You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I and Jemal A: Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 74:229–263. 2024.PubMed/NCBI | |
|
Kong J, Ha D, Lee J, Kim I, Park M, Im SH, Shin K and Kim S: Network-based machine learning approach to predict immunotherapy response in cancer patients. Nat Commun. 13:37032022. View Article : Google Scholar : PubMed/NCBI | |
|
Gupta A, Andresen JL, Manan RS and Langer R: Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev. 178:1138342021. View Article : Google Scholar : PubMed/NCBI | |
|
Webb K, Sharpe L, Butow P, Dhillon H, Zachariae R, Tauber NM, O'Toole MS and Shaw J: Caregiver fear of cancer recurrence: A systematic review and meta-analysis of quantitative studies. Psychooncology. 32:1173–1191. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Potter AL, Costantino CL, Suliman RA, Haridas CS, Senthil P, Kumar A, Mayne NR, Panda N, Martin LW and Yang CJ: Recurrence after complete resection for non-small cell lung cancer in the national lung screening trial. Ann Thorac Surg. 116:684–692. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gul S, Pang J, Yuan H, Chen Y, Yu Q, Wang H and Tang W: Stemness signature and targeted therapeutic drugs identification for Triple negative breast cancer. Sci Data. 10:8152023. View Article : Google Scholar : PubMed/NCBI | |
|
Haeckel E: Natürliche schöpfungsgeschichte. Reimer Berlin. 1870. | |
|
Laplane L and Solary E: Towards a classification of stem cells. Elife. 8:e465632019. View Article : Google Scholar : PubMed/NCBI | |
|
Ramalho-Santos M and Willenbring H: On the origin of the term ‘stem cell’. Cell Stem Cell. 1:35–38. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Tomasetti C and Vogelstein B: Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science. 347:78–81. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dentro SC, Leshchiner I, Haase K, Tarabichi M, Wintersinger J, Deshwar AG, Yu K, Rubanova Y, Macintyre G, Demeulemeester J, et al: Characterizing genetic intra-tumor heterogeneity across 2,658 human cancer genomes. Cell. 184:2239–2254. e392021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H, Pomyen Y, Hernandez MO, Li C, Livak F, Tang W, Dang H, Greten TF, Davis JL, Zhao Y, et al: Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology. 68:127–140. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Waclaw B, Bozic I, Pittman ME, Hruban RH, Vogelstein B and Nowak MA: A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature. 525:261–264. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S, Brons NHC, Leite S, Sauvageot N, Sarkisjan D, et al: Stem cell-associated heterogeneity in Glioblastoma results from intrinsic tumor plasticity shaped by the microenvironment. Nat Commun. 10:17872019. View Article : Google Scholar : PubMed/NCBI | |
|
Osisami M and Keller ET: Mechanisms of metastatic tumor dormancy. J Clin Med. 2:136–150. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Chen S, Zhuo L, Zhu Y and Zheng H: Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer. Cell Death Dis. 11:1732020. View Article : Google Scholar : PubMed/NCBI | |
|
Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Tape CJ: Plastic persisters: Revival stem cells in colorectal cancer. Trends Cancer. 10:185–195. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Fekir K, Dubois-Pot-Schneider H, Desert R, Daniel Y, Glaise D, Rauch C, Morel F, Fromenty B, Musso O, Cabillic F and Corlu A: Retrodifferentiation of human tumor hepatocytes to stem cells leads to metabolic reprogramming and chemoresistance. Cancer Res. 79:1869–1883. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
O'Connor SA, Feldman HM, Arora S, Hoellerbauer P, Toledo CM, Corrin P, Carter L, Kufeld M, Bolouri H, Basom R, et al: Neural G0: A quiescent-like state found in neuroepithelial-derived cells and glioma. Mol Syst Biol. 17:e95222021. View Article : Google Scholar : PubMed/NCBI | |
|
Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, Ziegler PK, Canli O, Heijmans J, Huels DJ, Moreaux G, et al: Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 152:25–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Plaks V, Kong N and Werb Z: The cancer stem cell niche: How essential is the niche in regulating stemness of tumor cells? Cell Stem Cell. 16:225–238. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Talukdar S, Bhoopathi P, Emdad L, Das S, Sarkar D and Fisher PB: Dormancy and cancer stem cells: An enigma for cancer therapeutic targeting. Adv Cancer Res. 141:43–84. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fane ME, Chhabra Y, Alicea GM, Maranto DA, Douglass SM, Webster MR, Rebecca VW, Marino GE, Almeida F, Ecker BL, et al: Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature. 606:396–405. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gerstberger S, Jiang Q and Ganesh K: Metastasis. Cell. 186:1564–1579. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wu M, Zhang X, Zhang W, Chiou YS, Qian W, Liu X, Zhang M, Yan H, Li S, Li T, et al: Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nat Commun. 13:13712022. View Article : Google Scholar : PubMed/NCBI | |
|
Laothamatas I, Rasmussen ES, Green CB and Takahashi JS: Metabolic and chemical architecture of the mammalian circadian clock. Cell Chem Biol. 30:1033–1052. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Chun SK, Fortin BM, Fellows RC, Habowski AN, Verlande A, Song WA, Mahieu AL, Lefebvre AEYT, Sterrenberg JN, Velez LM, et al: Disruption of the circadian clock drives Apc loss of heterozygosity to accelerate colorectal cancer. Sci Adv. 8:eabo23892022. View Article : Google Scholar : PubMed/NCBI | |
|
Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, Bartlebaugh J, Vander Heiden MG and Jacks T: Circadian Rhythm Disruption Promotes Lung Tumorigenesis. Cell Metab. 24:324–331. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chan P, Nagai Y, Wu Q, Hovsepyan A, Mkhitaryan S, Wang J, Karapetyan G, Kamenecka T, Solt LA, Cope J, et al: Advancing clinical response against glioblastoma: evaluating SHP1705 CRY2 activator efficacy in preclinical models and safety in phase I trials. Neuro Oncol. 27:1772–1786. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Wu A, Wiesner S, Xiao J, Ericson K, Chen W, Hall WA, Low WC and Ohlfest JR: Expression of MHC I and NK ligands on human CD133+ glioma cells: Possible targets of immunotherapy. J Neurooncol. 83:121–131. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrari de Andrade L, Kumar S, Luoma AM, Ito Y, Alves da Silva PH, Pan D, Pyrdol JW, Yoon CH and Wucherpfennig KW: Inhibition of MICA and MICB Shedding Elicits NK-cell-mediated immunity against tumors resistant to cytotoxic T cells. Cancer Immunol Res. 8:769–780. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Holzgruber J, Martins C, Kulcsar Z, Duplaine A, Rasbach E, Migayron L, Singh P, Statham E, Landsberg J, Boniface K, et al: Type I interferon signaling induces melanoma cell-intrinsic PD-1 and its inhibition antagonizes immune checkpoint blockade. Nat Commun. 15:71652024. View Article : Google Scholar : PubMed/NCBI | |
|
Celià-Terrassa T, Liu DD, Choudhury A, Hang X, Wei Y, Zamalloa J, Alfaro-Aco R, Chakrabarti R, Jiang YZ, Koh BI, et al: Normal and cancerous mammary stem cells evade interferon-induced constraint through the miR-199a-LCOR axis. Nat Cell Biol. 19:711–723. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Roulois D, Loo Yau H, Singhania R, Wang Y, Danesh A, Shen SY, Han H, Liang G, Jones PA, Pugh TJ, et al: DNA-Demethylating agents target colorectal cancer cells by inducing viral mimicry by endogenous transcripts. Cell. 162:961–973. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Scheller M, Ludwig AK, Göllner S, Rohde C, Krämer S, Stäble S, Janssen M, Müller JA, He L, Bäumer N, et al: Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nat Cancer. 2:527–544. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hsu JM, Xia W, Hsu YH, Chan LC, Yu WH, Cha JH, Chen CT, Liao HW, Kuo CW, Khoo KH, et al: STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nat Commun. 9:19082018. View Article : Google Scholar : PubMed/NCBI | |
|
Wei X, Chen Y, Jiang X, Peng M, Liu Y, Mo Y, Ren D, Hua Y, Yu B, Zhou Y, et al: Mechanisms of vasculogenic mimicry in hypoxic tumor microenvironments. Mol Cancer. 20:72021. View Article : Google Scholar : PubMed/NCBI | |
|
Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM and De Maria R: Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature. 468:824–828. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Spinelli C, Adnani L, Meehan B, Montermini L, Huang S, Kim M, Nishimura T, Croul SE, Nakano I, Riazalhosseini Y and Rak J: Mesenchymal glioma stem cells trigger vasectasia-distinct neovascularization process stimulated by extracellular vesicles carrying EGFR. Nat Commun. 15:28652024. View Article : Google Scholar : PubMed/NCBI | |
