Biological functions and clinic significance of SAF‑A (Review)
- Authors:
- Daiquan Zhang
- Li Li
- Mengni Li
- Xinmei Cao
-
Affiliations: Department of Traditional Chinese Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China, Department of Pediatrics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China, Immune Mechanism and Therapy of Major Diseases of Luzhou Key Laboratory, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China - Published online on: April 10, 2024 https://doi.org/10.3892/br.2024.1776
- Article Number: 88
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Podgornaya OI: Nuclear organization by satellite DNA, SAF-A/hnRNPU and matrix attachment regions. Semin Cell Dev Biol. 128:61–68. 2022.PubMed/NCBI View Article : Google Scholar | |
Fackelmayer FO and Richter A: hnRNP-U/SAF-A is encoded by two differentially polyadenylated mRNAs in human cells. Biochim Biophys Acta. 1217:232–234. 1994.PubMed/NCBI View Article : Google Scholar | |
Wavelet-Vermuse C, Odnokoz O, Xue Y, Lu X, Cristofanilli M and Wan Y: CDC20-Mediated hnRNPU ubiquitination regulates chromatin condensation and anti-cancer drug response. Cancers (Basel). 14(3732)2022.PubMed/NCBI View Article : Google Scholar | |
Wang H, Liu H, Zhao X and Chen X: Heterogeneous nuclear ribonucleoprotein U-actin complex derived from extracellular vesicles facilitates proliferation and migration of human coronary artery endothelial cells by promoting RNA polymerase II transcription. Bioengineered. 13:11469–11486. 2022.PubMed/NCBI View Article : Google Scholar | |
Sharp JA, Perea-Resa C, Wang W and Blower MD: Cell division requires RNA eviction from condensing chromosomes. J Cell Biol. 219(e201910148)2020.PubMed/NCBI View Article : Google Scholar | |
Kipp M, Gohring F, Ostendorp T, van Drunen CM, van Driel R, Przybylski M and Fackelmayer FO: SAF-Box, a conserved protein domain that specifically recognizes scaffold attachment region DNA. Mol Cell Biol. 20:7480–7489. 2000.PubMed/NCBI View Article : Google Scholar | |
Helbig R and Fackelmayer FO: Scaffold attachment factor A (SAF-A) is concentrated in inactive X chromosome territories through its RGG domain. Chromosoma. 112:173–182. 2003.PubMed/NCBI View Article : Google Scholar | |
Nozawa RS, Boteva L, Soares DC, Naughton C, Dun AR, Buckle A, Ramsahoye B, Bruton PC, Saleeb RS, Arnedo M, et al: SAF-A Regulates Interphase Chromosome Structure through Oligomerization with Chromatin-Associated RNAs. Cell. 169:1214–1227 e18. 2017.PubMed/NCBI View Article : Google Scholar | |
Spraggon L, Dudnakova T, Slight J, Lustig-Yariv O, Cotterell J, Hastie H and Miles C: hnRNP-U directly interacts with WT1 and modulates WT1 transcriptional activation. Oncogene. 26:1484–1491. 2007.PubMed/NCBI View Article : Google Scholar | |
Puvvula PK and Moon AM: Novel cell-penetrating peptides derived from scaffold-attachment-factor a inhibits cancer cell proliferation and survival. Front Oncol. 11(621825)2021.PubMed/NCBI View Article : Google Scholar | |
Zhu X, Huang B, Zhao F, Lian J, He L, Zhang Y, Ji L, Zhang J, Yan X, Zeng T, et al: p38-mediated FOXN3 phosphorylation modulates lung inflammation and injury through the NF-κB signaling pathway. Nucleic Acids Res. 51:2195–2214. 2023.PubMed/NCBI View Article : Google Scholar | |
