You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Cheregi MC, Tirsoaga A, Ion C, Iorgulescu EE, David IG and Noor H: Curcumin electroanalysis at a disposable graphite electrode. Biosensors (Basel). 15:1372025. View Article : Google Scholar : PubMed/NCBI | |
|
Monton C, Chuanchom P, Popanit P, Settharaksa S and Pathompak P: Simplex lattice design for optimization of the mass ratio of Curcuma longa L., Curcuma zedoaria (Christm.) Roscoe and Curcuma aromatica Salisb. to maximize curcuminoids content and antioxidant activity. Acta Pharm. 71:445–457. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Abdul-Rahman T, Awuah WA, Mikhailova T, Kalmanovich J, Mehta A, Ng JC, Coghlan MA, Zivcevska M, Tedeschi AJ, de Oliveira EC, et al: Antioxidant, anti-inflammatory and epigenetic potential of curcumin in Alzheimer's disease. Biofactors. 50:693–708. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Gao F, Liang W, Chen Q, Chen B, Liu Y, Liu Z, Xu X, Zhu R and Cheng L: A curcumin-decorated nanozyme with ros scavenging and anti-inflammatory properties for neuroprotection. Nanomaterials (Basel). 14:3892024. View Article : Google Scholar : PubMed/NCBI | |
|
Miyazaki K, Xu C, Shimada M and Goel A: Curcumin and andrographis exhibit anti-tumor effects in colorectal cancer via activation of ferroptosis and dual suppression of glutathione peroxidase-4 and ferroptosis suppressor protein-1. Pharmaceuticals (Basel). 16:3832023. View Article : Google Scholar : PubMed/NCBI | |
|
Li M, Guo T, Lin J, Huang X, Ke Q, Wu Y, Fang C and Hu C: Curcumin inhibits the invasion and metastasis of triple negative breast cancer via Hedgehog/Gli1 signaling pathway. J Ethnopharmacol. 283:1146892022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yang J, Gong Y, He S, Wen P, Jiang Y, He J, Zhu B and Li L: In vitro and in vivo supplementation with curcumin promotes hippocampal neuronal synapses development in rats by inhibiting GSK-3β and activating β-catenin. Mol Neurobiol. 61:2390–2410. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Aktaş A, Yiğit F, Delibaş B, Kaplan AA, Hamour HM, Marangoz AH, Kaya A, Altun G and Kaplan S: The effects of Garcinia kola and curcumin on the dorsal root ganglion of the diabetic rat after peripheral nerve transection injury. J Chem Neuroanat. 136:1023952024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen L, Hua B, He Q, Han Z, Wang Y, Chen Y, Ni H, Zhu Z, Xu L, Yao M and Ni C: Curcumin analogue NL04 inhibits spinal cord central sensitization in rats with bone cancer pain by inhibiting NLRP3 inflammasome activation and reducing IL-1β production. Eur J Pharmacol. 970:1764802024. View Article : Google Scholar : PubMed/NCBI | |
|
Fan X, Huang J, Zhang W, Su Z, Li J, Wu Z and Zhang P: A multifunctional, tough, stretchable, and transparent curcumin hydrogel with potent antimicrobial, antioxidative, anti-inflammatory, and angiogenesis capabilities for diabetic wound healing. ACS Appl Mater Interfaces. 16:9749–9767. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Wei N, Wei J, Fang C, Feng T, Liu F, Liu X and Wu B: Curcumin and silver nanoparticles loaded antibacterial multifunctional pectin/gelatin films for food packaging applications. Int J Biol Macromol. 266((Pt 1)): 1312482024. View Article : Google Scholar : PubMed/NCBI | |
|
Xu XY, Meng X, Li S, Gan RY, Li Y and Li HB: Bioactivity, health benefits, and related molecular mechanisms of curcumin: Current progress, challenges, and perspectives. Nutrients. 10:15532018. View Article : Google Scholar : PubMed/NCBI | |
|
Tsuda T: Curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 9:705–714. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Heger M, van Golen RF, Broekgaarden M and Michel MC: The molecular basis for the pharmacokinetics and pharmacodynamics of curcumin and its metabolites in relation to cancer. Pharmacol Rev. 66:222–307. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Zhong Y, Yan LN, Sun X, Gong T and Zhang ZR: Synthesis and preliminary evaluation of curcumin analogues as cytotoxic agents. Bioorg Med Chem Lett. 21:1010–1014. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Chainoglou E and Hadjipavlou-Litina D: Curcumin in health and diseases: Alzheimer's disease and curcumin analogues, derivatives, and hybrids. Int J Mol Sci. 21:19752020. View Article : Google Scholar : PubMed/NCBI | |
|
Moreno-Q G, Herrera-R A, Yepes AF, Naranjo TW and Cardona-G W: Proapoptotic effect and molecular docking analysis of curcumin-resveratrol hybrids in colorectal cancer chemoprevention. Molecules. 27:34862022. View Article : Google Scholar : PubMed/NCBI | |
|
Moreno-Quintero G, Betancur-Zapata E, Herrera-Ramírez A and Cardona-Galeano W: New hybrid scaffolds based on 5-FU/Curcumin: Synthesis, cytotoxic, antiproliferative and pro-apoptotic effect. Pharmaceutics. 15:12212023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JQ, Wang X, Wang Y, Tang WJ, Shi JB and Liu XH: Novel curcumin analogue hybrids: Synthesis and anticancer activity. Eur J Med Chem. 156:493–509. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Thubaiti EH: Antibacterial and antioxidant activities of curcumin/Zn metal complex with its chemical characterization and spectroscopic studies. Heliyon. 9:e174682023. View Article : Google Scholar : PubMed/NCBI | |
|
Sethiya A, Agarwal DK and Agarwal S: Current trends in drug delivery system of curcumin and its therapeutic applications. Mini Rev Med Chem. 20:1190–1232. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jagannathan R, Abraham PM and Poddar P: Temperature-dependent spectroscopic evidences of curcumin in aqueous medium: A mechanistic study of its solubility and stability. J Phys Chem B. 116:14533–14540. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Leung MHM, Addicoat MA, Lincoln SF, Metha GF and Kee TW: Time-resolved keto-enol tautomerization of the medicinal pigment curcumin. Phys Chem Chem Phys. 26:14970–14979. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Kharat M, Du Z, Zhang G and McClements DJ: Physical and chemical stability of curcumin in aqueous solutions and emulsions: Impact of pH, temperature, and molecular environment. J Agric Food Chem. 65:1525–1532. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lestari ML and Indrayanto G: Curcumin. Profiles Drug Subst Excip Relat Methodol. 39:113–204. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Burapan S, Kim M and Han J: Curcuminoid demethylation as an alternative metabolism by human intestinal microbiota. J Agric Food Chem. 65:3305–3310. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Somparn P, Phisalaphong C, Nakornchai S, Unchern S and Morales NP: Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull. 30:74–78. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jude S, Amalraj A, Kunnumakkara AB, Divya C, Löffler BM and Gopi S: Development of validated methods and quantification of curcuminoids and curcumin metabolites and their pharmacokinetic study of oral administration of complete natural turmeric formulation (Cureit™) in human plasma via UPLC/ESI-Q-TOF-MS spectrometry. Molecules. 23:24152018. View Article : Google Scholar : PubMed/NCBI | |
