Histone deacetylase HDAC4 promotes the proliferation and invasion of glioma cells

  • Authors:
    • Jun-Yan Cai
    • Tong-Tong Xu
    • Ye Wang
    • Jing-Jian Chang
    • Jian Li
    • Xiao-Yang Chen
    • Xi Chen
    • Yi-Fei Yin
    • Xue-Jun Ni
  • View Affiliations

  • Published online on: September 18, 2018     https://doi.org/10.3892/ijo.2018.4564
  • Pages: 2758-2768
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Glioma is the most lethal type of primary brain tumor characterized by aggressiveness and a poor prognosis. Histone deacetylase 4 (HDAC4) is frequently dysregulated in human malignancies. However, its biological functions in the development of glioma are not fully understood. The present study aimed to evaluate HDAC4 expression in human glioma and to elucidate the mechanistic role of HDAC4 in glioma. The results suggested that HDAC4 was significantly upregulated in glioma tissues and a number of glioma cell lines compared with adjacent non-tumor tissues and the non-cancerous human glial cell line SVG p12, respectively (P<0.05). The proliferation, adenosine triphosphate (ATP) levels and invasion ability were substantially enhanced in U251 cells with HDAC4 overexpression, and suppressed in U251 cells with a knockdown of HDAC4 compared with that in U251 cells transfected with the negative control. Knockdown of HDAC4 resulted in cell cycle arrest at the G0/G1 phase and induced the increase of reactive oxygen species level in U251 cells. Furthermore, HDAC4 overexpression was revealed to substantially inhibit the expression of cyclin-dependent kinase (CDK) inhibitors p21 and p27, and the expression of E-cadherin and β‑catenin in glioma U251 cells. Knockdown of HDAC4 substantially promoted the expression of CDK1 and CDK2 and vimentin in glioma U251 cells. Mechanistically, the results of the present study demonstrated that HDAC4 displayed a significant upregulation in glioma, and promoted glioma cell proliferation and invasion mediated through the repression of p21, p27, E-cadherin and β‑catenin, and the potentiation of CDK1, CDK2 and vimentin. Altogether, the present study revealed that HDAC4 overexpression was central for the tumorigenesis of glioma, which may serve as a useful prognostic biomarker and potential therapeutic target for glioma.

References

1 

Farshidfar Z, Faeghi F, Mohseni M, Seddighi A, Kharrazi HH and Abdolmohammadi J: Diffusion tensor tractography in the presurgical assessment of cerebral gliomas. Neuroradiol J. 27:75–84. 2014. View Article : Google Scholar : PubMed/NCBI

2 

Kazakova MH, Staneva DN, Koev IG, Staikov DG, Mateva N, Timonov PT, Miloshev GA and Sarafian VS: Protein and mRNA levels of YKL-40 in high-grade glioma. Folia Biol (Praha). 60:261–267. 2014.

3 

Chen S, Han M, Chen W, He Y, Huang B, Zhao P, Huang Q, Gao L, Qu X and Li X: KIF1B promotes glioma migration and invasion via cell surface localization of MT1-MMP. Oncol Rep. 35:971–977. 2016. View Article : Google Scholar

4 

Ortega-Aznar A, Jimenez-Leon P, Martinez E and Romero-Vidal FJ: Clinico-pathological and molecular aspects of diagnostic and prognostic value in gliomas. Rev Neurol. 56:161–170. 2013.In Spanish. PubMed/NCBI

5 

Waitkus MS, Diplas BH and Yan H: Isocitrate dehydrogenase mutations in gliomas. Neurooncol. 18:16–26. 2016.

6 

Lin M, Zhu Q, Wang J, Yang W, Fan H, Yi J and Jiang M: Molecules involved in acrosomal exocytosis and cortical granule exocytosis. Biotarget. 1:112017. View Article : Google Scholar

7 

Lindemann C, Hackmann O, Delic S, Schmidt N, Reifenberger G and Riemenschneider MJ: SOCS3 promoter methylation is mutually exclusive to EGFR amplification in gliomas and promotes glioma cell invasion through STAT3 and FAK activation. Acta Neuropathol. 122:241–251. 2011. View Article : Google Scholar : PubMed/NCBI

8 

Fang Q, Xu T, Wu C, Zhou S and Sun H: Biotargets in neural regeneration. Biotarget. 1:62017. View Article : Google Scholar

9 

Crow M, Khovanov N, Kelleher JH, Sharma S, Grant AD, Bogdanov Y, Wood JN, McMahon SB and Denk F: HDAC4 is required for inflammation-associated thermal hypersensitivity. FASEB J. 29:3370–3378. 2015. View Article : Google Scholar : PubMed/NCBI

