Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Oncology
Join Editorial Board Propose a Special Issue
Print ISSN: 1019-6439 Online ISSN: 1791-2423
Journal Cover
August-2020 Volume 57 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
August-2020 Volume 57 Issue 2

Full Size Image

Cover Legend PDF

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Targeting cancer stem cells in cholangiocarcinoma (Review)

  • Authors:
    • Nicole A. Mcgrath
    • Jianyang Fu
    • Sophie Z. Gu
    • Changqing Xie
  • View Affiliations / Copyright

    Affiliations: Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20814, USA, Johns Hopkins University School of Medicine, Baltimore, MD 20215, USA
    Copyright: © Mcgrath et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Pages: 397-408
    |
    Published online on: May 28, 2020
       https://doi.org/10.3892/ijo.2020.5074
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The incidence of cholangiocarcinoma has been increasing steadily over the past 50 years, but the survival rates remained low due to the disease being highly resistant to non‑surgical treatment interventions. Cancer stem cell markers are expressed in cholangiocarcinoma, suggesting that they serve a significant role in the physiology of the disease. Cancer stem cells are frequently implicated in tumor relapse and acquired resistance to a number of therapeutic strategies, including chemotherapy, radiation and immune checkpoint inhibitors. Novel targeted therapies to eradicate cancer stem cells may assist in overcoming treatment resistance in cholangiocarcinoma and reduce the rates of relapse and recurrence. Several signaling pathways have been previously documented to regulate the development and survival of cancer stem cells, including Notch, janus kinase/STAT, Hippo/yes‑associated protein 1 (YAP1), Wnt and Hedgehog signaling. Although pharmacological agents have been developed to target these pathways, only modest effects were reported in clinical trials. The Hippo/YAP1 signaling pathway has come to the forefront in the field of cancer stem cell research due to its reported involvement in epithelium‑mesenchymal transition, cell adhesion, organogenesis and tumorigenesis. In the present article, recent findings in terms of cancer stem cell research in cholangiocarcinoma were reviewed, where the potential therapeutic targeting of cancer stem cells in this disease was discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Shaib Y and El-Serag HB: The epidemiology of cholangiocarcinoma. Semin Liver Dis. 24:115–125. 2004. View Article : Google Scholar : PubMed/NCBI

2 

Patel N and Benipal B: Incidence of Cholangiocarcinoma in the USA from 2001 to 2015: A US Cancer Statistics Analysis of 50 States. Cureus. 11:e39622019.PubMed/NCBI

3 

Yao KJ, Jabbour S, Parekh N, Lin Y and Moss RA: Increasing mortality in the United States from cholangiocarcinoma: An analysis of the National Center for Health Statistics Database. BMC Gastroenterol. 16:1172016. View Article : Google Scholar : PubMed/NCBI

4 

Mavros MN, Economopoulos KP, Alexiou VG and Pawlik TM: Treatment and Prognosis for Patients With Intrahepatic Cholangiocarcinoma: Systematic Review and Meta-analysis. JAMA Surg. 149:565–574. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Arrington AK, Nelson RA, Falor A, Luu C, Wiatrek RL, Fakih M, Singh G and Kim J: Impact of medical and surgical intervention on survival in patients with cholangiocarcinoma. World J Gastrointest Surg. 5:178–186. 2013. View Article : Google Scholar : PubMed/NCBI

6 

Valle J, Wasan H, Palmer DH, Cunningham D, Anthoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP, et al: ABC-02 Trial Investigators: Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N Engl J Med. 362:1273–1281. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Park JO, Oh DY, Hsu C, Chen JS, Chen LT, Orlando M, Kim JS and Lim HY: Gemcitabine Plus Cisplatin for Advanced Biliary Tract Cancer: A Systematic Review. Cancer Res Treat. 47:343–361. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Javle M, Lowery M, Shroff RT, Weiss KH, Springfeld C, Borad MJ, Ramanathan RK, Goyal L, Sadeghi S, Macarulla T, et al: Phase II Study of BGJ398 in Patients With FGFR-Altered Advanced Cholangiocarcinoma. J Clin Oncol. 36:276–282. 2018. View Article : Google Scholar :

9 

Lowery MA, Burris HA III, Janku F, Shroff RT, Cleary JM, Azad NS, Goyal L, Maher EA, Gore L, Hollebecque A, et al: Safety and activity of ivosidenib in patients with IDH1-mutant advanced cholangiocarcinoma: A phase 1 study. Lancet Gastroenterol Hepatol. 4:711–720. 2019. View Article : Google Scholar : PubMed/NCBI

10 

Akinleye A and Rasool Z: Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol. 12:922019. View Article : Google Scholar : PubMed/NCBI

11 

El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, Kim TY, Choo SP, Trojan J, Welling TH III, et al: Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet. 389:2492–2502. 2017. View Article : Google Scholar : PubMed/NCBI

12 

Zhu AX, Finn RS, Edeline J, Cattan S, Ogasawara S, Palmer D, Verslype C, Zagonel V, Fartoux L, Vogel A, et al: KEYNOTE-224 investigators: Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 19:940–952. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Gou M, Zhang Y, Si H and Dai G: Efficacy and safety of nivolumab for metastatic biliary tract cancer. OncoTargets Ther. 12:861–867. 2019. View Article : Google Scholar