|
Morales NP, Sirijaroonwong S, Yamanont P and Phisalaphong C: Electron paramagnetic resonance study of the free radical scavenging capacity of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull. 38:1478–1483. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Girst G, Ötvös SB, Fülöp F, Balogh GT and Hunyadi A: Pharmacokinetics-driven evaluation of the antioxidant activity of curcuminoids and their major reduced metabolites-A medicinal chemistry approach. Molecules. 26:35422021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang ZB, Luo DD, Xie JH, Xian YF, Lai ZQ, Liu YH, Liu WH, Chen JN, Lai XP, Lin ZX and Su ZR: Curcumin's metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway. Front Pharmacol. 9:11812018. View Article : Google Scholar : PubMed/NCBI | |
|
Almalki Z, Algregri M, Alhosin M, Alkhaled M, Damiati S and Zamzami MA: In vitro cytotoxicity of curcuminoids against head and neck cancer HNO97 cell line. Braz J Biol. 83:e2487082021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CY, Lien JC, Chen CY, Hung CC and Lin HC: Design, synthesis and evaluation of novel derivatives of curcuminoids with cytotoxicity. Int J Mol Sci. 22:121712021. View Article : Google Scholar : PubMed/NCBI | |
|
Pratti VL, Thomas M, Bhoite R and Satyavrat V: Investigating bioavailability of curcumin and piperine combination in comparison to turmeric rhizomes: An in vitro study. J Exp Pharmacol. 16:37–47. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Iglesias DE, Cremonini E, Oteiza PI and Fraga CG: Curcumin mitigates TNFα-induced Caco-2 cell monolayer permeabilization through modulation of NF-κB, ERK1/2, and JNK pathways. Mol Nutr Food Res. 66:e21010332022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang Y, Cao S, Zhang Q, Zhang H, Fan Y, Qiu F and Kang N: Biological and pharmacological effects of hexahydrocurcumin, a metabolite of curcumin. Arch Biochem Biophys. 646:31–37. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Schmitt F, Subramaniam D, Anant S, Padhye S, Begemann G, Schobert R and Biersack B: Halogenated Bis(methoxybenzylidene)-4-piperidone curcuminoids with improved anticancer activity. ChemMedChem. 13:1115–1123. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fang L, Gou S, Liu X, Cao F and Cheng L: Design, synthesis and anti-Alzheimer properties of dimethylaminomethyl-substituted curcumin derivatives. Bioorg Med Chem Lett. 24:40–43. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Feng JY and Liu ZQ: Phenolic and enolic hydroxyl groups in curcumin: Which plays the major role in scavenging radicals? J Agric Food Chem. 57:11041–11046. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Fang X, Fang L, Gou S and Cheng L: Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: Potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin. Bioorg Med Chem Lett. 23:1297–1301. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Cui L, Wang S, Zhang J, Wang M, Gao Y, Bai L, Zhang H, Ma G and Ba X: Effect of curcumin derivatives on hen egg white lysozyme amyloid fibrillation and their interaction study by spectroscopic methods. Spectrochim Acta A Mol Biomol Spectrosc. 223:1173652019. View Article : Google Scholar : PubMed/NCBI | |
|
Huang M, Liu J, Fan Y, Sun J, Cheng JX, Zhang XF, Zhai BT and Guo DY: Development of curcumin-loaded galactosylated chitosan-coated nanoparticles for targeted delivery of hepatocellular carcinoma. Int J Biol Macromol. 253((Pt 6)): 1272192023. View Article : Google Scholar : PubMed/NCBI | |
|
Liang G, Shao L, Wang Y, Zhao C, Chu Y, Xiao J, Zhao Y, Li X and Yang S: Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg Med Chem. 17:2623–2631. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Feng Z, Wang C, Zhou H, Liu W, Kanchana K, Dai X, Zou P, Gu J, Cai L and Liang G: Curcumin derivative WZ35 efficiently suppresses colon cancer progression through inducing ROS production and ER stress-dependent apoptosis. Am J Cancer Res. 7:275–288. 2017.PubMed/NCBI | |
|
Subhedar DD, Shaikh MH, Nawale L, Sarkar D, Khedkar VM and Shingate BB: Quinolidene based monocarbonyl curcumin analogues as promising antimycobacterial agents: Synthesis and molecular docking study. Bioorg Med Chem Lett. 27:922–928. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cao W, Yu P, Cao Y, Feng S and Yin N: Synthesis and antitumor evaluation of amino acid conjugates of monocarbonyl curcumin in hepatocellular carcinoma cell. Sci Rep. 15:81812025. View Article : Google Scholar : PubMed/NCBI | |
|
Wen J, Zhao L, Li Z, Pi C, Feng X, Shi P, Yang H, Chen L, Wang X, Liu F, et al: Preparation and anti-colon cancer effect of a novel curcumin analogue (CA8): In vivo and in vitro evaluation. Front Pharmacol. 15:14646262024. View Article : Google Scholar : PubMed/NCBI | |
|
Clariano M, Marques V, Vaz J, Awam S, Afonso MB, Perry MJ and Rodrigues CMP: Monocarbonyl analogs of curcumin with potential to treat colorectal cancer. Chem Biodivers. 20:e2023002222023. View Article : Google Scholar : PubMed/NCBI | |
|