Liu BY, Yu XJ and Zhou CM: SAFA initiates innate immunity against cytoplasmic RNA virus SFTSV infection. PLoS Pathog. 17(e1010070)2021.PubMed/NCBI View Article : Google Scholar | |
Ghirlando R and Felsenfeld G: CTCF: Making the right connections. Genes Dev. 30:881–891. 2016.PubMed/NCBI View Article : Google Scholar | |
Fritz AJ, Sehgal N, Pliss A, Xu J and Berezney R: Chromosome territories and the global regulation of the genome. Genes Chromosomes Cancer. 58:407–426. 2019.PubMed/NCBI View Article : Google Scholar | |
Wang W, Chandra A, Goldman N, Yoon S, Ferrari EK, Nguyen SC, Joyce EF and Vahedi G: TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors. Nat Immunol. 23:1052–1062. 2022.PubMed/NCBI View Article : Google Scholar | |
Krasikova A, Kulikova T, Rodriguez Ramos JS and Maslova A: Assignment of the somatic A/B compartments to chromatin domains in giant transcriptionally active lampbrush chromosomes. Epigenetics Chromatin. 16(24)2023.PubMed/NCBI View Article : Google Scholar | |
Romig H, Fackelmayer FO, Renz A, Ramsperger U and Richter A: Characterization of SAF-A, a novel nuclear DNA binding protein from HeLa cells with high affinity for nuclear matrix/scaffold attachment DNA elements. EMBO J. 11:3431–3440. 1992.PubMed/NCBI View Article : Google Scholar | |
Fan H, Lv P, Huo X, Wu J, Wang Q, Cheng L, Liu Y, Tang QQ, Zhang L, Zhang F, et al: The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res. 28:192–202. 2018.PubMed/NCBI View Article : Google Scholar | |
Jiao W, Chen Y, Song H, Li D, Mei H, Yang F, Fang E, Wang X, Huang K, Zheng L and Tong Q: HPSE enhancer RNA promotes cancer progression through driving chromatin looping and regulating hnRNPU/p300/EGR1/HPSE axis. Oncogene. 37:2728–2745. 2018.PubMed/NCBI View Article : Google Scholar | |
Cao L, Luo Y, Guo X, Liu S, Li S, Li J, Zhang Z, Zhao Y, Zhang Q, Gao F, et al: SAFA facilitates chromatin opening of immune genes through interacting with anti-viral host RNAs. PLoS Pathog. 18(e1010599)2022.PubMed/NCBI View Article : Google Scholar | |
Kolpa HJ, Creamer KM, Hall LL and Lawrence JB: SAF-A mutants disrupt chromatin structure through dominant negative effects on RNAs associated with chromatin. Mamm Genome. 33:366–381. 2022.PubMed/NCBI View Article : Google Scholar | |
Lobov IB, Tsutsui K, Mitchell AR and Podgornaya OI: Specificity of SAF-A and lamin B binding in vitro correlates with the satellite DNA bending state. J Cell Biochem. 83:218–229. 2001.PubMed/NCBI View Article : Google Scholar | |
Cramer P: Organization and regulation of gene transcription. Nature. 573:45–54. 2019.PubMed/NCBI View Article : Google Scholar | |
Altendorfer E, Mochalova Y and Mayer A: BRD4: A general regulator of transcription elongation. Transcription. 13:70–81. 2022.PubMed/NCBI View Article : Google Scholar | |
Haberle V and Stark A: Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol. 19:621–637. 2018.PubMed/NCBI View Article : Google Scholar | |
Gibbons MD, Fang Y, Spicola AP, Linzer N, Jones SM, Johnson BR, Li L, Xie M and Bungert J: Enhancer-mediated formation of nuclear transcription initiation domains. Int J Mol Sci. 23(9290)2022.PubMed/NCBI View Article : Google Scholar | |
Sokolova M, Moore HM, Prajapati B, Dopie J, Merilainen L, Honkanen M, Matos RC, Poukkula M, Hietakangas V and Vartiainen MK: Nuclear actin is required for transcription during drosophila oogenesis. iScience. 9:63–70. 2018.PubMed/NCBI View Article : Google Scholar | |