14 

Ueno M, Chung HC, Nagrial A, Marabelle A, Kelley RK, Xu L, Mahoney J, Pruitt SK and Oh D: Pembrolizumab for advanced biliary adenocarcinoma: Results from the multicohort, phase 2 KEYNOTE-158 study. Ann Oncol. 29(Suppl 8): pp. viii205–viii270. 2018, View Article : Google Scholar

15 

Xie C, Duffy AG, Mabry-Hrones D, Wood B, Levy E, Krishnasamy V, Khan J, Wei JS, Agdashian D, Tyagi M, et al: Tremelimumab in Combination With Microwave Ablation in Patients With Refractory Biliary Tract Cancer. Hepatology. 69:2048–2060. 2019. View Article : Google Scholar :

16 

Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. 1994. View Article : Google Scholar : PubMed/NCBI

18 

Yamashita T and Wang XW: Cancer stem cells in the development of liver cancer. J Clin Invest. 123:1911–1918. 2013. View Article : Google Scholar : PubMed/NCBI

19 

Clara JA, Monge C, Yang Y and Takebe N: Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update. Nat Rev Clin Oncol. 17:204–232. 2020. View Article : Google Scholar

20 

Lytle NK, Barber AG and Reya T: Stem cell fate in cancer growth, progression and therapy resistance. Nat Rev Cancer. 18:669–680. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Silver DJ, Sinyuk M, Vogelbaum MA, Ahluwalia MS and Lathia JD: The intersection of cancer, cancer stem cells, and the immune system: Therapeutic opportunities. Neuro-oncol. 18:153–159. 2016. View Article : Google Scholar :

22 

Lu W and Kang Y: Epithelial-Mesenchymal Plasticity in Cancer Progression and Metastasis. Dev Cell. 49:361–374. 2019. View Article : Google Scholar : PubMed/NCBI

23 

Lugli A, Iezzi G, Hostettler I, Muraro MG, Mele V, Tornillo L, Carafa V, Spagnoli G, Terracciano L and Zlobec I: Prognostic impact of the expression of putative cancer stem cell markers CD133, CD166, CD44s, EpCAM, and ALDH1 in colorectal cancer. Br J Cancer. 103:382–390. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Cardinale V, Renzi A, Carpino G, Torrice A, Bragazzi MC, Giuliante F, DeRose AM, Fraveto A, Onori P, Napoletano C, et al: Profiles of cancer stem cell subpopulations in cholangiocarcinomas. Am J Pathol. 185:1724–1739. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Singh SK, Clarke ID, Hide T and Dirks PB: Cancer stem cells in nervous system tumors. Oncogene. 23:7267–7273. 2004. View Article : Google Scholar : PubMed/NCBI

26 

Glumac PM and LeBeau AM: The role of CD133 in cancer: A concise review. Clin Transl Med. 7:182018. View Article : Google Scholar : PubMed/NCBI

27 

Bhuria V, Xing J, Scholta T, Bui KC, Nguyen MLT, Malek NP, Bozko P and Plentz RR: Hypoxia induced Sonic Hedgehog signaling regulates cancer stemness, epithelial-to-mesenchymal transition and invasion in cholangiocarcinoma. Exp Cell Res. 385:1116712019. View Article : Google Scholar : PubMed/NCBI

28 

Li J, Chen JN, Zeng TT, He F, Chen SP, Ma S, Bi J, Zhu XF and Guan XY: CD133+ liver cancer stem cells resist interferon-gamma-induced autophagy. BMC Cancer. 16:152016. View Article : Google Scholar : PubMed/NCBI

29 

Shimada M, Sugimoto K, Iwahashi S, Utsunomiya T, Morine Y, Imura S and Ikemoto T: CD133 expression is a potential prognostic indicator in intrahepatic cholangiocarcinoma. J Gastroenterol. 45:896–902. 2010. View Article : Google Scholar : PubMed/NCBI

30 

Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, Kuroki H, Watanabe M, Beppu T, Tamada M, Nagano O, et al: CD44s regulates the TGF-β-mediated mesenchymal phenotype and is associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res. 72:3414–3423. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, et al: CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 19:387–400. 2011. View Article : Google Scholar : PubMed/NCBI

32 

Suwannakul N, Ma N, Thanan R, Pinlaor S, Ungarreevittaya P, Midorikawa K, Hiraku Y, Oikawa S, Kawanishi S and Murata M: Overexpression of CD44 Variant 9: A Novel Cancer Stem Cell Marker in Human Cholangiocarcinoma in Relation to Inflammation. Mediators Inflamm. 2018:48672342018. View Article : Google Scholar : PubMed/NCBI

33 

Morrin M and Delaney PV: CD44v6 is not relevant in colorectal tumour progression. Int J Colorectal Dis. 17:30–36. 2002. View Article : Google Scholar : PubMed/NCBI

34 

Coppola D, Hyacinthe M, Fu L, Cantor AB, Karl R, Marcet J, Cooper DL, Nicosia SV and Cooper HS: CD44V6 expression in human colorectal carcinoma. Hum Pathol. 29:627–635. 1998. View Article : Google Scholar : PubMed/NCBI

