar
|
|
54
|
Britton S, Dernoncourt E, Delteil C,
Froment C, Schiltz O, Salles B, Frit P and Calsou P: DNA damage
triggers SAF-A and RNA biogenesis factors exclusion from chromatin
coupled to R-loops removal. Nucleic Acids Res. 42:9047–9062.
2014.PubMed/NCBI View Article : Google Scholar
|
|
55
|
Berglund FM and Clarke PR: hnRNP-U is a
specific DNA-dependent protein kinase substrate phosphorylated in
response to DNA double-strand breaks. Biochem Biophys Res Commun.
381:59–64. 2009.PubMed/NCBI View Article : Google Scholar
|
|
56
|
Britton S, Froment C, Frit P, Monsarrat B,
Salles B and Calsou P: Cell nonhomologous end joining capacity
controls SAF-A phosphorylation by DNA-PK in response to DNA
double-strand breaks inducers. Cell Cycle. 8:3717–3722.
2009.PubMed/NCBI View Article : Google Scholar
|
|
57
|
Hegde ML, Dutta A, Yang C, Mantha AK,
Hegde PM, Pandey A, Sengupta S, Yu Y, Calsou P, Chen D, et al:
Scaffold attachment factor A (SAF-A) and Ku temporally regulate
repair of radiation-induced clustered genome lesions. Oncotarget.
7:54430–54444. 2016.PubMed/NCBI View Article : Google Scholar
|
|
58
|
Refaat AM, Nakata M, Husain A, Kosako H,
Honjo T and Begum NA: HNRNPU facilitates antibody class-switch
recombination through C-NHEJ promotion and R-loop suppression. Cell
Rep. 42(112284)2023.PubMed/NCBI View Article : Google Scholar
|
|
59
|
Tanaka TU: Kinetochore-microtubule
interactions: Steps towards bi-orientation. EMBO J. 29:4070–4082.
2010.PubMed/NCBI View Article : Google Scholar
|
|
60
|
Biggins S and Walczak CF: Captivating
capture: How microtubules attach to kinetochores. Curr Biol.
13:R449–R460. 2003.PubMed/NCBI View Article : Google Scholar
|
|
61
|
Ma N, Matsunaga S, Morimoto A, Sakashita
G, Urano T, Uchiyama S and Fukui K: The nuclear scaffold protein
SAF-A is required for kinetochore-microtubule attachment and
contributes to the targeting of Aurora-A to mitotic spindles. J
Cell Sci. 124:394–404. 2011.PubMed/NCBI View Article : Google Scholar
|
|
62
|
Chun Y, Kim R and Lee S: Centromere
Protein (CENP)-W interacts with heterogeneous nuclear
ribonucleoprotein (hnRNP) U and may contribute to
kinetochore-microtubule attachment in mitotic cells. PLoS One.
11(e0149127)2016.PubMed/NCBI View Article : Google Scholar
|
|
63
|
Kettenbach AN, Schweppe DK, Faherty BK,
Pechenick D, Pletnev AA and Gerber SA: Quantitative
phosphoproteomics identifies substrates and functional modules of
Aurora and Polo-like kinase activities in mitotic cells. Sci
Signal. 4(rs5)2011.PubMed/NCBI View Article : Google Scholar
|
|
64
|
Malik R, Lenobel R, Santamaria A, Ries A,
Nigg EA and Korner R: Quantitative analysis of the human spindle
phosphoproteome at distinct mitotic stages. J Proteome Res.