Mathur P, Mori M, Vyas H, Mor K, Jagtap J, Vadher S, Vyas K, Devkar R and Desai A: Synthesis of novel Bis-imino and Bis-amino curcuminoids for evaluation of their anticancer and antibacterial activity. ACS Omega. 7:45545–45555. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Banuppriya G, Sribalan R, Padmini V and Shanmugaiah V: Biological evaluation and molecular docking studies of new curcuminoid derivatives: Synthesis and characterization. Bioorg Med Chem Lett. 26:1655–1659. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Kotani R, Urano Y and Sugimoto Noguchi N: Decrease of amyloid-β levels by curcumin derivative via modulation of amyloid-β protein precursor trafficking. J Alzheimers Dis. 56:529–542. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Hui M, Chen G, Huang H, Wang S, Ye Y, Wang Y, Wang M, Zhang S, Huang L, et al: Curcumin-Piperlongumine hybrid molecule increases cell cycle arrest and apoptosis in lung cancer through JNK/c-Jun signaling pathway. J Agric Food Chem. 72:7244–7255. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Corrêa RLGQ, de Moraes MMF, de Oliveira KT, Aoto YA, Coutinho-Neto MD and Homem-de-Mello P: Diving into the optoelectronic properties of Cu(II) and Zn(II) curcumin complexes: A DFT and wavefunction benchmark. J Mol Model. 29:1662023. View Article : Google Scholar : PubMed/NCBI | |
|
Sareen R, Jain N and Dhar KL: Curcumin-Zn(II) complex for enhanced solubility and stability: An approach for improved delivery and pharmacodynamic effects. Pharm Dev Technol. 21:630–635. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Valentini A, Conforti F, Crispini A, De Martino A, Condello R, Stellitano C, Rotilio G, Ghedini M, Federici G, Bernardini S and Pucci D: Synthesis, oxidant properties, and antitumoral effects of a heteroleptic palladium(II) complex of curcumin on human prostate cancer cells. J Med Chem. 52:484–491. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
John VD, Ummathur MB and Krishnankutty K: Synthesis, characterization, and antitumour studies of some curcuminoid analogues and their aluminum complexes. J Coord Chem. 66:1508–1518. 2013. View Article : Google Scholar | |
|
Pucci D, Crispini A, Mendiguchía BS, Pirillo S, Ghedini M, Morelli S and De Bartolo L: Improving the bioactivity of Zn(II)-curcumin based complexes. Dalton Trans. 42:9679–9687. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Wu Z, Guo C, Guo H, Su Y, Chen Q, Sun C, Liu Q, Chen D and Mu H: Hypoxia responsive nano-drug delivery system based on angelica polysaccharide for liver cancer therapy. Drug Deliv. 29:138–148. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
De Leo V, Milano F, Mancini E, Comparelli R, Giotta L, Nacci A, Longobardi F, Garbetta A, Agostiano A and Catucci L: Encapsulation of curcumin-loaded liposomes for colonic drug delivery in a pH-responsive polymer cluster using a pH-driven and organic solvent-free process. Molecules. 23:7392018. View Article : Google Scholar : PubMed/NCBI | |
|
Nikolić L, Urošević M, Nikolić V, Gajić I, Dinić A, Miljković V, Rakić S, Đokić S, Kesić J, Ilić-Stojanović S and Nikolić G: The formulation of curcumin: 2-hydroxypropyl-β-cyclodextrin complex with smart hydrogel for prolonged release of curcumin. Pharmaceutics. 15:3822023. View Article : Google Scholar : PubMed/NCBI | |
|
Tan KX, Ng LE and Loo SCJ: Formulation development of a food-graded curcumin-loaded medium chain triglycerides-encapsulated kappa carrageenan (CUR-MCT-KC) gel bead based oral delivery formulation. Materials (Basel). 14:27832021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu MF, Huang YH, Chiu LY, Cherng SH, Sheu GT and Yang TY: Curcumin induces apoptosis of chemoresistant lung cancer cells via ROS-regulated p38 MAPK phosphorylation. Int J Mol Sci. 23:82482022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhi TX, Liu KQ, Cai KY, Zhao YC, Li ZW, Wang X, He XH and Sun XY: Anti-Lung cancer activities of 1,2,3-triazole curcumin derivatives via regulation of the MAPK/NF-κB/STAT3 signaling pathways. ChemMedChem. 17:e2021006762022. View Article : Google Scholar : PubMed/NCBI | |
|
Tung CL, Jian YJ, Chen JC, Wang TJ, Chen WC, Zheng HY, Chang PY, Liao KS and Lin YW: Curcumin downregulates p38 MAPK-dependent X-ray repair cross-complement group 1 (XRCC1) expression to enhance cisplatin-induced cytotoxicity in human lung cancer cells. Naunyn Schmiedebergs Arch Pharmacol. 389:657–666. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lee J, Im YH, Jung HH, Kim JH, Park JO, Kim K, Kim WS, Ahn JS, Jung CW, Park YS, et al: Curcumin inhibits interferon-alpha induced NF-kappaB and COX-2 in human A549 non-small cell lung cancer cells. Biochem Biophys Res Commun. 334:313–318. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Kashyap VK, Nagesh PKB, Singh AK, Massey A, Darkwah GP, George A, Khan S, Hafeez BB, Zafar N, Kumar S, et al: Curcumin attenuates smoking and drinking activated NF-κB/IL-6 inflammatory signaling axis in cervical cancer. Cancer Cell Int. 24:3432024. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JY, Wang X, Wang XJ, Zheng BZ, Wang Y, Wang X and Liang B: Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur Rev Med Pharmacol Sci. 22:7492–7499. 2018.PubMed/NCBI | |
|
Petiti J, Rosso V, Lo Iacono M, Panuzzo C, Calabrese C, Signorino E, Pironi L, Cartellà A, Bracco E, Pergolizzi B, et al: Curcumin induces apoptosis in JAK2-mutated cells by the inhibition of JAK2/STAT and mTORC1 pathways. J Cell Mol Med. 23:4349–4357. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Feng C, Xia Y, Zou P, Shen M, Hu J, Ying S, Pan J, Liu Z, Dai X, Zhuge W, et al: Curcumin analog L48H37 induces apoptosis through ROS-mediated endoplasmic reticulum stress and STAT3 pathways in human lung cancer cells. Mol Carcinog. 56:1765–1777. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Alexandrow MG, Song LJ, Altiok S, Gray J, Haura EB and Kumar NB: Curcumin: A novel Stat3 pathway inhibitor for chemoprevention of lung cancer. Eur J Cancer Prev. 21:407–412. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Wu L, Guo L, Liang Y, Liu X, Jiang L and Wang L: Curcumin suppresses stem-like traits of lung cancer cells via inhibiting the JAK2/STAT3 signaling pathway. Oncol Rep. 34:3311–3317. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yang CL, Liu YY, Ma YG, Xue YX, Liu DG, Ren Y, Liu XB, Li Y and Li Z: Curcumin blocks small cell lung cancer cells migration, invasion, angiogenesis, cell cycle and neoplasia through Janus kinase-STAT3 signalling pathway. PLoS One. 7:e379602012. View Article : Google Scholar : PubMed/NCBI | |
|
Xu X and Zhu Y: Curcumin inhibits human non-small cell lung cancer xenografts by targeting STAT3 pathway. Am J Transl Res. 9:3633–3641. 2017.PubMed/NCBI | |