Knoll KR, Eustermann S, Niebauer V, Oberbeckmann E, Stoehr G, Schall K, Tosi A, Schwarz M, Buchfellner A, Korber P and Hopfner KP: The nuclear actin-containing Arp8 module is a linker DNA sensor driving INO80 chromatin remodeling. Nat Struct Mol Biol. 25:823–832. 2018.PubMed/NCBI View Article : Google Scholar | |
Almuzzaini B, Sarshad AA, Rahmanto AS, Hansson ML, Von Euler A, Sangfelt O, Visa N, Farrants AK and Percipalle P: In β-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects. FASEB J. 30:2860–2873. 2016.PubMed/NCBI View Article : Google Scholar | |
Al-Sayegh MA, Mahmood SR, Khair SBA, Xie X, El Gindi M, Kim T, Almansoori A and Percipalle P: beta-actin contributes to open chromatin for activation of the adipogenic pioneer factor CEBPA during transcriptional reprograming. Mol Biol Cell. 31:2511–2521. 2020.PubMed/NCBI View Article : Google Scholar | |
Bi HS, Yang XY, Yuan JH, Yang F, Xu D, Guo YJ, Zhang L, Zhou CC, Wang F and Sun SH: H19 inhibits RNA polymerase II-mediated transcription by disrupting the hnRNP U-actin complex. Biochim Biophys Acta. 1830:4899–4906. 2013.PubMed/NCBI View Article : Google Scholar | |
Wen Y, Ma X, Wang X, Wang F, Dong J, Wu Y, Lv C, Liu K, Zhang Y, Zhang Z and Yuan S: hnRNPU in Sertoli cells cooperates with WT1 and is essential for testicular development by modulating transcriptional factors Sox8/9. Theranostics. 11:10030–10046. 2021.PubMed/NCBI View Article : Google Scholar | |
Liu L, Hu L, Long H, Zheng M, Hu Z, He Y, Gao X, Du P, Zhao H, Yu D, et al: LncRNA IL21-AS1 interacts with hnRNPU protein to promote IL21 overexpression and aberrant differentiation of Tfh cells in systemic lupus erythematosus. Clin Transl Med. 12(e1117)2022.PubMed/NCBI View Article : Google Scholar | |
Vizlin-Hodzic D, Johansson H, Ryme J, Simonsson T and Simonsson S: SAF-A has a role in transcriptional regulation of Oct4 in ES cells through promoter binding. Cell Reprogram. 13:13–27. 2011.PubMed/NCBI View Article : Google Scholar | |
Obrdlik A, Kukalev A, Louvet E, Farrants AK, Caputo L and Percipalle P: The histone acetyltransferase PCAF associates with actin and hnRNP U for RNA polymerase II transcription. Mol Cell Biol. 28:6342–6357. 2008.PubMed/NCBI View Article : Google Scholar | |
Kim MK and Nikodem VM: hnRNP U inhibits carboxy-terminal domain phosphorylation by TFIIH and represses RNA polymerase II elongation. Mol Cell Biol. 19:6833–6844. 1999.PubMed/NCBI View Article : Google Scholar | |
Ye J, Beetz N, O'Keeffe S, Tapia JC, Macpherson L, Chen WV, Bassel-Duby R, Olson EN and Maniatis T: hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proc Natl Acad Sci USA. 112:E3020–E3029. 2015.PubMed/NCBI View Article : Google Scholar | |
Sapir T, Kshirsagar A, Gorelik A, Olender T, Porat Z, Scheffer IE, Goldstein DB, Devinsky O and Reiner O: Heterogeneous nuclear ribonucleoprotein U (HNRNPU) safeguards the developing mouse cortex. Nat Commun. 13(4209)2022.PubMed/NCBI View Article : Google Scholar | |
Xiao R, Tang P, Yang B, Huang J, Zhou Y, Shao C, Li H, Sun H, Zhang Y and Fu XD: Nuclear matrix factor hnRNP U/SAF-A exerts a global control of alternative splicing by regulating U2 snRNP maturation. Mol Cell. 45:656–668. 2012.PubMed/NCBI View Article : Google Scholar | |