8:4553–4563. 2009.PubMed/NCBI View Article : Google Scholar
|
|
65
|
Wang Z, Udeshi ND, Slawson C, Compton PD,
Sakabe K, Cheung WD, Shabanowitz J, Hunt DF and Hart GW: Extensive
crosstalk between O-GlcNAcylation and phosphorylation regulates
cytokinesis. Sci Signal. 3(ra2)2010.PubMed/NCBI View Article : Google Scholar
|
|
66
|
Douglas P, Ye R, Morrice N, Britton S,
Trinkle-Mulcahy L and Lees-Miller SP: Phosphorylation of
SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for
Mitosis. Mol Cell Biol. 35:2699–2713. 2015.PubMed/NCBI View Article : Google Scholar
|
|
67
|
Shi W, Wang Q, Bian Y, Fan Y, Zhou Y, Feng
T, Li Z and Cao X: Long noncoding RNA PANDA promotes esophageal
squamous carcinoma cell progress by dissociating from NF-YA but
interact with SAFA. Pathol Res Pract. 215(152604)2019.PubMed/NCBI View Article : Google Scholar
|
|
68
|
Liang Y, Fan Y, Liu Y and Fan H: HNRNPU
promotes the progression of hepatocellular carcinoma by enhancing
CDK2 transcription. Exp Cell Res. 409(112898)2021.PubMed/NCBI View Article : Google Scholar
|
|
69
|
Song H, Li D, Wang X, Fang E, Yang F, Hu
A, Wang J, Guo Y, Liu Y, Li H, et al: HNF4A-AS1/hnRNPU/CTCF axis as
a therapeutic target for aerobic glycolysis and neuroblastoma
progression. J Hematol Oncol. 13(24)2020.PubMed/NCBI View Article : Google Scholar
|
|
70
|
Xu CL, Chen Y, Zhu TT, Sun ZJ and Chu JH:
Clinical significance and pathogenesis analysis of heterogeneous
nuclear ribonucleoprotein U in acute myeloid leukemia. Zhonghua Xue
Ye Xue Za Zhi. 43:745–752. 2022.PubMed/NCBI View Article : Google Scholar : (In Chinese).
|
|
71
|
Han BY, Liu Z, Hu X and Ling H: HNRNPU
promotes the progression of triple-negative breast cancer via RNA
transcription and alternative splicing mechanisms. Cell Death Dis.
13(940)2022.PubMed/NCBI View Article : Google Scholar
|
|
72
|
Dong YY, Wang MY, Jing JJ, Wu YJ, Li H,
Yuan Y and Sun LP: Alternative Splicing Factor Heterogeneous
Nuclear Ribonucleoprotein U as a promising biomarker for gastric
cancer risk and prognosis with tumor-promoting properties. Am J
Pathol. 194:13–29. 2024.PubMed/NCBI View Article : Google Scholar
|
|
73
|
Chen T, Zheng W, Chen J, Lin S, Zou Z, Li
X and Tan Z: Systematic analysis of survival-associated alternative
splicing signatures in clear cell renal cell carcinoma. J Cell
Biochem. 121:4074–4084. 2020.PubMed/NCBI View Article : Google Scholar
|
|
74
|
Zhang W, Zheng Z, Wang K, Mao W, Li X,
Wang G, Zhang Y, Huang J, Zhang N, Wu P, et al: piRNA-1742 promotes
renal cell carcinoma malignancy by regulating USP8 stability
through binding to hnRNPU and thereby inhibiting MUC12
ubiquitination. Exp Mol Med. 55:1258–1271. 2023.PubMed/NCBI View Article : Google Scholar
|
|
75
|
Hu WM, Li M, Ning JZ, Tang YQ, Song TB, Li
LZ, Zou F, Cheng F and Yu WM: FAM171B stabilizes vimentin and
enhances CCL2-mediated TAM infiltration to promote bladder cancer
progression. J Exp Clin Cancer Res. 42(290)2023.PubMed/NCBI View Article : Google Scholar
|
|
76
|
Shi ZD, Hao L, Han XX, Wu ZX, Pang K, Dong
Y, Qin JX, Wang GY, Zhang XM, Xia T, et al: Targeting HNRNPU to
overcome cisplatin resistance in bladder cancer. Mol Cancer.
21(37)2022.PubMed/NCBI View Article : Google Scholar
|
|
77
|
Wang X, Xu J, Li Q, Zhang Y, Lin Z, Zhai
X, Wang F, Huang J, Gao Q, Wen J, et al: RNA-binding protein hnRNPU
regulates multiple myeloma resistance to selinexor. Cancer Lett.
580(216486)2024.PubMed/NCBI View Article : Google Scholar
|
|
78
|
Li L, Yin JY, He FZ, Huang MS, Zhu T, Gao
YF, Chen YX, Zhou DB, Chen X, Sun LQ, et al: Long noncoding RNA
SFTA1P promoted apoptosis and increased cisplatin chemosensitivity
via regulating the hnRNP-U-GADD45A axis in lung squamous cell
carcinoma. Oncotarget. 8:97476–97489. 2017.PubMed/NCBI View Article : Google Scholar
|
|
79
|
Valente ST and Goff SP: Inhibition of
HIV-1 gene expression by a fragment of hnRNP U. Mol Cell.
23:597–605. 2006.PubMed/NCBI View Article : Google Scholar
|
|
80
|
Cao L, Liu S, Li Y, Yang G, Luo Y, Li S,
Du H, Zhao Y, Wang D, Chen J, et al: The Nuclear Matrix Protein
SAFA Surveils Viral RNA and Facilitates Immunity by Activating
Antiviral Enhancers and Super-enhancers. Cell Host Microbe.