|
Shi HS, Gao X, Li D, Zhang QW, Wang YS, Zheng Y, Cai LL, Zhong RM, Rui A, Li ZY, et al: A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation. Int J Nanomedicine. 7:2601–2611. 2012.PubMed/NCBI | |
|
Zhang L, Tao X, Fu Q, Ge C, Li R, Li Z, Zhu Y, Tian H, Li Q, Liu M, et al: Curcumin inhibits cell proliferation and migration in NSCLC through a synergistic effect on the TLR4/MyD88 and EGFR pathways. Oncol Rep. 42:1843–1855. 2019.PubMed/NCBI | |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
|
Cho HK, Park CG and Lim HB: Construction of a synergy combination model for turmeric (Curcuma longa L.) and Black Pepper (Piper nigrum L.) extracts: Enhanced anticancer activity against A549 and NCI-H292 human lung cancer cells. Curr Issues Mol Biol. 46:5551–5560. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai JR, Liu PL, Chen YH, Chou SH, Cheng YJ, Hwang JJ and Chong IW: Curcumin inhibits non-small cell lung cancer cells metastasis through the Adiponectin/NF-κb/MMPs signaling pathway. PLoS One. 10:e01444622015. View Article : Google Scholar : PubMed/NCBI | |
|
Pi C, Zhao W, Zeng M, Yuan J, Shen H, Li K, Su Z, Liu Z, Wen J, Song X, et al: Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Deliv. 29:1878–1891. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu F, Gao S, Yang Y, Zhao X, Fan Y, Ma W, Yang D, Yang A and Yu Y: Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep. 39:1523–1531. 2018.PubMed/NCBI | |
|
Wang N, Feng T, Liu X and Liu Q: Curcumin inhibits migration and invasion of non-small cell lung cancer cells through up-regulation of miR-206 and suppression of PI3K/AKT/mTOR signaling pathway. Acta Pharm. 70:399–409. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiao D, Wang J, Lu W, Tang X, Chen J, Mou H and Chen QY: Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol Ther Oncolytics. 3:160182016. View Article : Google Scholar : PubMed/NCBI | |
|
Lin SS, Lai KC, Hsu SC, Yang JS, Kuo CL, Lin JP, Ma YS, Wu CC and Chung JG: Curcumin inhibits the migration and invasion of human A549 lung cancer cells through the inhibition of matrix metalloproteinase-2 and −9 and Vascular endothelial growth factor (VEGF). Cancer Lett. 285:127–133. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Ma S, Yang P, Sun B, Zhang Y, Sun Y, Hao M, Mou R and Jia Y: Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncol Lett. 16:6756–6762. 2018.PubMed/NCBI | |
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T and Samarghandian S: Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol. 235:9241–9268. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Weng W and Goel A: Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin Cancer Biol. 80:73–86. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Pan Y, Sun Y, Liu Z and Zhang C: miR1925p upregulation mediates the suppression of curcumin in human NSCLC cell proliferation, migration and invasion by targeting cMyc and inactivating the Wnt/βcatenin signaling pathway. Mol Med Rep. 22:1594–1604. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng MA, Chou FJ, Wang K, Yang R, Ding J, Zhang Q, Li G, Yeh S, Xu D and Chang C: Androgen receptor (AR) degradation enhancer ASC-J9® in an FDA-approved formulated solution suppresses castration resistant prostate cancer cell growth. Cancer Lett. 417:182–191. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dorai T, Cao YC, Dorai B, Buttyan R and Katz AE: Therapeutic potential of curcumin in human prostate cancer. III. Curcumin inhibits proliferation, induces apoptosis, and inhibits angiogenesis of LNCaP prostate cancer cells in vivo. Prostate. 47:293–303. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Mukhopadhyay A, Bueso-Ramos C, Chatterjee D, Pantazis P and Aggarwal BB: Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene. 20:7597–7609. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Q, Hu Y, Zhang C, Zhang C, Qin J, Zhao Y, An Q, Zheng J and Shi C: Curcumin blunts epithelial-mesenchymal transition to alleviate invasion and metastasis of prostate cancer through the JARID1D demethylation. Cancer Cell Int. 24:3032024. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, Wang F, Wang X, Xu W, Liu F, Hu R and Li S: Curcumin inhibits prostate cancer by upregulating miR-483-3p and inhibiting UBE2C. J Biochem Mol Toxicol. 38:e236452024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Z, Ni R, Hu Y, Yang Y and Tian Y: Arnicolide D inhibits proliferation and induces apoptosis of osteosarcoma cells through PI3K/Akt/mTOR pathway. Anticancer Agents Med Chem. 24:1288–1294. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Huang SL, Chang TC and Sun NK: Curcumin reduces paclitaxel resistance in ovarian carcinoma cells by upregulating SNIP1 and inhibiting NFκB activity. Biochem Pharmacol. 212:1155812023. View Article : Google Scholar : PubMed/NCBI | |
|
Ismail NI, Othman I, Abas F, Lajis NH and Naidu R: The curcumin analogue, MS13(1,5-Bis(4-hydroxy-3-methoxyphenyl)-1,4-pentadiene-3-one), inhibits cell proliferation and induces apoptosis in primary and metastatic human colon cancer cells. Molecules. 25:37982020. View Article : Google Scholar : PubMed/NCBI | |
|
Ahmad I, Hoque M, Alam SSM, Zughaibi TA and Tabrez S: Curcumin and plumbagin synergistically target the PI3K/Akt/mTOR pathway: A prospective role in cancer treatment. Int J Mol Sci. 24:66512023. View Article : Google Scholar : PubMed/NCBI | |
|
Qiao X, Zheng K, Ye L, Yang J, Cui R, Shan Y, Li X, Li H, Zhu Q, Zhao Z, et al: NL13, a novel curcumin analogue and polo like kinase 4 inhibitor, induces cell cycle arrest and apoptosis in prostate cancer models. Br J Pharmacol. 181:4658–4676. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Li J, Wang X, Xue L and He Q: Exploring the therapeutic mechanism of curcumin in prostate cancer using network pharmacology and molecular docking. Heliyon. 10:e331032024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Li Q, Wu Z, Xu Y and Jiang R: Curcumin for treating breast cancer: A review of molecular mechanisms, combinations with anticancer drugs, and nanosystems. Pharmaceutics. 16:792024. View Article : Google Scholar : PubMed/NCBI | |
|
El-Far AH, Saddiq AA, Mohamed SA, Almaghrabi OA and Mousa SA: Curcumin and thymoquinone combination attenuates breast cancer cell lines' progression. Integr Cancer Ther. 21:153473542210995372022. View Article : Google Scholar : PubMed/NCBI | |