|
Lucero R, Zappulli V, Sammarco A, Murillo OD, Cheah PS, Srinivasan S, Tai E, Ting DT, Wei Z, Roth ME, et al: Glioma-Derived miRNA-Containing extracellular vesicles induce angiogenesis by reprogramming brain endothelial cells. Cell Rep. 30:2065–2074.e4. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Zhu N, Li HF, Gu J, Zhang CJ, Liao DF and Qin L: The lipid rafts in cancer stem cell: A target to eradicate cancer. Stem Cell Res Ther. 13:4322022. View Article : Google Scholar : PubMed/NCBI | |
|
Ehteram H, Aslanbeigi F, Ghoochani Khorasani E, Tolouee M and Haddad Kashani H: Expression and prognostic significance of stem cell marker CD133 in survival rate of patients with colon cancer. Oncol Ther. 10:451–461. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada-Hunter SA, Theruvath J, McIntosh BJ, Freitas KA, Lin F, Radosevich MT, Leruste A, Dhingra S, Martinez-Velez N, Xu P, et al: Engineered CD47 protects T cells for enhanced antitumour immunity. Nature. 630:457–465. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S, Tan Y, Li F, Han Y, Zhang S and Lin X: CD44: A cancer stem cell marker and therapeutic target in leukemia treatment. Front Immunol. 15:13549922024. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao D, Xiong M, Wang X, Lyu M, Sun H, Cui Y, Chen C, Jiang Z and Sun F: Regulation of the function and expression of EpCAM. Biomedicines. 12:11292024. View Article : Google Scholar : PubMed/NCBI | |
|
Cao HZ, Yang WT and Zheng PS: Cytotoxic effect of disulfiram/copper on human cervical cancer cell lines and LGR5-positive cancer stem-like cells. BMC Cancer. 22:5212022. View Article : Google Scholar : PubMed/NCBI | |
|
Ferragut F, Vachetta VS, Troncoso MF, Rabinovich GA and Elola MT: ALCAM/CD166: A pleiotropic mediator of cell adhesion, stemness and cancer progression. Cytokine Growth Factor Rev. 61:27–37. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Yu H, Yu M, Liu H, Zhang B, Wang Y, Zhao S and Xia Q: CD24 blockade as a novel strategy for cancer treatment. Int Immunopharmacol. 121:1105572023. View Article : Google Scholar : PubMed/NCBI | |
|
Sałagacka-Kubiak A, Zawada D, Saed L, Kordek R, Jeleń A and Balcerczak E: ABCG2 Gene and ABCG2 protein expression in colorectal cancer-in silico and wet analysis. Int J Mol Sci. 24:105392023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Jiang R, Zhang C, Feng Z and Wang X: The regulatory role of cancer stem cell marker gene CXCR4 in the growth and metastasis of gastric cancer. NPJ Precis Oncol. 7:862023. View Article : Google Scholar : PubMed/NCBI | |
|
Liu C, Qiang J, Deng Q, Xia J, Deng L, Zhou L, Wang D, He X, Liu Y, Zhao B, et al: ALDH1A1 activity in tumor-initiating cells remodels myeloid-derived suppressor cells to promote breast cancer progression. Cancer Res. 81:5919–5934. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mirzaei S, Paskeh MDA, Entezari M, Mirmazloomi SR, Hassanpoor A, Aboutalebi M, Rezaei S, Hejazi ES, Kakavand A, Heidari H, et al: SOX2 function in cancers: Association with growth, invasion, stemness and therapy response. Biomed Pharmacother. 156:1138602022. View Article : Google Scholar : PubMed/NCBI | |
|
Duan R, Du W and Guo W: EZH2: A novel target for cancer treatment. J Hematol Oncol. 13:1042020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D and Li L: Notch signaling pathway in cancer: From mechanistic insights to targeted therapies. Signal Transduct Target Ther. 9:1282024. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, He J and Xie K: KLF4 transcription factor in tumorigenesis. Cell Death Discov. 9:1182023. View Article : Google Scholar : PubMed/NCBI | |
|
Schulz A, Meyer F, Dubrovska A and Borgmann K: Cancer stem cells and radioresistance: DNA repair and beyond. Cancers (Basel). 11:8622019. View Article : Google Scholar : PubMed/NCBI | |
|
Park SY, Kim JH, Choi JH, Lee CJ, Lee WJ, Park S, Park ZY, Baek JH and Nam JS: Lipid raft-disrupting miltefosine preferentially induces the death of colorectal cancer stem-like cells. Clin Transl Med. 11:e5522021. View Article : Google Scholar : PubMed/NCBI | |
|