Vu NT, Park MA, Shultz JC, Goehe RW, Hoeferlin LA, Shultz MD, Smith SA, Lynch KW and Chalfant CE: hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. J Biol Chem. 288:8575–8584. 2013.PubMed/NCBI View Article : Google Scholar | |
Zhao W, Wang L, Zhang M, Wang P, Qi J, Zhang L and Gao C: Nuclear to cytoplasmic translocation of heterogeneous nuclear ribonucleoprotein U enhances TLR-induced proinflammatory cytokine production by stabilizing mRNAs in macrophages. J Immunol. 188:3179–3187. 2012.PubMed/NCBI View Article : Google Scholar | |
Yugami M, Kabe Y, Yamaguchi Y, Wada T and Handa H: hnRNP-U enhances the expression of specific genes by stabilizing mRNA. FEBS Lett. 581:1–7. 2007.PubMed/NCBI View Article : Google Scholar | |
Pan J, Tang Y, Liu S, Li L, Yu B, Lu Y and Wang Y: LIMD1-AS1 suppressed non-small cell lung cancer progression through stabilizing LIMD1 mRNA via hnRNP U. Cancer Med. 9:3829–3839. 2020.PubMed/NCBI View Article : Google Scholar | |
Lu Y, Liu X, Xie M, Liu M, Ye M, Li M, Chen XM, Li X and Zhou R: The NF-κB-Responsive Long Noncoding RNA FIRRE Regulates Posttranscriptional Regulation of Inflammatory Gene Expression through Interacting with hnRNPU. J Immunol. 199:3571–3582. 2017.PubMed/NCBI View Article : Google Scholar | |
Bredemeyer AL, Helmink BA, Innes CL, Calderon B, McGinnis LM, Mahowald GK, Gapud EJ, Walker LM, Collins JB, Weaver BK, et al: DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature. 456:819–823. 2008.PubMed/NCBI View Article : Google Scholar | |
Cannan WJ, Tsang BP, Wallace SS and Pederson DS: Nucleosomes suppress the formation of double-strand DNA breaks during attempted base excision repair of clustered oxidative damages. J Biol Chem. 289:19881–19893. 2014.PubMed/NCBI View Article : Google Scholar | |
Nickoloff JA, Sharma N and Taylor L: Clustered DNA Double-Strand Breaks: Biological effects and relevance to cancer radiotherapy. Genes (Basel). 11(99)2020.PubMed/NCBI View Article : Google Scholar | |
Hegde ML, Banerjee S, Hegde PM, Bellot LJ, Hazra TK, Boldogh I and Mitra S: Enhancement of NEIL1 protein-initiated oxidized DNA base excision repair by heterogeneous nuclear ribonucleoprotein U (hnRNP-U) via direct interaction. J Biol Chem. 287:34202–34211. 2012.PubMed/NCBI View Article : Google Scholar | |
Dutta A, Yang C, Sengupta S, Mitra S and Hegde ML: New paradigms in the repair of oxidative damage in human genome: Mechanisms ensuring repair of mutagenic base lesions during replication and involvement of accessory proteins. Cell Mol Life Sci. 72:1679–1698. 2015.PubMed/NCBI View Article : Google Scholar | |
Banerjee D, Mandal SM, Das A, Hegde ML, Das S, Bhakat KK, Boldogh I, Sarkar PS, Mitra S and Hazra TK: Preferential repair of oxidized base damage in the transcribed genes of mammalian cells. J Biol Chem. 286:6006–6016. 2011.PubMed/NCBI View Article : Google Scholar | |
Hammel M, Yu Y, Radhakrishnan SK, Chokshi C, Tsai MS, Matsumoto Y, Kuzdovich M, Remesh SG, Fang S, Tomkinson AE, et al: An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an extended flexible non-homologous end joining complex. J Biol Chem. 291:26987–27006. 2016.PubMed/NCBI View Article : Google Scholar | |
Weterings E, Verkaik NS, Keijzers G, Florea BI, Wang SY, Ortega LG, Uematsu N, Chen DJ and van Gent DC: The Ku80 carboxy terminus stimulates joining and artemis-mediated processing of DNA ends. Mol Cell Biol. 29:1134–1142. 2009.PubMed/NCBI View Article : Google Scholar | |