|
Sarkar E, Kotiya A, Khan A, Bhuyan R, Raza ST, Misra A and Mahdi AA: The combination of curcumin and doxorubicin on targeting PI3K/AKT/mTOR signaling pathway: An in vitro and molecular docking study for inhibiting the survival of MDA-MB-231. In Silico Pharmacol. 12:582024. View Article : Google Scholar : PubMed/NCBI | |
|
Alqahtani AM, Chidambaram K, Pino-Figueroa A, Chandrasekaran B, Dhanaraj P and Venkatesan K: Curcumin-Celecoxib: A synergistic and rationale combination chemotherapy for breast cancer. Eur Rev Med Pharmacol Sci. 25:1916–1927. 2021.PubMed/NCBI | |
|
Wang X, Zhang L and Si H: Combining luteolin and curcumin synergistically suppresses triple-negative breast cancer by regulating IFN and TGF-β signaling pathways. Biomed Pharmacother. 178:1172212024. View Article : Google Scholar : PubMed/NCBI | |
|
Vahedi F, Javan B, Sharbatkhari M, Soltani A, Shafiee M, Memarian A and Erfani-Moghadam V: Synergistic anticancer effects of co-delivery of linc-RoR siRNA and curcumin using polyamidoamine dendrimers against breast cancer. Biochem Biophys Res Commun. 705:1497292024. View Article : Google Scholar : PubMed/NCBI | |
|
Palacios-Navarro L, Crispin LA, Muñoz JP and Calaf GM: Effects of curcumin and estrogen receptor alpha in luminal breast cancer cells. Diagnostics (Basel). 14:17852024. View Article : Google Scholar : PubMed/NCBI | |
|
Nishimura FG, Sampaio BB, do Couto GO, da Silva AD, da Silva WJ, Peronni KC, Evangelista AF, Hossain M, Dimmock JR, Bandy B, et al: The transcriptome of BT-20 Breast cancer cells exposed to curcumin analog NC2603 reveals a relationship between EGR3 gene modulation and cell migration inhibition. Molecules. 29:13662024. View Article : Google Scholar : PubMed/NCBI | |
|
Huai Z, Li Z, Xue W, Li S, Huang Y, Cao X, Wei Q and Wang Y: Novel curcumin derivatives N17 exert anti-cancer effects through the CSNK1G3/AKT axis in triple-negative breast cancer. Biochem Pharmacol. 229:1164722024. View Article : Google Scholar : PubMed/NCBI | |
|
Novitasari D, Nakamae I, Jenie RI, Yoneda-Kato N, Kato JY and Meiyanto E: Pentagamavunone-1 inhibits aggressive breast cancer cell proliferation through mitotic catastrophe and ROS-mediated activities: In vitro and in vivo studies. Saudi Pharm J. 32:1018922024. View Article : Google Scholar : PubMed/NCBI | |
|
Nishimura FG, Sampaio BB, Komoto TT, da Silva WJ, da Costa MMG, Haddad GI, Peronni KC, Evangelista AF, Hossain M, Dimmock JR, et al: Exploring CDKN1A upregulation mechanisms: Insights into cell cycle arrest induced by NC2603 curcumin analog in MCF-7 breast cancer cells. Int J Mol Sci. 25:49892024. View Article : Google Scholar : PubMed/NCBI | |
|
Verderio P, Pandolfi L, Mazzucchelli S, Marinozzi MR, Vanna R, Gramatica F, Corsi F, Colombo M, Morasso C and Prosperi D: Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells. Mol Pharm. 11:2864–2875. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang B, Deng Y, Xu D and Zhao X: Dimethylcurcumin and copper sulfate-loaded silk nanoparticles for synergistic therapy against breast cancer. ACS Biomater Sci Eng. 11:1539–1548. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Nautiyal J, Banerjee S, Kanwar SS, Yu Y, Patel BB, Sarkar FH and Majumdar AP: Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int J Cancer. 128:951–961. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Villegas C, Perez R, Sterner O, González-Chavarría I and Paz C: Curcuma as an adjuvant in colorectal cancer treatment. Life Sci. 286:1200432021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Rokavec M, Huang Z and Hermeking H: Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death Differ. 30:1771–1785. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Sazanov AA, Kiselyova EV, Zakharenko AA, Romanov MN and Zaraysky MI: Plasma and saliva miR-21 expression in colorectal cancer patients. J Appl Genet. 58:231–237. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R, Nelson LD and Allgayer H: Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci Rep. 31:185–197. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Roy S, Yu Y, Padhye SB, Sarkar FH and Majumdar AP: Difluorinated-curcumin (CDF) restores PTEN expression in colon cancer cells by down-regulating miR-21. PLoS One. 8:e685432013. View Article : Google Scholar : PubMed/NCBI | |
|
Dal Z and Aru B: The role of curcumin on apoptosis and NLRP3 inflammasome-dependent pyroptosis on colorectal cancer in vitro. Turk J Med Sci. 53:883–893. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Hosseini SS, Reihani RZ, Doustvandi MA, Amini M, Zargari F, Baradaran B, Yari A, Hashemi M, Tohidast M and Mokhtarzadeh A: Synergistic anticancer effects of curcumin and crocin on human colorectal cancer cells. Mol Biol Rep. 49:8741–8752. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Kunnumakkara AB, Diagaradjane P, Guha S, Deorukhkar A, Shentu S, Aggarwal BB and Krishnan S: Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res. 14:2128–2136. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Reddy S, Rishi AK, Xu H, Levi E, Sarkar FH and Majumdar AP: Mechanisms of curcumin- and EGF-receptor related protein (ERRP)-dependent growth inhibition of colon cancer cells. Nutr Cancer. 55:185–194. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sun H, Liao F, Tian Y, Lei Y, Fu Y and Wang J: Molecular-Scale investigations reveal the effect of natural polyphenols on BAX/Bcl-2 interactions. Int J Mol Sci. 25:24742024. View Article : Google Scholar : PubMed/NCBI | |
|
Sha J, Li J, Wang W, Pan L, Cheng J, Li L, Zhao H and Lin W: Curcumin induces G0/G1 arrest and apoptosis in hormone independent prostate cancer DU-145 cells by down regulating notch signaling. Biomed Pharmacother. 84:177–184. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Liao H, Wang Z, Deng Z, Ren H and Li X: Curcumin inhibits lung cancer invasion and metastasis by attenuating GLUT1/MT1-MMP/MMP2 pathway. Int J Clin Exp Med. 8:8948–8957. 2015.PubMed/NCBI | |
|