35 

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, et al: The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133:704–715. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Vaquero J, Lobe C, Tahraoui S, Clapéron A, Mergey M, Merabtene F, Wendum D, Coulouarn C, Housset C, Desbois-Mouthon C, et al: The IGF2/IR/IGF1R Pathway in Tumor Cells and Myofibroblasts Mediates Resistance to EGFR Inhibition in Cholangiocarcinoma. Clin Cancer Res. 24:4282–4296. 2018. View Article : Google Scholar : PubMed/NCBI

37 

Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Agrawal S, Kuvshinoff BW, Khoury T, Yu J, Javle MM, LeVea C, Groth J, Coignet LJ and Gibbs JF: CD24 expression is an independent prognostic marker in cholangiocarcinoma. J Gastrointest Surg. 11:445–451. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Zhou FQ, Qi YM, Xu H, Wang QY, Gao XS and Guo HG: Expression of EpCAM and Wnt/β-catenin in human colon cancer. Genet Mol Res. 14:4485–4494. 2015. View Article : Google Scholar : PubMed/NCBI

40 

Yamashita T, Budhu A, Forgues M and Wang XW: Activation of hepatic stem cell marker EpCAM by Wnt-beta-catenin signaling in hepatocellular carcinoma. Cancer Res. 67:10831–10839. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Sulpice L, Rayar M, Turlin B, Boucher E, Bellaud P, Desille M, Meunier B, Clément B, Boudjema K and Coulouarn C: Epithelial cell adhesion molecule is a prognosis marker for intrahepatic cholangiocarcinoma. J Surg Res. 192:117–123. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Vasanthakumar S, Sasikala P, Padma M, Balachandar V, Venkatesh B and Ganesan S: EpCAM as a novel therapeutic target for hepatocellular carcinoma. J Oncological Sci. 3:71–76. 2017. View Article : Google Scholar

43 

Breuhahn K, Baeuerle PA, Peters M, Prang N, Töx U, Köhne-Volland R, Dries V, Schirmacher P and Leo E: Expression of epithelial cellular adhesion molecule (Ep-CAM) in chronic (necro-)inflammatory liver diseases and hepatocellular carcinoma. Hepatol Res. 34:50–56. 2006. View Article : Google Scholar

44 

Sun YF, Xu Y, Yang XR, Guo W, Zhang X, Qiu SJ, Shi RY, Hu B, Zhou J and Fan J: Circulating stem cell-like epithelial cell adhesion molecule-positive tumor cells indicate poor prognosis of hepatocellular carcinoma after curative resection. Hepatology. 57:1458–1468. 2013. View Article : Google Scholar

45 

Wang M, Xiao J, Shen M, Yahong Y, Tian R, Zhu F, Jiang J, Du Z, Hu J, Liu W, et al: Isolation and characterization of tumorigenic extrahepatic cholangiocarcinoma cells with stem cell-like properties. Int J Cancer. 128:72–81. 2011. View Article : Google Scholar

46 

Shuang ZY, Wu WC, Xu J, Lin G, Liu YC, Lao XM, Zheng L and Li S: Transforming growth factor-β1-induced epithelial-mesenchymal transition generates ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett. 354:320–328. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Lingala S, Cui YY, Chen X, Ruebner BH, Qian XF, Zern MA and Wu J: Immunohistochemical staining of cancer stem cell markers in hepatocellular carcinoma. Exp Mol Pathol. 89:27–35. 2010. View Article : Google Scholar : PubMed/NCBI

48 

You L, Guo X and Huang Y: Correlation of Cancer Stem-Cell Markers OCT4, SOX2, and NANOG with Clinicopathological Features and Prognosis in Operative Patients with Rectal Cancer. Yonsei Med J. 59:35–42. 2018. View Article : Google Scholar

49 

Zhang MX, Gan W, Jing CY, Zheng SS, Yi Y, Zhang J, Xu X, Lin JJ, Zhang BH and Qiu SJ: High expression of Oct4 and Nanog predict poor prognosis in intrahepatic cholangiocarcinoma patients after curative resection. J Cancer. 10:1313–1324. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Gu MJ and Jang BI: Clinicopathologic significance of Sox2, CD44 and CD44v6 expression in intrahepatic cholangiocarcinoma. Pathol Oncol Res. 20:655–660. 2014. View Article : Google Scholar : PubMed/NCBI

51 

Visvader JE and Lindeman GJ: Cancer stem cells in solid tumours: Accumulating evidence and unresolved questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Elaimy AL and Mercurio AM: Convergence of VEGF and YAP/TAZ signaling: Implications for angiogenesis and cancer biology. Sci Signal. 11:pp. eaau11652018, View Article : Google Scholar : PubMed/NCBI

53 

Guo L and Teng L: YAP/TAZ for cancer therapy: Opportunities and challenges (Review). Int J Oncol. 46:1444–1452. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Sugihara T, Isomoto H, Gores G and Smoot R: YAP and the Hippo pathway in cholangiocarcinoma. J Gastroenterol. 54:485–491. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Kim MK, Jang JW and Bae SC: DNA binding partners of YAP/TAZ. BMB Rep. 51:126–133. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Kim HM, Jung WH and Koo JS: Expression of Yes-associated protein (YAP) in metastatic breast cancer. Int J Clin Exp Pathol. 8:11248–11257. 2015.PubMed/NCBI