Xing M and Oksenych V: Genetic interaction between DNA repair factors PAXX, XLF, XRCC4 and DNA-PKcs in human cells. FEBS Open Bio. 9:1315–1326. 2019.PubMed/NCBI View Article : Google Scholar | |
Britton S, Dernoncourt E, Delteil C, Froment C, Schiltz O, Salles B, Frit P and Calsou P: DNA damage triggers SAF-A and RNA biogenesis factors exclusion from chromatin coupled to R-loops removal. Nucleic Acids Res. 42:9047–9062. 2014.PubMed/NCBI View Article : Google Scholar | |
Berglund FM and Clarke PR: hnRNP-U is a specific DNA-dependent protein kinase substrate phosphorylated in response to DNA double-strand breaks. Biochem Biophys Res Commun. 381:59–64. 2009.PubMed/NCBI View Article : Google Scholar | |
Britton S, Froment C, Frit P, Monsarrat B, Salles B and Calsou P: Cell nonhomologous end joining capacity controls SAF-A phosphorylation by DNA-PK in response to DNA double-strand breaks inducers. Cell Cycle. 8:3717–3722. 2009.PubMed/NCBI View Article : Google Scholar | |
Hegde ML, Dutta A, Yang C, Mantha AK, Hegde PM, Pandey A, Sengupta S, Yu Y, Calsou P, Chen D, et al: Scaffold attachment factor A (SAF-A) and Ku temporally regulate repair of radiation-induced clustered genome lesions. Oncotarget. 7:54430–54444. 2016.PubMed/NCBI View Article : Google Scholar | |
Refaat AM, Nakata M, Husain A, Kosako H, Honjo T and Begum NA: HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Rep. 42(112284)2023.PubMed/NCBI View Article : Google Scholar | |
Tanaka TU: Kinetochore-microtubule interactions: Steps towards bi-orientation. EMBO J. 29:4070–4082. 2010.PubMed/NCBI View Article : Google Scholar | |
Biggins S and Walczak CF: Captivating capture: How microtubules attach to kinetochores. Curr Biol. 13:R449–R460. 2003.PubMed/NCBI View Article : Google Scholar | |
Ma N, Matsunaga S, Morimoto A, Sakashita G, Urano T, Uchiyama S and Fukui K: The nuclear scaffold protein SAF-A is required for kinetochore-microtubule attachment and contributes to the targeting of Aurora-A to mitotic spindles. J Cell Sci. 124:394–404. 2011.PubMed/NCBI View Article : Google Scholar | |
Chun Y, Kim R and Lee S: Centromere Protein (CENP)-W interacts with heterogeneous nuclear ribonucleoprotein (hnRNP) U and may contribute to kinetochore-microtubule attachment in mitotic cells. PLoS One. 11(e0149127)2016.PubMed/NCBI View Article : Google Scholar | |
Kettenbach AN, Schweppe DK, Faherty BK, Pechenick D, Pletnev AA and Gerber SA: Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal. 4(rs5)2011.PubMed/NCBI View Article : Google Scholar | |
Malik R, Lenobel R, Santamaria A, Ries A, Nigg EA and Korner R: Quantitative analysis of the human spindle phosphoproteome at distinct mitotic stages. J Proteome Res. 8:4553–4563. 2009.PubMed/NCBI View Article : Google Scholar | |
Wang Z, Udeshi ND, Slawson C, Compton PD, Sakabe K, Cheung WD, Shabanowitz J, Hunt DF and Hart GW: Extensive crosstalk between O-GlcNAcylation and phosphorylation regulates cytokinesis. Sci Signal. 3(ra2)2010.PubMed/NCBI View Article : Google Scholar | |
Douglas P, Ye R, Morrice N, Britton S, Trinkle-Mulcahy L and Lees-Miller SP: Phosphorylation of SAF-A/hnRNP-U Serine 59 by Polo-Like Kinase 1 Is Required for Mitosis. Mol Cell Biol. 35:2699–2713. 2015.PubMed/NCBI View Article : Google Scholar | |