Ye DM, Ye SC, Yu SQ, Shu FF, Xu SS, Chen QQ, Wang YL, Tang ZT and Pan C: Drug-resistance reversal in colorectal cancer cells by destruction of flotillins, the key lipid rafts proteins. Neoplasma. 66:576–583. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Riitano G, Manganelli V, Capozzi A, Mattei V, Recalchi S, Martellucci S, Longo A, Misasi R, Garofalo T and Sorice M: LRP6 mediated signal transduction pathway triggered by tissue plasminogen activator acts through lipid rafts in neuroblastoma cells. J Cell Commun Signal. 14:315–323. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Qiu X, Luo J and Fang L: AIBP, angiogenesis, hematopoiesis, and atherogenesis. Curr Atheroscler Rep. 23:12020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi D, Lv X, Zhang Z, Yang X, Zhou Z, Zhang L and Zhao Y: Smoothened oligomerization/higher order clustering in lipid rafts is essential for high Hedgehog activity transduction. J Biol Chem. 288:12605–12614. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chung CL, Wang SW, Sun WC, Shu CW, Kao YC, Shiao MS and Chen CL: Sorafenib suppresses TGF-β responses by inducing caveolae/lipid raft-mediated internalization/degradation of cell-surface type II TGF-β receptors: Implications in development of effective adjunctive therapy for hepatocellular carcinoma. Biochem Pharmacol. 154:39–53. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Du K, Li Y, Liu J, Chen W, Wei Z, Luo Y, Liu H, Qi Y, Wang F and Sui J: A bispecific antibody targeting GPC3 and CD47 induced enhanced antitumor efficacy against dual antigen-expressing HCC. Mol Ther. 29:1572–1584. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Abd El-Fattah EE and Selim HM: Reprograming immune microenvironment modulates CD47 cancer stem cells in hepatocellular carcinoma. Int Immunopharmacol. 113((Pt B)): 1094752022. View Article : Google Scholar : PubMed/NCBI | |
|
Chang CL, Wu CC, Hsu YT and Hsu YC: Immune vulnerability of ovarian cancer stem-like cells due to low CD47 expression is protected by surrounding bulk tumor cells. Oncoimmunology. 9:18035302020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Pu Y, Cron K, Deng L, Kline J, Frazier WA, Xu H, Peng H, Fu YX and Xu MM: CD47 blockade triggers T cell-mediated destruction of immunogenic tumors. Nat Med. 21:1209–1215. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang JH, Huang ST, Zhang L, Liu ZG, Liang RX, Jiang SW, Jiang YN, Yu XJ, Jiang YC, Li XZ, et al: Combined prognostic value of the cancer stem cell markers CD47 and CD133 in esophageal squamous cell carcinoma. Cancer Med. 8:1315–1325. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Liu J, Chen W, Wang W, Yang F, Liu X, Sheng Y, Du K, He M, Lyu X, et al: A pH-dependent anti-CD47 antibody that selectively targets solid tumors and improves therapeutic efficacy and safety. J Hematol Oncol. 16:22023. View Article : Google Scholar : PubMed/NCBI | |
|
Majeti R, Chao MP, Alizadeh AA, Pang WW, Jaiswal S, Gibbs KD Jr, van Rooijen N and Weissman IL: CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell. 138:286–299. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Grabovenko FI, Kisil OV, Pavlova GV and Zvereva ME: Protein CD133 as a tumor stem cell marker. Zh Vopr Neirokhir Im N N Burdenko. 86:113–120. 2022.(In English, Russian). View Article : Google Scholar : PubMed/NCBI | |
|
Peng H, Wu X, Liu S, He M, Xie C, Zhong R, Liu J, Tang C, Li C, Xiong S, et al: Multiplex immunofluorescence and single-cell transcriptomic profiling reveal the spatial cell interaction networks in the non-small cell lung cancer microenvironment. Clin Transl Med. 13:e11552023. View Article : Google Scholar : PubMed/NCBI | |
|
An HW, Seok SH, Kwon JW, Choudhury AD, Oh JS, Voon DC, Kim DY and Park JW: The loss of epithelial Smad4 drives immune evasion via CXCL1 while displaying vulnerability to combinatorial immunotherapy in gastric cancer. Cell Rep. 41:1118782022. View Article : Google Scholar : PubMed/NCBI | |
|