57 

Sugiura K, Mishima T, Takano S, Yoshitomi H, Furukawa K, Takayashiki T, Kuboki S, Takada M, Miyazaki M and Ohtsuka M: The Expression of Yes-Associated Protein (YAP) Maintains Putative Cancer Stemness and Is Associated with Poor Prognosis in Intrahepatic Cholangiocarcinoma. Am J Pathol. 189:1863–1877. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Xu MZ, Yao TJ, Lee NP, Ng IO, Chan YT, Zender L, Lowe SW, Poon RT and Luk JM: Yes-associated protein is an independent prognostic marker in hepatocellular carcinoma. Cancer. 115:4576–4585. 2009. View Article : Google Scholar : PubMed/NCBI

59 

Lee K, Lee KB, Jung HY, Yi NJ, Lee KW, Suh KS and Jang JJ: The correlation between poor prognosis and increased yes-associated protein 1 expression in keratin 19 expressing hepatocellular carcinomas and cholangiocarcinomas. BMC Cancer. 17:4412017. View Article : Google Scholar : PubMed/NCBI

60 

Liu JY, Li YH, Lin HX, Liao YJ, Mai SJ, Liu ZW, Zhang ZL, Jiang LJ, Zhang JX, Kung HF, et al: Overexpression of YAP 1 contributes to progressive features and poor prognosis of human urothelial carcinoma of the bladder. BMC Cancer. 13:3492013. View Article : Google Scholar : PubMed/NCBI

61 

Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, Takano Y, Hikasa H, Itoh T, Suzuki SO, et al: Dysregulated YAP1/TAZ and TGF-β signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci USA. 113:E71–E80. 2016. View Article : Google Scholar

62 

Song H, Mak KK, Topol L, Yun K, Hu J, Garrett L, Chen Y, Park O, Chang J, Simpson RM, et al: Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci USA. 107:1431–1436. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Yamada D, Rizvi S, Razumilava N, Bronk SF, Davila JI, Champion MD, Borad MJ, Bezerra JA, Chen X and Gores GJ: IL-33 facilitates oncogene-induced cholangiocarcinoma in mice by an interleukin-6-sensitive mechanism. Hepatology. 61:1627–1642. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Song S, Xie M, Scott AW, Jin J, Ma L, Dong X, Skinner HD, Johnson RL, Ding S and Ajani JA: A Novel YAP1 Inhibitor Targets CSC-Enriched Radiation-Resistant Cells and Exerts Strong Antitumor Activity in Esophageal Adenocarcinoma. Mol Cancer Ther. 17:443–454. 2018. View Article : Google Scholar

65 

Song S, Ajani JA, Honjo S, Maru DM, Chen Q, Scott AW, Heallen TR, Xiao L, Hofstetter WL, Weston B, et al: Hippo coactivator YAP1 upregulates SOX9 and endows esophageal cancer cells with stem-like properties. Cancer Res. 74:4170–4182. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Ooki A, Del Carmen Rodriguez Pena M, Marchionni L, Dinalankara W, Begum A, Hahn NM, VandenBussche CJ, Rasheed ZA, Mao S, Netto GJ, et al: YAP1 and COX2 Coordinately Regulate Urothelial Cancer Stem-like Cells. Cancer Res. 78:168–181. 2018. View Article : Google Scholar :

67 

Bora-Singhal N, Nguyen J, Schaal C, Perumal D, Singh S, Coppola D and Chellappan S: YAP1 Regulates OCT4 Activity and SOX2 Expression to Facilitate Self-Renewal and Vascular Mimicry of Stem-Like Cells. Stem Cells. 33:1705–1718. 2015. View Article : Google Scholar : PubMed/NCBI

68 

Zhu P, Wang Y, Wu J, Huang G, Liu B, Ye B, Du Y, Gao G, Tian Y, He L, et al: LncBRM initiates YAP1 signalling activation to drive self-renewal of liver cancer stem cells. Nat Commun. 7:136082016. View Article : Google Scholar : PubMed/NCBI

69 

Xu Li F, Liu Y, Singh B, Zhao PK, Jin W, Han J, Scott G, Dong AW, Huo XL, et al: YAP1-Mediated CDK6 Activation Confers Radiation Resistance in Esophageal Cancer - Rationale for the Combination of YAP1 and CDK4/6 Inhibitors in Esophageal Cancer. Clin Cancer Res. 25:2264–2277. 2019. View Article : Google Scholar

70 

Syed IS, Pedram A and Farhat WA: Role of Sonic Hedgehog (Shh) Signaling in Bladder Cancer Stemness and Tumorigenesis. Curr Urol Rep. 17:112016. View Article : Google Scholar : PubMed/NCBI

71 

U.S. National Library of Medicine: A Study Evaluating IPI-926 in Combination With Gemcitabine in Patients With Metastatic Pancreatic Cancer. http://ClinicalTrials.govurisimpleClinicalTrials.gov Identifier: NCT01130142. https://clinicaltrials.gov/ct2/show/NCT01130142. Accessed May 25, 2010.