Mohankumar K, Francis AP, Pajaniradje S and Rajagopalan R: Synthetic curcumin analog: Inhibiting the invasion, angiogenesis, and metastasis in human laryngeal carcinoma cells via NF-kB pathway. Mol Biol Rep. 48:6065–6074. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandez-Muñoz KV, Sánchez-Barrera CÁ, Meraz-Ríos M, Reyes JL, Pérez-Yépez EA, Ortiz-Melo MT, Terrazas LI and Mendoza-Rodriguez MG: Natural alternatives in the treatment of colorectal cancer: A mechanisms perspective. Biomolecules. 15:3262025. View Article : Google Scholar : PubMed/NCBI | |
|
Shadnoush M, Momenan M, Seidel V, Tierling S, Fatemi N, Nazemalhosseini-Mojarad E, Norooz MT and Cheraghpour M: A comprehensive update on the potential of curcumin to enhance chemosensitivity in colorectal cancer. Pharmacol Rep. 77:103–123. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Imtiaz I, Schloss J and Bugarcic A: Interplay between traditional and scientific knowledge: Phytoconstituents and their roles in lung and colorectal cancer signaling pathways. Biomolecules. 15:3802025. View Article : Google Scholar : PubMed/NCBI | |
|
Guo Y, Su J, Jiang S, Xu Y, Dou B, Li T, Zhu J and He K: Transcriptomics and metabonomics study on the effect of exercise combined with curcumin supplementation on breast cancer in mice. Heliyon. 10:e288072024. View Article : Google Scholar : PubMed/NCBI | |
|
Sowa-Kasprzak K, Józkowiak M, Olender D, Pawełczyk A, Piotrowska-Kempisty H and Zaprutko L: Curcumin-Triterpene type hybrid as effective sonosensitizers for sonodynamic therapy in oral squamous cell carcinoma. Pharmaceutics. 15:20082023. View Article : Google Scholar : PubMed/NCBI | |
|
Semlali A, Beji S, Ajala I, Al-Zharani M and Rouabhia M: Synergistic effects of new curcumin analog (PAC) and cisplatin on oral cancer therapy. Curr Issues Mol Biol. 45:5018–5035. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lee AY, Fan CC, Chen YA, Cheng CW, Sung YJ, Hsu CP and Kao TY: Curcumin inhibits invasiveness and epithelial-mesenchymal transition in oral squamous cell carcinoma through reducing matrix metalloproteinase 2, 9 and modulating p53-E-cadherin pathway. Integr Cancer Ther. 14:484–490. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Deng X, Tan X, Li Q, Yu Z, Wu W, Ma X, Zeng J and Wang X: Protective role of curcumin in disease progression from non-alcoholic fatty liver disease to hepatocellular carcinoma: a meta-analysis. Front Pharmacol. 15:13431932024. View Article : Google Scholar : PubMed/NCBI | |
|
Man S, Yao J, Lv P, Liu Y, Yang L and Ma L: Curcumin-enhanced antitumor effects of sorafenib via regulating the metabolism and tumor microenvironment. Food Funct. 11:6422–6432. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Huang T, Chen H, Pan H, Wu T, Ren X, Qin L, Yuan K and He F: Comprehensive analysis of bioinformatics and system biology reveals the association between Girdin and hepatocellular carcinoma. PLoS One. 19:e03155342024. View Article : Google Scholar : PubMed/NCBI | |
|
Han H, Alsayed AMM, Wang Y, Yan Q, Shen A, Zhang J, Ye Y, Liu Z, Wang K and Zheng X: Discovery of β-cyclocitral-derived mono-carbonyl curcumin analogs as anti-hepatocellular carcinoma agents via suppression of MAPK signaling pathway. Bioorg Chem. 132:1063582023. View Article : Google Scholar : PubMed/NCBI | |
|
Mukherjee D, Dash P, Ramadass B and Mangaraj M: Nanocurcumin in oral squamous cancer cells and its efficacy as a chemo-adjuvant. Cureus. 14:e246782022.PubMed/NCBI | |
|
Lakshmanan A, Akasov RA, Sholina NV, Demina PA, Generalova AN, Gangadharan A, Sardar DK, Lankamsetty KB, Khochenkov DA, Khaydukov EV, et al: Nanocurcumin-loaded UCNPs for cancer theranostics: Physicochemical properties, in vitro toxicity, and in vivo imaging studies. Nanomaterials (Basel). 11:22342021. View Article : Google Scholar : PubMed/NCBI | |
|
Louisa M, Wanafri E, Arozal W, Sandhiutami NMD and Basalamah AM: Nanocurcumin preserves kidney function and haematology parameters in DMBA-induced ovarian cancer treated with cisplatin via its antioxidative and anti-inflammatory effect in rats. Pharm Biol. 61:298–305. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Mehrab H, Sharifi M, Akhavan A, Aarabi MH, Mansourian M, Mosavi E and Moghaddas A: Curcumin supplementation prevents cisplatin-induced nephrotoxicity: A randomized, double-blinded, and placebo-controlled trial. Res Pharm Sci. 18:648–662. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ramezani V, Ghadirian S, Shabani M, Boroumand MA, Daneshvar R and Saghafi F: Efficacy of curcumin for amelioration of radiotherapy-induced oral mucositis: A preliminary randomized controlled clinical trial. BMC Cancer. 23:3542023. View Article : Google Scholar : PubMed/NCBI | |
|
Eghbali A, Adibifar M, Ghasemi A, Afzal RR, Moradi K, Eghbali A, Faress F and Ghaffari K: The effect of oral curcumin on vincristine-induced neuropathy in pediatric acute lymphoblastic leukemia: A double-blind randomized controlled clinical trial. BMC Cancer. 25:3442025. View Article : Google Scholar : PubMed/NCBI | |
|
Kekatpure V, Subramaniam N, Sunny S, Nambiar S, Sarah T, Vasudevan V, Rao A, Murali A, Kolur T, Krishnamurthy A, et al: Two by two factorial design using metformin and curcumin for second primary head and neck cancer prevention trial. Asian Pac J Cancer Prev. 25:1935–1943. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Dahka SM, Afsharfar M, Tajaddod S, Sohouli MH, Shekari S, Nafouti FB, Alizadeh A, Kachaei HS, Abbasi K, Mohseni GK, et al: Impact of curcumin supplementation on radiation dermatitis severity: A systematic review and meta-analysis of randomized controlled trials. Asian Pac J Cancer Prev. 24:783–789. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chaiworramukkul A, Seetalarom K, Saichamchan S and Prasongsook N: A Double-Blind, placebo-controlled randomized phase IIa study: Evaluating the effect of curcumin for treatment of cancer anorexia-cachexia syndrome in solid cancer patients. Asian Pac J Cancer Prev. 23:2333–2340. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Panahi Y, Saberi-Karimian M, Valizadeh O, Behnam B, Saadat A, Jamialahmadi T, Majeed M and Sahebkar A: Effects of curcuminoids on systemic inflammation and quality of life in patients with colorectal cancer undergoing chemotherapy: A randomized controlled trial. Adv Exp Med Biol. 1328:1–9. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Y, Wei Y, Sheng L, Ma J, Su Z, Wen J, Li L, Jia Q, Liu H, Si H, et al: Construction of curcumin and paclitaxel co-loaded lipid nano platform and evaluation of its anti-hepatoma activity in vitro and pharmacokinetics in vivo. Int J Nanomedicine. 18:2087–2107. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Guo F, Jiao Y, Ding W, Du Y, Luo S, Wang M, Wang Y, Wu F, Wang L and Yang G: Synergistic effects of multidrug/material combination deliver system for anti-mutidrug-resistant tumor. Int J Pharm. 649:1236692024. View Article : Google Scholar : PubMed/NCBI | |
