Comparison of the signaling mechanisms involved in the ETB receptor-mediated secretagogue action of endothelin-1 on dispersed zona glomerulosa cells and capsule-zona glomerulosa preparations of the rat adrenal gland.

  • Authors:
    • P Rebuffat
    • C Macchi
    • L K Malendowicz
    • G G Nussdorfer
  • View Affiliations

  • Published online on: January 1, 2000     https://doi.org/10.3892/ijmm.5.1.43
  • Pages: 43-50
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Endothelin-1 (ET-1) is a hypertensive peptide, which is expressed in the rat adrenal gland, where it stimulates aldosterone secretion from zona glomerulosa (ZG) by activating the ETb receptor subtype. A higher effectiveness of ET-1 has been frequently observed when the integrity of adrenal tissue is preserved. Hence, we compared the aldosterone secretagogue action of ET-1 on dispersed rat ZG cells and capsule-ZG strips. ET-1 concentration-dependently raised aldosterone output by both preparations with similar potency. However, the efficacy of the maximal effective concentration of ET-1 (10-8 M) was about 2.7-fold higher in capsule-ZG strips. The ETb-receptor antagonist BQ-788 (10-7 M) abolished aldosterone response to 10-8 M ET-1 in both ZG preparations, while the ETa receptor antagonist BQ-123 was ineffective. The aldosterone secretagogue action of 10-8 M ET-1 on dispersed ZG cells was concentration-dependently suppressed by the protein kinase (PK) inhibitor calphostin-C. Conversely, both calphostin-C and the nitric oxide (NO) synthase (NOS) inhibitor NG-nitro-L-arginine methyl ester (L-NAME) evoked a concentration-dependent partial reversal of the aldosterone response to 10-8 M ET-1 of capsule-ZG strips. The NO donor L-arginine enhanced basal aldosterone yield of capsular strips, but not dispersed ZG cells. The PKA, cyclooxygenase and lipoxygenase inhibitors H-89, indomethacin and phenidone, as well as the beta-adrenoceptor antagonist l-alprenolol, were ineffective. Collectively, these findings allow us to conclude that in the rat i) the ETb receptor-mediated PKC activation is the main signaling mechanism involved in the direct stimulatory effect of ET-1 on ZG cells; and ii) the higher responsiveness of capsular strips to ET-1 may be accounted for by the ETb receptor-mediated release by stromal elements of NO, which in turn increases aldosterone secretion from ZG cells in a paracrine manner.

Related Articles

Journal Cover

Jan 2000
Volume 5 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Rebuffat P, Macchi C, Malendowicz L and Nussdorfer G: Comparison of the signaling mechanisms involved in the ETB receptor-mediated secretagogue action of endothelin-1 on dispersed zona glomerulosa cells and capsule-zona glomerulosa preparations of the rat adrenal gland.. Int J Mol Med 5: 43-50, 2000
APA
Rebuffat, P., Macchi, C., Malendowicz, L., & Nussdorfer, G. (2000). Comparison of the signaling mechanisms involved in the ETB receptor-mediated secretagogue action of endothelin-1 on dispersed zona glomerulosa cells and capsule-zona glomerulosa preparations of the rat adrenal gland.. International Journal of Molecular Medicine, 5, 43-50. https://doi.org/10.3892/ijmm.5.1.43
MLA
Rebuffat, P., Macchi, C., Malendowicz, L., Nussdorfer, G."Comparison of the signaling mechanisms involved in the ETB receptor-mediated secretagogue action of endothelin-1 on dispersed zona glomerulosa cells and capsule-zona glomerulosa preparations of the rat adrenal gland.". International Journal of Molecular Medicine 5.1 (2000): 43-50.
Chicago
Rebuffat, P., Macchi, C., Malendowicz, L., Nussdorfer, G."Comparison of the signaling mechanisms involved in the ETB receptor-mediated secretagogue action of endothelin-1 on dispersed zona glomerulosa cells and capsule-zona glomerulosa preparations of the rat adrenal gland.". International Journal of Molecular Medicine 5, no. 1 (2000): 43-50. https://doi.org/10.3892/ijmm.5.1.43