72 

Ko AH, LoConte N, Tempero MA, Walker EJ, Kate Kelley R, Lewis S, Chang WC, Kantoff E, Vannier MW, Catenacci DV, et al: A Phase I Study of FOLFIRINOX Plus IPI-926, a Hedgehog Pathway Inhibitor, for Advanced Pancreatic Adenocarcinoma. Pancreas. 45:370–375. 2016. View Article : Google Scholar

73 

Xie H, Paradise BD, Ma WW and Fernandez-Zapico ME: Recent Advances in the Clinical Targeting of Hedgehog/GLI Signaling in Cancer. Cells. 8:E3942019. View Article : Google Scholar : PubMed/NCBI

74 

Ranganathan P, Weaver KL and Capobianco AJ: Notch signalling in solid tumours: A little bit of everything but not all the time. Nat Rev Cancer. 11:338–351. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Wang Z, Li Y, Banerjee S and Sarkar FH: Emerging role of Notch in stem cells and cancer. Cancer Lett. 279:8–12. 2009. View Article : Google Scholar :

76 

Cigliano A, Wang J, Chen X and Calvisi DF: Role of the Notch signaling in cholangiocarcinoma. Expert Opin Ther Targets. 21:471–483. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, Gores GJ, Dombrowski F, Evert M, Chen X, et al: Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest. 122:2911–2915. 2012. View Article : Google Scholar : PubMed/NCBI

78 

Wang R, Sun Q, Wang P, Liu M, Xiong S, Luo J, Huang H, Du Q, Geller DA and Cheng B: Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget. 7:5754–5768. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Schatoff EM, Leach BI and Dow LE: Wnt Signaling and Colorectal Cancer. Curr Colorectal Cancer Rep. 13:101–110. 2017. View Article : Google Scholar : PubMed/NCBI

80 

Boulter L, Guest RV, Kendall TJ, Wilson DH, Wojtacha D, Robson AJ, Ridgway RA, Samuel K, Van Rooijen N, Barry ST, et al: WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J Clin Invest. 125:1269–1285. 2015. View Article : Google Scholar : PubMed/NCBI

81 

Park HW, Kim YC, Yu B, Moroishi T, Mo JS, Plouffe SW, Meng Z, Lin KC, Yu FX, Alexander CM, et al: Alternative Wnt Signaling Activates YAP/TAZ. Cell. 162:780–794. 2015. View Article : Google Scholar : PubMed/NCBI

82 

Santoro R, Zanotto M, Simionato F, Zecchetto C, Merz V, Cavallini C, Piro G, Sabbadini F, Boschi F, Scarpa A and Melisi D: Modulating TAK1 expression inhibits YAP and TAZ oncogenic functions in pancreatic cancer. Mol Cancer Ther. 19:247–257. 2020. View Article : Google Scholar

83 

Gray JE, Infante JR, Brail LH, Simon GR, Cooksey JF, Jones SF, Farrington DL, Yeo A, Jackson KA, Chow KH, et al: A first-in-human phase I dose-escalation, pharmacokinetic, and pharmacodynamic evaluation of intravenous LY2090314, a glycogen synthase kinase 3 inhibitor, administered in combination with pemetrexed and carboplatin. Invest New Drugs. 33:1187–1196. 2015. View Article : Google Scholar : PubMed/NCBI

84 

U.S. National Library of Medicine: A Study of BBI503 in Adult Patients With Advanced Hepatobiliary Cancer. http://ClinicalTrials.govurisimpleClinicalTrials.gov Identifier: NCT02232633. https://ClinicalTrials.gov/show/NCT02232633. Accessed September 5, 2014.

85 

Jonker DJ, Laurie SA, Cote GM, Flaherty K, Fuchs CS, Chugh R, Smith DC, Edenfield WJ, Conkling PR, Mier JW, et al: Phase 1 extension study of BBI503, a first-in-class cancer stemness kinase inhibitor, in patients with advanced colorectal cancer. J Clin Oncol. 33(Suppl 15): pp. 36152015, View Article : Google Scholar

86 

Xiong H, Zhang ZG, Tian XQ, Sun DF, Liang QC, Zhang YJ, Lu R, Chen YX and Fang JY: Inhibition of JAK1, 2/STAT3 signaling induces apoptosis, cell cycle arrest, and reduces tumor cell invasion in colorectal cancer cells. Neoplasia. 10:287–297. 2008. View Article : Google Scholar : PubMed/NCBI

87 

U.S. National Library of Medicine: A Study of Napabucasin (BBI-608) in Combination With FOLFIRI in Adult Patients With Previously Treated Metastatic Colorectal Cancer. ClinicalTrials. gov Identifier: NCT02753127. https://clinicaltrials.gov/ct2/show/NCT02753127. Accessed April 27, 2016.