Shi W, Wang Q, Bian Y, Fan Y, Zhou Y, Feng T, Li Z and Cao X: Long noncoding RNA PANDA promotes esophageal squamous carcinoma cell progress by dissociating from NF-YA but interact with SAFA. Pathol Res Pract. 215(152604)2019.PubMed/NCBI View Article : Google Scholar | |
Liang Y, Fan Y, Liu Y and Fan H: HNRNPU promotes the progression of hepatocellular carcinoma by enhancing CDK2 transcription. Exp Cell Res. 409(112898)2021.PubMed/NCBI View Article : Google Scholar | |
Song H, Li D, Wang X, Fang E, Yang F, Hu A, Wang J, Guo Y, Liu Y, Li H, et al: HNF4A-AS1/hnRNPU/CTCF axis as a therapeutic target for aerobic glycolysis and neuroblastoma progression. J Hematol Oncol. 13(24)2020.PubMed/NCBI View Article : Google Scholar | |
Xu CL, Chen Y, Zhu TT, Sun ZJ and Chu JH: Clinical significance and pathogenesis analysis of heterogeneous nuclear ribonucleoprotein U in acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi. 43:745–752. 2022.PubMed/NCBI View Article : Google Scholar : (In Chinese). | |
Han BY, Liu Z, Hu X and Ling H: HNRNPU promotes the progression of triple-negative breast cancer via RNA transcription and alternative splicing mechanisms. Cell Death Dis. 13(940)2022.PubMed/NCBI View Article : Google Scholar | |
Dong YY, Wang MY, Jing JJ, Wu YJ, Li H, Yuan Y and Sun LP: Alternative Splicing Factor Heterogeneous Nuclear Ribonucleoprotein U as a promising biomarker for gastric cancer risk and prognosis with tumor-promoting properties. Am J Pathol. 194:13–29. 2024.PubMed/NCBI View Article : Google Scholar | |
Chen T, Zheng W, Chen J, Lin S, Zou Z, Li X and Tan Z: Systematic analysis of survival-associated alternative splicing signatures in clear cell renal cell carcinoma. J Cell Biochem. 121:4074–4084. 2020.PubMed/NCBI View Article : Google Scholar | |
Zhang W, Zheng Z, Wang K, Mao W, Li X, Wang G, Zhang Y, Huang J, Zhang N, Wu P, et al: piRNA-1742 promotes renal cell carcinoma malignancy by regulating USP8 stability through binding to hnRNPU and thereby inhibiting MUC12 ubiquitination. Exp Mol Med. 55:1258–1271. 2023.PubMed/NCBI View Article : Google Scholar | |
Hu WM, Li M, Ning JZ, Tang YQ, Song TB, Li LZ, Zou F, Cheng F and Yu WM: FAM171B stabilizes vimentin and enhances CCL2-mediated TAM infiltration to promote bladder cancer progression. J Exp Clin Cancer Res. 42(290)2023.PubMed/NCBI View Article : Google Scholar | |
Shi ZD, Hao L, Han XX, Wu ZX, Pang K, Dong Y, Qin JX, Wang GY, Zhang XM, Xia T, et al: Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol Cancer. 21(37)2022.PubMed/NCBI View Article : Google Scholar | |
Wang X, Xu J, Li Q, Zhang Y, Lin Z, Zhai X, Wang F, Huang J, Gao Q, Wen J, et al: RNA-binding protein hnRNPU regulates multiple myeloma resistance to selinexor. Cancer Lett. 580(216486)2024.PubMed/NCBI View Article : Google Scholar | |
Li L, Yin JY, He FZ, Huang MS, Zhu T, Gao YF, Chen YX, Zhou DB, Chen X, Sun LQ, et al: Long noncoding RNA SFTA1P promoted apoptosis and increased cisplatin chemosensitivity via regulating the hnRNP-U-GADD45A axis in lung squamous cell carcinoma. Oncotarget. 8:97476–97489. 2017.PubMed/NCBI View Article : Google Scholar | |
Valente ST and Goff SP: Inhibition of HIV-1 gene expression by a fragment of hnRNP U. Mol Cell. 23:597–605. 2006.PubMed/NCBI View Article : Google Scholar | |