26:369–384 e8. 2019.PubMed/NCBI View Article : Google Scholar
|
|
81
|
Gupta AK, Drazba JA and Banerjee AK:
Specific interaction of heterogeneous nuclear ribonucleoprotein
particle U with the leader RNA sequence of vesicular stomatitis
virus. J Virol. 72:8532–8540. 1998.PubMed/NCBI View Article : Google Scholar
|
|
82
|
Hu X, Wu X, Ding Z, Chen Z and Wu H:
Characterization and functional analysis of chicken dsRNA binding
protein hnRNPU. Dev Comp Immunol. 138(104521)2023.PubMed/NCBI View Article : Google Scholar
|
|
83
|
Zhou H, Yan Y, Gao J, Ma M, Liu Y, Shi X,
Zhang Q and Xu X: Heterogeneous Nuclear Protein U Degraded the
m(6)A Methylated TRAF3 Transcript by YTHDF2 To Promote Porcine
Epidemic Diarrhea Virus Replication. J Virol.
97(e0175122)2023.PubMed/NCBI View Article : Google Scholar
|
|
84
|
Caliebe A, Kroes HY, van der Smagt JJ,
Martin-Subero JI, Tonnies H, van 't Slot R, Nievelstein RA, Muhle
H, Stephani U, Alfke K, et al: Four patients with speech delay,
seizures and variable corpus callosum thickness sharing a 0.440 Mb
deletion in region 1q44 containing the HNRPU gene. Eur J Med Genet.
53:179–185. 2010.PubMed/NCBI View Article : Google Scholar
|
|
85
|
Depienne C, Nava C, Keren B, Heide S,
Rastetter A, Passemard S, Chantot-Bastaraud S, Moutard ML, Agrawal
PB, VanNoy G, et al: Genetic and phenotypic dissection of 1q43q44
microdeletion syndrome and neurodevelopmental phenotypes associated
with mutations in ZBTB18 and HNRNPU. Hum Genet. 136:463–479.
2017.PubMed/NCBI View Article : Google Scholar
|
|
86
|
Epi4K Consortium; Epilepsy Phenome/Genome
Project. Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D,
Eichler EE, Epstein MP, Glauser T, et al: De novo mutations in
epileptic encephalopathies. Nature. 501:217–221. 2013.PubMed/NCBI View Article : Google Scholar
|
|
87
|
Shimada S, Oguni H, Otani Y, Nishikawa A,
Ito S, Eto K, Nakazawa T, Yamamoto-Shimojima K, Takanashi JI,
Nagata S and Yamamoto T: An episode of acute encephalopathy with
biphasic seizures and late reduced diffusion followed by hemiplegia
and intractable epilepsy observed in a patient with a novel
frameshift mutation in HNRNPU. Brain Dev. 40:813–818.
2018.PubMed/NCBI View Article : Google Scholar
|
|
88
|
Durkin A, Albaba S, Fry AE, Morton JE,
Douglas A, Beleza A, Williams D, Volker-Touw CML, Lynch SA, Canham
N, et al: Clinical findings of 21 previously unreported probands
with HNRNPU-related syndrome and comprehensive literature review.
Am J Med Genet A. 182:1637–1654. 2020.PubMed/NCBI View Article : Google Scholar
|
|
89
|
Wang T, Hoekzema K, Vecchio D, Wu H,
Sulovari A, Coe BP, Gillentine MA, Wilfert AB, Perez-Jurado LA,
Kvarnung M, et al: Large-scale targeted sequencing identifies risk
genes for neurodevelopmental disorders. Nat Commun.
11(4932)2020.PubMed/NCBI View Article : Google Scholar
|
|
90
|
Taylor J, Spiller M, Ranguin K, Vitobello
A, Philippe C, Bruel AL, Cappuccio G, Brunetti-Pierri N, Willems M,
Isidor B, et al: Expanding the phenotype of HNRNPU-related
neurodevelopmental disorder with emphasis on seizure phenotype and
review of literature. Am J Med Genet A. 188:1497–1514.
2022.PubMed/NCBI View Article : Google Scholar
|
|
91
|
Roshon MJ and Ruley HE: Hypomorphic
mutation in hnRNP U results in post-implantation lethality.
Transgenic Res. 14:179–192. 2005.PubMed/NCBI View Article : Google Scholar
|