88 

Bendell JC, Hubbard JM, O'Neil BH, Jonker DJ, Starodub A, Peyton JD, Pitot HC, Halfdanarson TR, Nadeau BR, Zubkus JD, et al: Phase 1b/II study of cancer stemness inhibitor napabucasin (BBI-608) in combination with FOLFIRI +/- bevacizumab (bev) in metastatic colorectal cancer (mCRC) patients (pts). J Clin Oncol. 35(Suppl 15): pp. 35292017, View Article : Google Scholar

89 

Beyreis M, Gaisberger M, Jakab M, Neureiter D, Helm K, Ritter M, Kiesslich T and Mayr C: The Cancer Stem Cell Inhibitor Napabucasin (BBI608) Shows General Cytotoxicity in Biliary Tract Cancer Cells and Reduces Cancer Stem Cell Characteristics. Cancers (Basel). 11. pp. E2762019, View Article : Google Scholar

90 

Piersma B, Bank RA and Boersema M: Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne). 2:pp. 592015

91 

Kim W, Khan SK and Yang Y: Interacting network of Hippo, Wnt/β-catenin and Notch signaling represses liver tumor formation. BMB Rep. 50:1–2. 2017. View Article : Google Scholar :

92 

Rabadán MA, Cayuso J, Le Dréau G, Cruz C, Barzi M, Pons S, Briscoe J and Martí E: Jagged2 controls the generation of motor neuron and oligodendrocyte progenitors in the ventral spinal cord. Cell Death Differ. 19:209–219. 2012. View Article : Google Scholar :

93 

He J, Sheng T, Stelter AA, Li C, Zhang X, Sinha M, Luxon BA and Xie J: Suppressing Wnt signaling by the hedgehog pathway through sFRP-1. J Biol Chem. 281:35598–35602. 2006. View Article : Google Scholar : PubMed/NCBI

94 

Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, Aigner L, Brawanski A, Bogdahn U and Beier CP: CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 67:4010–4015. 2007. View Article : Google Scholar : PubMed/NCBI

95 

Croker AK, Goodale D, Chu J, Postenka C, Hedley BD, Hess DA and Allan AL: High aldehyde dehydrogenase and expression of cancer stem cell markers selects for breast cancer cells with enhanced malignant and metastatic ability. J Cell Mol Med. 13:2236–2252. 2009. View Article : Google Scholar

96 

Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, et al: CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 118:2111–2120. 2008.PubMed/NCBI

97 

Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, et al: Human hepatic stem cells from fetal and postnatal donors. J Exp Med. 204:1973–1987. 2007. View Article : Google Scholar : PubMed/NCBI

98 

Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, Ronconi E, Meini C, Gacci M, Squecco R, et al: Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. J Am Soc Nephrol. 17:2443–2456. 2006. View Article : Google Scholar : PubMed/NCBI

99 

Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ and Guan XY: Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res. 6:1146–1153. 2008. View Article : Google Scholar : PubMed/NCBI

100 

Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De Maria R: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15:504–514. 2008. View Article : Google Scholar

101 

Jaksch M, Múnera J, Bajpai R, Terskikh A and Oshima RG: Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res. 68:7882–7886. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Kryczek I, Liu S, Roh M, Vatan L, Szeliga W, Wei S, Banerjee M, Mao Y, Kotarski J, Wicha MS, et al: Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer. 130:29–39. 2012. View Article : Google Scholar

103 

Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK, et al: Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71:3991–4001. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Lardon J, Corbeil D, Huttner WB, Ling Z and Bouwens L: Stem cell marker prominin-1/AC133 is expressed in duct cells of the adult human pancreas. Pancreas. 36:pp. e1–e6. 2008, View Article : Google Scholar : PubMed/NCBI

105 

Collins AT, Berry PA, Hyde C, Stower MJ and Maitland NJ: Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 65:10946–10951. 2005. View Article : Google Scholar : PubMed/NCBI

106 

Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD and Dirks PB: Identification of human brain tumour initiating cells. Nature. 432:396–401. 2004. View Article : Google Scholar : PubMed/NCBI

107 

O'Brien CA, Pollett A, Gallinger S and Dick JE: A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 445:106–110. 2007. View Article : Google Scholar

108 

Zhou J, Wang H, Cannon V, Wolcott KM, Song H and Yates C: Side population rather than CD133(+) cells distinguishes enriched tumorigenicity in hTERT-immortalized primary prostate cancer cells. Mol Cancer. 10:1122011. View Article : Google Scholar : PubMed/NCBI

109 

Avril T, Etcheverry A, Pineau R, Obacz J, Jegou G, Jouan F, Le Reste PJ, Hatami M, Colen RR, Carlson BL, et al: CD90 expression controls migration and predicts dasatinib response in glioblastoma. Clin Cancer Res. 23:7360–7374. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Yamashita T, Honda M, Nakamoto Y, Baba M, Nio K, Hara Y, Zeng SS, Hayashi T, Kondo M, Takatori H, et al: Discrete nature of EpCAM+ and CD90+ cancer stem cells in human hepato-cellular carcinoma. Hepatology. 57:1484–1497. 2013. View Article : Google Scholar

111 

Wang P, Gao Q, Suo Z, Munthe E, Solberg S, Ma L, Wang M, Westerdaal NA, Kvalheim G and Gaudernack G: Identification and characterization of cells with cancer stem cell properties in human primary lung cancer cell lines. PLoS One. 8:pp. e570202013, View Article : Google Scholar : PubMed/NCBI

112 

Chen WC, Hsu HP, Li CY, Yang YJ, Hung YH, Cho CY, Wang CY, Weng TY and Lai MD: Cancer stem cell marker CD90 inhibits ovarian cancer formation via β3 integrin. Int J Oncol. 49:1881–1889. 2016. View Article : Google Scholar : PubMed/NCBI