10 

Cohen TJ, Choi MC, Kapur M, Lira VA, Yan Z and Yao TP: HDAC4 regulates muscle fiber type-specific gene expression programs. Mol Cells. 38:343–348. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Zhou J, Li P, Chen Q, Wei X, Zhao T, Wang Z and Wei L: Mitogen-activated protein kinase p38 induces HDAC4 degradation in hypertrophic chondrocytes. Biochim Biophys Acta. 1853:370–376. 2015. View Article : Google Scholar :

12 

Xiao H, Jiao J, Wang L, O’Brien S, Newick K, Wang LC, Falkensammer E, Liu Y, Han R, Kapoor V, et al: HDAC5 controls the functions of Foxp3(+) T-regulatory and CD8(+) T cells. Int J Cancer. 138:2477–2486. 2016. View Article : Google Scholar

13 

Hsieh TH, Hsu CY, Tsai CF, Long CY, Chai CY, Hou MF, Lee JN, Wu DC, Wang SC and Tsai EM: miR-125a-5p is a prognostic biomarker that targets HDAC4 to suppress breast tumorigenesis. Oncotarget. 6:494–509. 2015. View Article : Google Scholar :

14 

Wei JY, Li WM, Zhou LL, Lu QN and He W: Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. J Pineal Res. 58:429–438. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Amodio N, Stamato MA, Gullà AM, Morelli E, Romeo E, Raimondi L, Pitari MR, Ferrandino I, Misso G, Caraglia M, et al: Therapeutic targeting of miR-29b/HDAC4 epigenetic loop in multiple myeloma. Mol Cancer Ther. 15:1364–1375. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Vallabhapurapu SD, Noothi SK, Pullum DA, Lawrie CH, Pallapati R, Potluri V, Kuntzen C, Khan S, Plas DR, Orlowski RZ, et al: Transcriptional repression by the HDAC4-RelB-p52 complex regulates multiple myeloma survival and growth. Nat Commun. 6:84282015. View Article : Google Scholar : PubMed/NCBI

17 

Zeng LS, Yang XZ, Wen YF, Mail SJ, Wang MH, Zhang MY, Zheng XF and Wang HY: Overexpressed HDAC4 is associated with poor survival and promotes tumor progression in esophageal carcinoma. Aging (Albany NY). 8:1236–1249. 2016. View Article : Google Scholar

18 

Kaowinn S, Jun SW, Kim CS, Shin DM, Hwang YH, Kim K, Shin B, Kaewpiboon C, Jeong HH, Koh SS, et al: Increased EGFR expression induced by a novel oncogene, CUG2, confers resistance to doxorubicin through Stat1-HDAC4 signaling. Cell Oncol (Dordr). 40:549–561. 2017. View Article : Google Scholar

19 

Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW and Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 114:97–109. 2007. View Article : Google Scholar : PubMed/NCBI

20 

Henriksen S, Tylden GD, Dumoulin A, Sharma BN, Hirsch HH and Rinaldo CH: The human fetal glial cell line SVG p12 contains infectious BK polyomavirus. J Virol. 88:7556–7568. 2014. View Article : Google Scholar : PubMed/NCBI

21 

George J, Gonçalves FQ, Cristóvão G, Rodrigues L, Meyer Fernandes JR, Gonçalves T, Cunha RA and Gomes CA: Different danger signals differently impact on microglial proliferation through alterations of ATP release and extracellular metabolism. Glia. 63:1636–1645. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Kühn F: New insights into the interaction between ADP-ribose and human TRPM2 channel. Biotarget. 1:142017. View Article : Google Scholar

23 

Almontashiri NA, Chen HH, Mailloux RJ, Tatsuta T, Teng AC, Mahmoud AB, Ho T, Stewart NA, Rippstein P, Harper ME, et al CARDIoGRAM Consortium: SPG7 variant escapes phosphorylation-regulated processing by AFG3L2, elevates mitochondrial ROS, and is associated with multiple clinical phenotypes. Cell Reports. 7:834–847. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Jiang K, Wang W, Jin X, Wang Z, Ji Z and Meng G: Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncol Rep. 33:2711–2718. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Brookes PS, Yoon Y, Robotham JL, Anders MW and Sheu SS: Calcium, ATP, and ROS: A mitochondrial love-hate triangle. Am J Physiol Cell Physiol. 287:C817–C833. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Van de Wouwer M, Couzinié C, Serrano-Palero M, González-Fernández O, Galmés-Varela C, Menéndez-Antolí P, Grau L and Villalobo A: Activation of the BRCA1/Chk1/p53/p21(Cip1/ Waf1) pathway by nitric oxide and cell cycle arrest in human neuroblastoma NB69 cells. Nitric Oxide. 26:182–191. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Wang J, Wang G and Khan MF: Disorder of G2-M Checkpoint control in aniline-induced cell proliferation in rat spleen. PLoS One. 10:e01314572015. View Article : Google Scholar : PubMed/NCBI

28 

Yi X, Li Y, Zai H, Long X and Li W: KLF8 knockdown triggered growth inhibition and induced cell phase arrest in human pancreatic cancer cells. Gene. 585:22–27. 2016. View Article : Google Scholar : PubMed/NCBI