Cao L, Liu S, Li Y, Yang G, Luo Y, Li S, Du H, Zhao Y, Wang D, Chen J, et al: The Nuclear Matrix Protein SAFA Surveils Viral RNA and Facilitates Immunity by Activating Antiviral Enhancers and Super-enhancers. Cell Host Microbe. 26:369–384 e8. 2019.PubMed/NCBI View Article : Google Scholar | |
Gupta AK, Drazba JA and Banerjee AK: Specific interaction of heterogeneous nuclear ribonucleoprotein particle U with the leader RNA sequence of vesicular stomatitis virus. J Virol. 72:8532–8540. 1998.PubMed/NCBI View Article : Google Scholar | |
Hu X, Wu X, Ding Z, Chen Z and Wu H: Characterization and functional analysis of chicken dsRNA binding protein hnRNPU. Dev Comp Immunol. 138(104521)2023.PubMed/NCBI View Article : Google Scholar | |
Zhou H, Yan Y, Gao J, Ma M, Liu Y, Shi X, Zhang Q and Xu X: Heterogeneous Nuclear Protein U Degraded the m(6)A Methylated TRAF3 Transcript by YTHDF2 To Promote Porcine Epidemic Diarrhea Virus Replication. J Virol. 97(e0175122)2023.PubMed/NCBI View Article : Google Scholar | |
Caliebe A, Kroes HY, van der Smagt JJ, Martin-Subero JI, Tonnies H, van 't Slot R, Nievelstein RA, Muhle H, Stephani U, Alfke K, et al: Four patients with speech delay, seizures and variable corpus callosum thickness sharing a 0.440 Mb deletion in region 1q44 containing the HNRPU gene. Eur J Med Genet. 53:179–185. 2010.PubMed/NCBI View Article : Google Scholar | |
Depienne C, Nava C, Keren B, Heide S, Rastetter A, Passemard S, Chantot-Bastaraud S, Moutard ML, Agrawal PB, VanNoy G, et al: Genetic and phenotypic dissection of 1q43q44 microdeletion syndrome and neurodevelopmental phenotypes associated with mutations in ZBTB18 and HNRNPU. Hum Genet. 136:463–479. 2017.PubMed/NCBI View Article : Google Scholar | |
Epi4K Consortium; Epilepsy Phenome/Genome Project. Allen AS, Berkovic SF, Cossette P, Delanty N, Dlugos D, Eichler EE, Epstein MP, Glauser T, et al: De novo mutations in epileptic encephalopathies. Nature. 501:217–221. 2013.PubMed/NCBI View Article : Google Scholar | |
Shimada S, Oguni H, Otani Y, Nishikawa A, Ito S, Eto K, Nakazawa T, Yamamoto-Shimojima K, Takanashi JI, Nagata S and Yamamoto T: An episode of acute encephalopathy with biphasic seizures and late reduced diffusion followed by hemiplegia and intractable epilepsy observed in a patient with a novel frameshift mutation in HNRNPU. Brain Dev. 40:813–818. 2018.PubMed/NCBI View Article : Google Scholar | |
Durkin A, Albaba S, Fry AE, Morton JE, Douglas A, Beleza A, Williams D, Volker-Touw CML, Lynch SA, Canham N, et al: Clinical findings of 21 previously unreported probands with HNRNPU-related syndrome and comprehensive literature review. Am J Med Genet A. 182:1637–1654. 2020.PubMed/NCBI View Article : Google Scholar | |
Wang T, Hoekzema K, Vecchio D, Wu H, Sulovari A, Coe BP, Gillentine MA, Wilfert AB, Perez-Jurado LA, Kvarnung M, et al: Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders. Nat Commun. 11(4932)2020.PubMed/NCBI View Article : Google Scholar | |
Taylor J, Spiller M, Ranguin K, Vitobello A, Philippe C, Bruel AL, Cappuccio G, Brunetti-Pierri N, Willems M, Isidor B, et al: Expanding the phenotype of HNRNPU-related neurodevelopmental disorder with emphasis on seizure phenotype and review of literature. Am J Med Genet A. 188:1497–1514. 2022.PubMed/NCBI View Article : Google Scholar | |
Roshon MJ and Ruley HE: Hypomorphic mutation in hnRNP U results in post-implantation lethality. Transgenic Res. 14:179–192. 2005.PubMed/NCBI View Article : Google Scholar |