113 

Jiang J, Zhang Y, Chuai S, Wang Z, Zheng D, Xu F, Zhang Y, Li C, Liang Y and Chen Z: Trastuzumab (herceptin) targets gastric cancer stem cells characterized by CD90 phenotype. Oncogene. 31:671–682. 2012. View Article : Google Scholar

114 

Flahaut M, Jauquier N, Chevalier N, Nardou K, Balmas Bourloud K, Joseph JM, Barras D, Widmann C, Gross N, Renella R, et al: Aldehyde dehydrogenase activity plays a Key role in the aggressive phenotype of neuroblastoma. BMC Cancer. 16:7812016. View Article : Google Scholar : PubMed/NCBI

115 

Ricardo S, Vieira AF, Gerhard R, Leitão D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F and Paredes J: Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol. 11:937–946. 2011. View Article : Google Scholar

116 

Feng H and Liu Y, Bian X, Zhou F and Liu Y: ALDH1A3 affects colon cancer in vitro proliferation and invasion depending on CXCR4 status. Br J Cancer. 118:224–232. 2018. View Article : Google Scholar :

117 

Khorrami S, Zavaran Hosseini A, Mowla SJ and Malekzadeh R: Verification of ALDH Activity as a Biomarker in Colon Cancer Stem Cells-Derived HT-29 Cell Line. Iran J Cancer Prev. 8:pp. e34462015, View Article : Google Scholar : PubMed/NCBI

118 

Moreb JS, Baker HV, Chang LJ, Amaya M, Lopez MC, Ostmark B and Chou W: ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Mol Cancer. 7:872008. View Article : Google Scholar : PubMed/NCBI

119 

Yan J, De Melo J, Cutz JC, Aziz T and Tang D: Aldehyde dehydrogenase 3A1 associates with prostate tumorigenesis. Br J Cancer. 110:2593–2603. 2014. View Article : Google Scholar : PubMed/NCBI

120 

Li W, Ma H, Zhang J, Zhu L, Wang C and Yang Y: Unraveling the roles of CD44/CD24 and ALDH1 as cancer stem cell markers in tumorigenesis and metastasis. Sci Rep. 7:138562017. View Article : Google Scholar : PubMed/NCBI

121 

Luo Y, Dallaglio K, Chen Y, Robinson WA, Robinson SE, McCarter MD, Wang J, Gonzalez R, Thompson DC, Norris DA, et al: ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells. 30:2100–2113. 2012. View Article : Google Scholar : PubMed/NCBI

122 

Mueller MT, Hermann PC, Witthauer J, Rubio-Viqueira B, Leicht SF, Huber S, Ellwart JW, Mustafa M, Bartenstein P, D'Haese JG, et al: Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology. 137:1102–1113. 2009. View Article : Google Scholar : PubMed/NCBI

123 

Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, Werbeck JL, Amankulor NM, Huse JT and Holland EC: Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 14:357–369. 2014. View Article : Google Scholar : PubMed/NCBI

124 

Fu J, Yang QY, Sai K, Chen FR, Pang JC, Ng HK, Kwan AL and Chen ZP: TGM2 inhibition attenuates ID1 expression in CD44-high glioma-initiating cells. Neuro-oncol. 15:1353–1365. 2013. View Article : Google Scholar : PubMed/NCBI

125 

Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M, Apuzzo T, Sperduti I, Volpe S, Cocorullo G, et al: CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 14:342–356. 2014. View Article : Google Scholar : PubMed/NCBI

126 

Paradis V, Ferlicot S, Ghannam E, Zeimoura L, Blanchet P, Eschwége P, Jardin A, Benoît G and Bedossa P: CD44 is an independent prognostic factor in conventional renal cell carcinomas. J Urol. 161:1984–1987. 1999. View Article : Google Scholar : PubMed/NCBI

127 

Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J and Li J: Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cancer. 126:2067–2078. 2010.

128 

He QZ, Luo XZ, Wang K, Zhou Q, Ao H, Yang Y, Li SX, Li Y, Zhu HT and Duan T: Isolation and characterization of cancer stem cells from high-grade serous ovarian carcinomas. Cell Physiol Biochem. 33:173–184. 2014. View Article : Google Scholar : PubMed/NCBI

129 

Patrawala L, Calhoun T, Schneider-Broussard R, Li H, Bhatia B, Tang S, Reilly JG, Chandra D, Zhou J, Claypool K, et al: Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene. 25:1696–1708. 2006. View Article : Google Scholar : PubMed/NCBI

130 

Wakamatsu Y, Sakamoto N, Oo HZ, Naito Y, Uraoka N, Anami K, Sentani K, Oue N and Yasui W: Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathol Int. 62:pp. 112–119. 2012, View Article : Google Scholar : PubMed/NCBI

131 

Kimura Y, Goi T, Nakazawa T, Hirono Y, Katayama K, Urano T and Yamaguchi A: CD44variant exon 9 plays an important role in colon cancer initiating cells. Oncotarget. 4:785–791. 2013. View Article : Google Scholar : PubMed/NCBI

132 

Yae T, Tsuchihashi K, Ishimoto T, Motohara T, Yoshikawa M, Yoshida GJ, Wada T, Masuko T, Mogushi K, Tanaka H, et al: Alternative splicing of CD44 mRNA by ESRP1 enhances lung colonization of metastatic cancer cell. Nat Commun. 3:8832012. View Article : Google Scholar : PubMed/NCBI