29 

Park IH, Kang JH, Shin JM and Lee HM: Trichostatin A inhibits epithelial mesenchymal transition induced by TGF-β1 in airway epithelium. PLoS One. 11:e01620582016. View Article : Google Scholar

30 

Tu Y, Gao X, Li G, Fu H, Cui D, Liu H, Jin W and Zhang Y: MicroRNA-218 inhibits glioma invasion, migration, proliferation, and cancer stem-like cell self-renewal by targeting the polycomb group gene Bmi1. Cancer Res. 73:6046–6055. 2013. View Article : Google Scholar : PubMed/NCBI

31 

Le Rhun E, Taillibert S and Chamberlain MC: Anaplastic glioma: Current treatment and management. Expert Rev Neurother. 15:601–620. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Wirsching HG, Happold C, Roth P and Weller M: Management of diffusely infiltrating glioma in the elderly. Curr Opin Oncol. 27:502–509. 2015. View Article : Google Scholar : PubMed/NCBI

33 

Liu Q, Zheng JM, Chen JK, Yan XL, Chen HM, Nong WX and Huang HQ: Histone deacetylase 5 promotes the proliferation of glioma cells by upregulation of Notch 1. Mol Med Rep. 10:2045–2050. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Kang ZH, Wang CY, Zhang WL, Zhang JT, Yuan CH, Zhao PW, Lin YY, Hong S, Li CY and Wang L: Histone deacetylase HDAC4 promotes gastric cancer SGC-7901 cells progression via p21 repression. PLoS One. 9:e988942014. View Article : Google Scholar : PubMed/NCBI

35 

Kaewpiboon C, Srisuttee R, Malilas W, Moon J, Oh S, Jeong HG, Johnston RN, Assavalapsakul W and Chung YH: Upregulation of Stat1-HDAC4 confers resistance to etoposide through enhanced multidrug resistance 1 expression in human A549 lung cancer cells. Mol Med Rep. 11:2315–2321. 2015. View Article : Google Scholar

36 

Isaacs JT, Antony L, Dalrymple SL, Brennen WN, Gerber S, Hammers H, Wissing M, Kachhap S, Luo J, Xing L, et al: Tasquinimod Is an aAllosteric modulator of HDAC4 survival signaling within the compromised cancer microenvironment. Cancer Res. 73:1386–1399. 2013. View Article : Google Scholar

37 

Stronach EA, Alfraidi A, Rama N, Datler C, Studd JB, Agarwal R, Guney TG, Gourley C, Hennessy BT, Mills GB, et al: HDAC4-regulated STAT1 activation mediates platinum resistance in ovarian cancer. Cancer Res. 71:4412–4422. 2011. View Article : Google Scholar : PubMed/NCBI

38 

Chen EI: Mitochondrial dysfunction and cancer metastasis. J Bioenerg Biomembr. 44:619–622. 2012. View Article : Google Scholar : PubMed/NCBI

39 

Mottet D, Pirotte S, Lamour V, Hagedorn M, Javerzat S, Bikfalvi A, Bellahcène A, Verdin E and Castronovo V: HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Sp1-dependent, p53-independent mechanism. Oncogene. 28:243–256. 2009. View Article : Google Scholar

40 

Park SY, Jun JA, Jeong KJ, Heo HJ, Sohn JS, Lee HY, Park CG and Kang J: Histone deacetylases 1, 6 and 8 are critical for invasion in breast cancer. Oncol Rep. 25:1677–1681. 2011.PubMed/NCBI

41 

Ahn MY, Kang DO, Na YJ, Yoon S, Choi WS, Kang KW, Chung HY, Jung JH, Min S and Kim HS: Histone deacetylase inhibitor, apicidin, inhibits human ovarian cancer cell migration via class II histone deacetylase 4 silencing. Cancer Lett. 325:189–199. 2012. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2018
Volume 53 Issue 6

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Cai, J., Xu, T., Wang, Y., Chang, J., Li, J., Chen, X. ... Ni, X. (2018). Histone deacetylase HDAC4 promotes the proliferation and invasion of glioma cells. International Journal of Oncology, 53, 2758-2768. https://doi.org/10.3892/ijo.2018.4564
MLA
Cai, J., Xu, T., Wang, Y., Chang, J., Li, J., Chen, X., Chen, X., Yin, Y., Ni, X."Histone deacetylase HDAC4 promotes the proliferation and invasion of glioma cells". International Journal of Oncology 53.6 (2018): 2758-2768.
Chicago
Cai, J., Xu, T., Wang, Y., Chang, J., Li, J., Chen, X., Chen, X., Yin, Y., Ni, X."Histone deacetylase HDAC4 promotes the proliferation and invasion of glioma cells". International Journal of Oncology 53, no. 6 (2018): 2758-2768. https://doi.org/10.3892/ijo.2018.4564