|
Abe T, Horisawa Y, Kikuchi O, Ozawa-Umeta H, Kishimoto A, Katsuura Y, Imaizumi A, Hashimoto T, Shirakawa K, Takaori-Kondo A, et al: Pharmacologic characterization of TBP1901, a prodrug form of aglycone curcumin, and CRISPR-Cas9 screen for therapeutic targets of aglycone curcumin. Eur J Pharmacol. 935:1753212022. View Article : Google Scholar : PubMed/NCBI | |
|
Gutsche LC, Dörfler J and Hübner J: Curcumin as a complementary treatment in oncological therapy: A systematic review. Eur J Clin Pharmacol. 81:1–33. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng L, Yang T, Yang K, Yu G, Li J, Xiang W and Chen H: Efficacy and safety of curcumin and Curcuma longa extract in the treatment of arthritis: A systematic review and meta-analysis of randomized controlled trial. Front Immunol. 13:8918222022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu S, Liu J, He L, Liu L, Cheng B, Zhou F, Cao D and He Y: A comprehensive review on the benefits and problems of curcumin with respect to human health. Molecules. 27:44002022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang M, Zhai BT, Fan Y, Sun J, Shi YJ, Zhang XF, Zou JB, Wang JW and Guo DY: Targeted drug delivery systems for curcumin in breast cancer therapy. Int J Nanomedicine. 18:4275–4311. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M and Emwas AH: the dynamic role of curcumin in mitigating human illnesses: Recent advances in therapeutic applications. Pharmaceuticals (Basel). 17:16742024. View Article : Google Scholar : PubMed/NCBI | |
|
Anand P, Kunnumakkara AB, Newman RA and Aggarwal BB: Bioavailability of curcumin: Problems and promises. Mol Pharm. 4:807–818. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta SC, Patchva S and Aggarwal BB: Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 15:195–218. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Kanai M, Imaizumi A, Otsuka Y, Sasaki H, Hashiguchi M, Tsujiko K, Matsumoto S, Ishiguro H and Chiba T: Dose-escalation and pharmacokinetic study of nanoparticle curcumin, a potential anticancer agent with improved bioavailability, in healthy human volunteers. Cancer Chemother Pharmacol. 69:65–70. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Mashayekhi-Sardoo H, Mashayekhi-Sardoo A, Roufogalis BD, Jamialahmadi T and Sahebkar A: Impact of curcumin on microsomal enzyme activities: Drug interaction and chemopreventive studies. Curr Med Chem. 28:7122–7140. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Imam Z, Khasawneh M, Jomaa D, Iftikhar H and Sayedahmad Z: Drug induced liver injury attributed to a curcumin supplement. Case Rep Gastrointest Med. 2019:60294032019.PubMed/NCBI | |
|
Lukefahr AL, McEvoy S, Alfafara C and Funk JL: Drug-induced autoimmune hepatitis associated with turmeric dietary supplement use. BMJ Case Rep. 2018:bcr20182246112018. View Article : Google Scholar : PubMed/NCBI | |
|
Bhat PA, Chat OA and Dar AA: Exploiting co-solubilization of warfarin, curcumin, and rhodamine B for modulation of energy transfer: A micelle FRET On/Off switch. Chemphyschem. 17:2360–2372. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Servida S, Piontini A, Gori F, Tomaino L, Moroncini G, De Gennaro Colonna V, La Vecchia C and Vigna L: Curcumin and gut microbiota: A narrative overview with focus on glycemic control. Int J Mol Sci. 25:77102024. View Article : Google Scholar : PubMed/NCBI | |
|
Jabczyk M, Nowak J, Hudzik B and Zubelewicz-Szkodzińska B: Curcumin in metabolic health and disease. Nutrients. 13:44402021. View Article : Google Scholar : PubMed/NCBI | |
|
Lin X, Bai D, Wei Z, Zhang Y, Huang Y, Deng H and Huang X: Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One. 14:e02167112019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Jia Z, Wang J, Huang S, Yang S, Xiao S, Xia D and Zhou Y: Curcumin reverses erastin-induced chondrocyte ferroptosis by upregulating Nrf2. Heliyon. 9:e201632023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Sun X, Chai X, Jiao Y, Sun J, Wang S, Yu H and Feng X: Curcumin mitigates oxidative damage in broiler liver and ileum caused by aflatoxin B1-contaminated feed through Nrf2 signaling pathway. Animals (Basel). 14:4092024. View Article : Google Scholar : PubMed/NCBI | |
|
Chen B, Li H, Ou G, Ren L, Yang X and Zeng M: Curcumin attenuates MSU crystal-induced inflammation by inhibiting the degradation of IκBα and blocking mitochondrial damage. Arthritis Res Ther. 21:1932019. View Article : Google Scholar : PubMed/NCBI | |
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ and Echeverria J: The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. Phytomedicine. 112:1546862023. View Article : Google Scholar : PubMed/NCBI | |
|
Grilc NK, Sova M and Kristl J: Drug delivery strategies for curcumin and other natural Nrf2 modulators of oxidative stress-related diseases. Pharmaceutics. 13:21372021. View Article : Google Scholar : PubMed/NCBI | |
|
Ruan H, Zeng X and Shen S: Mechanism of curcumin inhibiting NLRP3 inflammatory body and improving atherosclerotic endothelial cell injury. Discov Med. 36:121–128. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z, Hu C and Xu R: Anti-Inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des Devel Ther. 15:4503–4525. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen G, Liu S, Pan R, Li G, Tang H, Jiang M, Xing Y, Jin F, Lin L and Dong J: Curcumin attenuates gp120-Induced microglial inflammation by inhibiting autophagy via the PI3K pathway. Cell Mol Neurobiol. 38:1465–1477. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Chowdhury I, Banerjee S, Driss A, Xu W, Mehrabi S, Nezhat C, Sidell N, Taylor RN and Thompson WE: Curcumin attenuates proangiogenic and proinflammatory factors in human eutopic endometrial stromal cells through the NF-κB signaling pathway. J Cell Physiol. 234:6298–6312. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Tan L, Liu F, Li M, Zeng S, Gui Y, Zhao Y and Wang JJ: Effects of soluble Antarctic krill protein-curcumin complex combined with photodynamic inactivation on the storage quality of shrimp. Food Chem. 403:1343882023. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JJ, He T, Chen L, Xu G, Dong S, Zhao Y, Zheng H, Liu Y and Zeng Q: Antibacterial efficiency of the curcumin-mediated photodynamic inactivation coupled with L-arginine against Vibrio parahaemolyticus and its application on shrimp. Int J Food Microbiol. 411:1105392024. View Article : Google Scholar : PubMed/NCBI | |