Guan S, Yang R, Wu S, Xu K and Yang C: The CD133(+)CXCR4(+) colorectal tumor cells promote colorectal cancer progression by PI3K/AKT signaling. J Interferon Cytokine Res. 42:195–202. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wei Y, Jiang Y, Zou F, Liu Y, Wang S, Xu N, Xu W, Cui C, Xing Y, Liu Y, et al: Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proc Natl Acad Sci USA. 110:6829–6834. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Lu R, Zhao G, Yang Y, Jiang Z, Cai J and Hu H: Inhibition of CD133 overcomes cisplatin resistance through inhibiting PI3K/AKT/mTOR signaling pathway and autophagy in CD133-positive gastric cancer cells. Technol Cancer Res Treat. 18:15330338198643112019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Z, Li W, Tang Q, Huang L, Zhan Z, Li Y, Wang G, Dai X and Zhang Y: A novel aniline derivative from peganum harmala L. Promoted apoptosis via activating PI3K/AKT/mTOR-mediated autophagy in non-small cell lung cancer cells. Int J Mol Sci. 24:126262023. View Article : Google Scholar : PubMed/NCBI | |
|
Matsumoto K, Arao T, Tanaka K, Kaneda H, Kudo K, Fujita Y, Tamura D, Aomatsu K, Tamura T, Yamada Y, et al: mTOR signal and hypoxia-inducible factor-1 alpha regulate CD133 expression in cancer cells. Cancer Res. 69:7160–7164. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Treffers LW, Ten Broeke T, Rösner T, Jansen JHM, van Houdt M, Kahle S, Schornagel K, Verkuijlen PJJH, Prins JM, Franke K, et al: IgA-mediated killing of tumor cells by neutrophils is enhanced by CD47-SIRPα checkpoint inhibition. Cancer Immunol Res. 8:120–130. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Qu T, Zhong T, Pang X, Huang Z, Jin C, Wang ZM, Li B and Xia Y: Ligufalimab, a novel anti-CD47 antibody with no hemagglutination demonstrates both monotherapy and combo antitumor activity. J Immunother Cancer. 10:e0055172022. View Article : Google Scholar : PubMed/NCBI | |
|
Shmelkov SV, Butler JM, Hooper AT, Hormigo A, Kushner J, Milde T, St Clair R, Baljevic M, White I, Jin DK, et al: CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors. J Clin Invest. 118:2111–2120. 2008.PubMed/NCBI | |
|
Qin X, Cardoso Rodriguez F, Sufi J, Vlckova P, Claus J and Tape CJ: An oncogenic phenoscape of colonic stem cell polarization. Cell. 186:5554–5568.e18. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cho YH, Ro EJ, Yoon JS, Mizutani T, Kang DW, Park JC, Il Kim T, Clevers H and Choi KY: 5-FU promotes stemness of colorectal cancer via p53-mediated WNT/β-catenin pathway activation. Nat Commun. 11:53212020. View Article : Google Scholar : PubMed/NCBI | |
|
Lee KM, Giltnane JM, Balko JM, Schwarz LJ, Guerrero-Zotano AL, Hutchinson KE, Nixon MJ, Estrada MV, Sánchez V, Sanders ME, et al: MYC and MCL1 cooperatively promote chemotherapy-resistant breast cancer stem cells via regulation of mitochondrial oxidative phosphorylation. Cell Metab. 26:633–647.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Roos M, Pradère U, Ngondo RP, Behera A, Allegrini S, Civenni G, Zagalak JA, Marchand JR, Menzi M, Towbin H, et al: A small-molecule inhibitor of Lin28. ACS Chem Biol. 11:2773–2781. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Radaeva M, Ho CH, Xie N, Zhang S, Lee J, Liu L, Lallous N, Cherkasov A and Dong X: Discovery of Novel Lin28 inhibitors to suppress cancer cell stemness. Cancers (Basel). 14:56872022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Y, Gomez N, Infarinato N, Adam RC, Sribour M, Baek I, Laurin M and Fuchs E: The pioneer factor SOX9 competes for epigenetic factors to switch stem cell fates. Nat Cell Biol. 25:1185–1195. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cheng Q, Zheng H, Li M, Wang H, Guo X, Zheng Z, Chen C, Liu J, Zhan T, Li Z, et al: LGR4 cooperates with PrPc to endow the stemness of colorectal cancer stem cells contributing to tumorigenesis and liver metastasis. Cancer Lett. 540:2157252022. View Article : Google Scholar : PubMed/NCBI | |
|
Dong J, Li J, Li Y, Ma Z, Yu Y and Wang CY: Transcriptional super-enhancers control cancer stemness and metastasis genes in squamous cell carcinoma. Nat Commun. 12:39742021. View Article : Google Scholar : PubMed/NCBI | |
|
Bahr C, von Paleske L, Uslu VV, Remeseiro S, Takayama N, Ng SW, Murison A, Langenfeld K, Petretich M, Scognamiglio R, et al: A Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature. 553:515–520. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Esposito F, Giuffrida R, Raciti G, Puglisi C and Forte S: Wee1 kinase: A potential target to overcome tumor resistance to therapy. Int J Mol Sci. 22:106892021. View Article : Google Scholar : PubMed/NCBI | |
|