133 

Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, Wicha M, Clarke MF and Simeone DM: Identification of pancreatic cancer stem cells. Cancer Res. 67:1030–1037. 2007. View Article : Google Scholar : PubMed/NCBI

134 

Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y and Wang TC: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 27:1006–1020. 2009. View Article : Google Scholar : PubMed/NCBI

135 

Wang T, Gantier MP, Xiang D, Bean AG, Bruce M, Zhou SF, Khasraw M, Ward A, Wang L, Wei MQ, et al: EpCAM aptamer-mediated survivin silencing sensitized cancer stem cells to doxorubicin in a breast cancer model. Theranostics. 5:14562015. View Article : Google Scholar : PubMed/NCBI

136 

Münz M, Kieu C, Mack B, Schmitt B, Zeidler R and Gires O: The carcinoma-associated antigen EpCAM upregulates c-myc and induces cell proliferation. Oncogene. 23:57482004. View Article : Google Scholar : PubMed/NCBI

137 

Yeung TM, Gandhi SC, Wilding JL, Muschel R and Bodmer WF: Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 107:3722–3727. 2010. View Article : Google Scholar : PubMed/NCBI

138 

Lee TK, Castilho A, Cheung VC, Tang KH, Ma S and Ng IO: CD24(+) liver tumor-initiating cells drive self-renewal and tumor initiation through STAT3-mediated NANOG regulation. Cell Stem Cell. 9:50–63. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Gangemi RM, Griffero F, Marubbi D, Perera M, Capra MC, Malatesta P, Ravetti GL, Zona GL, Daga A and Corte G: SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells. 27:40–48. 2009. View Article : Google Scholar

140 

Chen Y, Shi L, Zhang L, Li R, Liang J, Yu W, Sun L, Yang X, Wang Y, Zhang Y, et al: The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem. 283:17969–17978. 2008. View Article : Google Scholar : PubMed/NCBI

141 

Chou YT, Lee CC, Hsiao SH, Lin SE, Lin SC, Chung CH, Chung CH, Kao YR, Wang YH, Chen CT, et al: The emerging role of SOX2 in cell proliferation and survival and its crosstalk with oncogenic signaling in lung cancer. Stem Cells. 31:2607–2619. 2013. View Article : Google Scholar : PubMed/NCBI

142 

Higgins DM, Wang R, Milligan B, Schroeder M, Carlson B, Pokorny J, Cheshier SH, Meyer FB, Weissman IL, Sarkaria JN, et al: Brain tumor stem cell multipotency correlates with nanog expression and extent of passaging in human glioblastoma xenografts. Oncotarget. 4:792–801. 2013. View Article : Google Scholar : PubMed/NCBI

143 

Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ and Tang DG: Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells. 27:993–1005. 2009. View Article : Google Scholar : PubMed/NCBI

144 

Hoei-Hansen CE, Almstrup K, Nielsen JE, Brask Sonne S, Graem N, Skakkebaek NE, Leffers H and Rajpert-De Meyts E: Stem cell pluripotency factor NANOG is expressed in human fetal gonocytes, testicular carcinoma in situ and germ cell tumours. Histopathology. 47:48–56. 2005. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Mcgrath NA, Fu J, Gu SZ and Xie C: Targeting cancer stem cells in cholangiocarcinoma (Review). Int J Oncol 57: 397-408, 2020.
APA
Mcgrath, N.A., Fu, J., Gu, S.Z., & Xie, C. (2020). Targeting cancer stem cells in cholangiocarcinoma (Review). International Journal of Oncology, 57, 397-408. https://doi.org/10.3892/ijo.2020.5074
MLA
Mcgrath, N. A., Fu, J., Gu, S. Z., Xie, C."Targeting cancer stem cells in cholangiocarcinoma (Review)". International Journal of Oncology 57.2 (2020): 397-408.
Chicago
Mcgrath, N. A., Fu, J., Gu, S. Z., Xie, C."Targeting cancer stem cells in cholangiocarcinoma (Review)". International Journal of Oncology 57, no. 2 (2020): 397-408. https://doi.org/10.3892/ijo.2020.5074
Copy and paste a formatted citation
x
Spandidos Publications style
Mcgrath NA, Fu J, Gu SZ and Xie C: Targeting cancer stem cells in cholangiocarcinoma (Review). Int J Oncol 57: 397-408, 2020.
APA
Mcgrath, N.A., Fu, J., Gu, S.Z., & Xie, C. (2020). Targeting cancer stem cells in cholangiocarcinoma (Review). International Journal of Oncology, 57, 397-408. https://doi.org/10.3892/ijo.2020.5074
MLA
Mcgrath, N. A., Fu, J., Gu, S. Z., Xie, C."Targeting cancer stem cells in cholangiocarcinoma (Review)". International Journal of Oncology 57.2 (2020): 397-408.
Chicago
Mcgrath, N. A., Fu, J., Gu, S. Z., Xie, C."Targeting cancer stem cells in cholangiocarcinoma (Review)". International Journal of Oncology 57, no. 2 (2020): 397-408. https://doi.org/10.3892/ijo.2020.5074
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team