|
Bhavya ML and Hebbar HU: Efficacy of blue LED in microbial inactivation: Effect of photosensitization and process parameters. Int J Food Microbiol. 290:296–304. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
de Andrade Neto JB, de Farias Cabral VP, Nogueira LF, da Silva CR, do Amaral Valente Sá LG, da Silva AR, da Silva WM, Silva J, Marinho ES, Cavalcanti BC, et al: Anti-MRSA activity of curcumin in planktonic cells and biofilms and determination of possible action mechanisms. Microb Pathog. 155:1048922021. View Article : Google Scholar : PubMed/NCBI | |
|
El-Mahdy AM, Alqahtani M, Almukainzi M, Alghoribi MF and Abdel-Rhman SH: Effect of resveratrol and curcumin on gene expression of methicillin-resistant staphylococcus aureus (MRSA) toxins. J Microbiol Biotechnol. 34:141–148. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng D, Huang C, Huang H, Zhao Y, Khan MRU, Zhao H and Huang L: Antibacterial mechanism of curcumin: A review. Chem Biodivers. 17:e20001712020. View Article : Google Scholar : PubMed/NCBI | |
|
Mounce BC, Cesaro T, Carrau L, Vallet T and Vignuzzi M: Curcumin inhibits Zika and chikungunya virus infection by inhibiting cell binding. Antiviral Res. 142:148–157. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Wang J, Liu Y, Luo X, Lei W and Xie L: Antiviral and virucidal effects of curcumin on transmissible gastroenteritis virus in vitro. J Gen Virol. 101:1079–1084. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Anggakusuma Colpitts CC, Schang LM, Rachmawati H, Frentzen A, Pfaender S, Behrendt P, Brown RJ, Bankwitz D, Steinmann J, et al: Turmeric curcumin inhibits entry of all hepatitis C virus genotypes into human liver cells. Gut. 63:1137–1149. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Thongsri P, Pewkliang Y, Borwornpinyo S, Wongkajornsilp A, Hongeng S and Sa-Ngiamsuntorn K: Curcumin inhibited hepatitis B viral entry through NTCP binding. Sci Rep. 11:191252021. View Article : Google Scholar : PubMed/NCBI | |
|
Prasad S and Tyagi AK: Curcumin and its analogues: A potential natural compound against HIV infection and AIDS. Food Funct. 6:3412–3419. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HS, Ruan Z and Sang WW: HDAC1/NFκB pathway is involved in curcumin inhibiting of Tat-mediated long terminal repeat transactivation. J Cell Physiol. 226:3385–3391. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dai J, Gu L, Su Y, Wang Q, Zhao Y, Chen X, Deng H, Li W, Wang G and Li K: Inhibition of curcumin on influenza A virus infection and influenzal pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. Int Immunopharmacol. 54:177–187. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hesari A, Ghasemi F, Salarinia R, Biglari H, Hassan AT, Abdoli V and Mirzaei H: Effects of curcumin on NF-κB, AP-1, and Wnt/β-catenin signaling pathway in hepatitis B virus infection. J Cell Biochem. 119:7898–7904. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Piccialli I, Tedeschi V, Caputo L, D'Errico S, Ciccone R, De Feo V, Secondo A and Pannaccione A: Exploring the therapeutic potential of phytochemicals in Alzheimer's disease: focus on polyphenols and monoterpenes. Front Pharmacol. 13:8766142022. View Article : Google Scholar : PubMed/NCBI | |
|
Alamro AA, Alsulami EA, Almutlaq M, Alghamedi A, Alokail M and Haq SH: Therapeutic potential of vitamin D and curcumin in an in vitro model of Alzheimer disease. J Cent Nerv Syst Dis. 12:11795735209243112020. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan J, Botchway BOA, Zhang Y, Tan X, Wang X and Liu X: Curcumin can improve spinal cord injury by inhibiting TGF-β-SOX9 signaling pathway. Cell Mol Neurobiol. 39:569–575. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM and Dini L: Novel therapeutic delivery of nanocurcumin in central nervous system related disorders. Nanomaterials (Basel). 11:22020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee Y, Park HR, Lee JY, Kim J, Yang S, Lee C, Kim K, Kim HS, Chang SC and Lee J: Low-dose curcumin enhances hippocampal neurogenesis and memory retention in young mice. Arch Pharm Res. 46:423–437. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yavari N, Sharifi ZN, Rekabdar Y and Movassaghi S: Protective effect of curcumin on CA1 region of hippocampus in rat model of ischemia/ reperfusion injury. Galen Med J. 11:e10622022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Ma Z, Wu Z, Jin M, An L and Xue F: curcumin improves chronic pain induced depression through regulating serum metabolomics in a rat model of trigeminal neuralgia. J Pain Res. 13:3479–3492. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang L, Han Y, Wu X, Chen B, Liu S, Huang J, Kong L, Wang G and Ye Z: Research progress on the mechanism of curcumin in cerebral ischemia/reperfusion injury: A narrative review. Apoptosis. 28:1285–1303. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Racchi M, Uberti D, Govoni S, Memo M, Lanni C, Vasto S, Candore G, Caruso C, Romeo L and Scapagnini G: Alzheimer's disease: New diagnostic and therapeutic tools. Immun Ageing. 5:72008. View Article : Google Scholar : PubMed/NCBI | |
|
Scapagnini G, Colombrita C, Amadio M, D'Agata V, Arcelli E, Sapienza M, Quattrone A and Calabrese V: Curcumin activates defensive genes and protects neurons against oxidative stress. Antioxid Redox Signal. 8:395–403. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sadek MA, Rabie MA, El Sayed NS, Sayed HM and Kandil EA: Neuroprotective effect of curcumin against experimental autoimmune encephalomyelitis-induced cognitive and physical impairments in mice: An insight into the role of the AMPK/SIRT1 pathway. Inflammopharmacology. 32:1499–1518. 2024. View Article : Google Scholar : PubMed/NCBI |