Terzo E, Apte SA, Padhye S, Rashed S, Austin W, Caponegro M, Reddy A, Shi S, Wang C, Clark RB, et al: A novel class of ribosome modulating agents exploits cancer ribosome heterogeneity to selectively target the CMS2 subtype of colorectal cancer. Cancer Res Commun. 3:969–979. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Karimi-Busheri F, Rasouli-Nia A, Mackey JR and Weinfeld M: Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Res. 12:R312010. View Article : Google Scholar : PubMed/NCBI | |
|
Hembram KC, Dash SR, Das B, Sethy C, Chatterjee S, Bindhani BK and Kundu CN: Quinacrine based gold hybrid nanoparticles caused apoptosis through modulating replication fork in oral cancer stem cells. Mol Pharm. 17:2463–2472. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Manic G, Signore M, Sistigu A, Russo G, Corradi F, Siteni S, Musella M, Vitale S, De Angelis ML, Pallocca M, et al: CHK1-targeted therapy to deplete DNA replication-stressed, p53-deficient, hyperdiploid colorectal cancer stem cells. Gut. 67:903–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, Xiong Y, Guan KL and Lei QY: NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 124:5453–5465. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ciccone V, Terzuoli E, Donnini S, Giachetti A, Morbidelli L and Ziche M: Stemness marker ALDH1A1 promotes tumor angiogenesis via retinoic acid/HIF-1alpha/VEGF signalling in MCF-7 breast cancer cells. J Exp Clin Cancer Res. 37:3112018. View Article : Google Scholar : PubMed/NCBI | |
|
Rashid K, Ahmad A, Meerasa SS, Khan AQ, Wu X, Liang L, Cui Y and Liu T: Cancer stem cell-derived exosome-induced metastatic cancer: An orchestra within the tumor microenvironment. Biochimie. 212:1–11. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Bilotta MT, Antignani A and Fitzgerald DJ: Managing the TME to improve the efficacy of cancer therapy. Front Immunol. 13:9549922022. View Article : Google Scholar : PubMed/NCBI | |
|
Babaei G, Aziz SG and Jaghi NZZ: EMT, cancer stem cells and autophagy; The three main axes of metastasis. Biomed Pharmacother. 133:1109092021. View Article : Google Scholar : PubMed/NCBI | |
|
Han Y, Villarreal-Ponce A, Gutierrez G Jr, Nguyen Q, Sun P, Wu T, Sui B, Berx G, Brabletz T, Kessenbrock K, et al: Coordinate control of basal epithelial cell fate and stem cell maintenance by core EMT transcription factor Zeb1. Cell Rep. 38:1102402022. View Article : Google Scholar : PubMed/NCBI | |
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, et al: STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res. 182:1063112022. View Article : Google Scholar : PubMed/NCBI | |
|
Lin LY, Du LM, Cao K, Huang Y, Yu PF, Zhang LY, Li FY, Wang Y and Shi YF: Tumour cell-derived exosomes endow mesenchymal stromal cells with tumour-promotion capabilities. Oncogene. 35:6038–6042. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Li H and Li F: Exosomes from BM-MSCs increase the population of CSCs via transfer of miR-142-3p. Br J Cancer. 119:744–755. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Valenti G, Quinn HM, Heynen GJJE, Lan L, Holland JD, Vogel R, Wulf-Goldenberg A and Birchmeier W: Cancer stem cells regulate cancer-associated fibroblasts via activation of hedgehog signaling in mammary gland tumors. Cancer Res. 77:2134–2147. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kesh K, Gupta VK, Durden B, Garrido V, Mateo-Victoriano B, Lavania SP and Banerjee S: Therapy resistance, cancer stem cells and ECM in cancer: The matrix reloaded. Cancers (Basel). 12:30672020. View Article : Google Scholar : PubMed/NCBI | |
|
Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS, Jelinek D, Whiteley AE, Maxwell MB, Wilde BR, et al: Extracellular matrix remodeling regulates glucose metabolism through TXNIP destabilization. Cell. 175:117–132. e212018. View Article : Google Scholar : PubMed/NCBI | |
|
Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC, et al: Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 24:541–550. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Zamarron BF and Chen W: Dual roles of immune cells and their factors in cancer development and progression. Int J Biol Sci. 7:651–658. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Lei X, Lei Y, Li JK, Du WX, Li RG, Yang J, Li J, Li F and Tan HB: Immune cells within the tumor microenvironment: Biological functions and roles in cancer immunotherapy. Cancer Lett. 470:126–133. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mellman I, Chen DS, Powles T and Turley SJ: The cancer-immunity cycle: Indication, genotype, and immunotype. Immunity. 56:2188–2205. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Lopez-Yrigoyen M, Cassetta L and Pollard JW: Macrophage targeting in cancer. Ann N Y Acad Sci. 1499:18–41. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Allavena P, Digifico E and Belgiovine C: Macrophages and cancer stem cells: A malevolent alliance. Mol Med. 27:1212021. View Article : Google Scholar : PubMed/NCBI | |
|
Tao W, Chu C, Zhou W, Huang Z, Zhai K, Fang X, Huang Q, Zhang A, Wang X, Yu X, et al: Dual role of WISP1 in maintaining glioma stem cells and tumor-supportive macrophages in glioblastoma. Nat Commun. 11:30152020. View Article : Google Scholar : PubMed/NCBI | |
|
Raghavan S, Mehta P, Xie Y, Lei YL and Mehta G: Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J Immunother Cancer. 7:1902019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou SL, Yin D, Hu ZQ, Luo CB, Zhou ZJ, Xin HY, Yang XR, Shi YH, Wang Z, Huang XW, et al: A positive feedback loop between cancer stem-like cells and tumor-associated neutrophils controls hepatocellular carcinoma progression. Hepatology. 70:1214–1230. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ojalvo LS, Whittaker CA, Condeelis JS and Pollard JW: Gene expression analysis of macrophages that facilitate tumor invasion supports a role for wnt-signaling in mediating their activity in primary mammary tumors. J Immunol. 184:702–712. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Quero L, Hanser E, Manigold T, Tiaden AN and Kyburz D: TLR2 stimulation impairs anti-inflammatory activity of M2-like macrophages, generating a chimeric M1/M2 phenotype. Arthritis Res Ther. 19:2452017. View Article : Google Scholar : PubMed/NCBI | |
|
Molgora M, Esaulova E, Vermi W, Hou J, Chen Y, Luo J, Brioschi S, Bugatti M, Omodei AS, Ricci B, et al: TREM2 modulation remodels the tumor myeloid landscape enhancing anti-PD-1 immunotherapy. Cell. 182:886–900. e172020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Song Y, Zhang Y, Li X, Kan L and Han S: New insights on anti-tumor immunity of CD8(+) T cells: Cancer stem cells, tumor immune microenvironment and immunotherapy. J Transl Med. 23:3412025. View Article : Google Scholar : PubMed/NCBI | |
|
Morrison BJ, Steel JC and Morris JC: Reduction of MHC-I expression limits T-lymphocyte-mediated killing of Cancer-initiating cells. BMC Cancer. 18:4692018. View Article : Google Scholar : PubMed/NCBI | |
|
Mirzaei R, Sarkar S, Dzikowski L, Rawji KS, Khan L, Faissner A, Bose P and Yong VW: Brain tumor-initiating cells export tenascin-C associated with exosomes to suppress T cell activity. Oncoimmunology. 7:e14786472018. View Article : Google Scholar : PubMed/NCBI | |
|
Gurtner K, Hessel F, Eicheler W, Dörfler A, Zips D, Heider KH, Krause M and Baumann M: Combined treatment of the immunoconjugate bivatuzumab mertansine and fractionated irradiation improves local tumour control in vivo. Radiother Oncol. 102:444–449. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xu L, Wang X, Zhang T, Meng X, Zhao W, Pi C and Yang YG: Expression of a mutant CD47 protects against phagocytosis without inducing cell death or inhibiting angiogenesis. Cell Rep Med. 5:1014502024. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou H, Wang W, Xu H, Liang Y, Ding J, Lv M, Ren B, Peng H, Fu YX and Zhu M: Metabolic reprograming mediated by tumor cell-intrinsic type I IFN signaling is required for CD47-SIRPα blockade efficacy. Nat Commun. 15:57592024. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, You J, Pan Q, Tang Y, Cai L, Huang Y, Gu J, Wang Y, Yang X, Du Y, et al: Targeted delivery of a PD-1-blocking scFv by CD133-specific CAR-T cells using nonviral Sleeping Beauty transposition shows enhanced antitumour efficacy for advanced hepatocellular carcinoma. BMC Med. 21:3272023. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao C, Li J, Wang X, Li S, Xu C, Zhang Z, Hua A, Ding ZY, Zhang BX, Yang X and Li Z: Hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals for cancer therapy. J Control Release. 356:288–305. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Campos B, Wan F, Farhadi M, Ernst A, Zeppernick F, Tagscherer KE, Ahmadi R, Lohr J, Dictus C, Gdynia G, et al: Differentiation therapy exerts antitumor effects on stem-like glioma cells. Clin Cancer Res. 16:2715–2728. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Zhao W, An Q, Wang L, Zhu M, Ni J, Huang X, Jiang Y, Li M, Hou J, et al: Novel cancer stem cell-targeted retinoid ZSH-512 impedes colorectal cancer progress via KDM3A-mediated epigenetic reprogramming. Innovation (Camb). 6:1008312025.PubMed/NCBI | |
|
Shen S, Xu X, Lin S, Zhang Y, Liu H, Zhang C and Mo R: A nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat Nanotechnol. 16:104–113. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ning ST, Lee SY, Wei MF, Peng CL, Lin SY, Tsai MH, Lee PC, Shih YH, Lin CY, Luo TY and Shieh MJ: Targeting colorectal cancer stem-like cells with anti-CD133 antibody-conjugated SN-38 nanoparticles. ACS Appl Mater Interfaces. 8:17793–17804. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou G, Da Won Bae S, Nguyen R, Huo X, Han S, Zhang Z, Hebbard L, Duan W, Eslam M, Liddle C, et al: An aptamer-based drug delivery agent (CD133-apt-Dox) selectively and effectively kills liver cancer stem-like cells. Cancer Lett. 501:124–132. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Bo Y, Zhou J, Cai K, Wang Y, Feng Y, Li W, Jiang Y, Kuo SH, Roy J, Anorma C, et al: Leveraging intracellular ALDH1A1 activity for selective cancer stem-like cell labeling and targeted treatment via in vivo click reaction. Proc Natl Acad Sci USA. 120:e23023421202023. View Article : Google Scholar : PubMed/NCBI | |
|
Tijink BM, Buter J, de Bree R, Giaccone G, Lang MS, Staab A, Leemans CR and van Dongen GA: A phase I dose escalation study with anti-CD44v6 bivatuzumab mertansine in patients with incurable squamous cell carcinoma of the head and neck or esophagus. Clin Cancer Res. 12((20 Pt 1)): 6064–6072. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Dillman RO, Nistor GI and Keirstead HS: Autologous dendritic cells loaded with antigens from self-renewing autologous tumor cells as patient-specific therapeutic cancer vaccines. Hum Vaccin Immunother. 19:21984672023. View Article : Google Scholar : PubMed/NCBI | |
|
Quaglino E, Conti L and Cavallo F: Breast cancer stem cell antigens as targets for immunotherapy. Semin Immunol. 47:1013862020. View Article : Google Scholar : PubMed/NCBI | |
|
Liao F, Zhang J, Hu Y, Najafabadi AH, Moon JJ, Wicha MS, Kaspo B, Whitfield J, Chang AE and Li Q: Efficacy of an ALDH peptide-based dendritic cell vaccine targeting cancer stem cells. Cancer Immunol Immunother. 71:1959–1973. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Z, Wu Y, Ma W, Zhang S and Zhang YQ: Adoptive T-cell therapy of prostate cancer targeting the cancer stem cell antigen EpCAM. BMC Immunol. 16:12015. View Article : Google Scholar : PubMed/NCBI | |
|
Miao L, Zhang J, Huang B, Zhang Z, Wang S, Tang F, Teng M and Li Y: Special chimeric antigen receptor (CAR) modifications of T cells: A review. Front Oncol. 12:8327652022. View Article : Google Scholar : PubMed/NCBI | |
|
Anlas AA and Nelson CM: Soft microenvironments induce chemoresistance by increasing autophagy downstream of integrin-linked kinase. Cancer Res. 80:4103–4113. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Basu S, Dong Y, Kumar R, Jeter C and Tang DG: Slow-cycling (dormant) cancer cells in therapy resistance, cancer relapse and metastasis. Semin Cancer Biol. 78:90–103. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, Conley S, Fath MA, Davis A, Gheordunescu E, et al: Targeting breast cancer stem cell state equilibrium through modulation of redox signaling. Cell Metab. 28:69–86.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ohta Y, Fujii M, Takahashi S, Takano A, Nanki K, Matano M, Hanyu H, Saito M, Shimokawa M, Nishikori S, et al: Cell-matrix interface regulates dormancy in human colon cancer stem cells. Nature. 608:784–794. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang J and Yang R: All-Trans retinoic acid induces differentiation and downregulates stemness markers and MGMT expression in glioblastoma stem cells. Cells. 14:7462025. View Article : Google Scholar : PubMed/NCBI | |
|
Xu WW, Li B, Zhao JF, Yang JG, Li JQ, Tsao SW, He QY and Cheung ALM: IGF2 induces CD133 expression in esophageal cancer cells to promote cancer stemness. Cancer Lett. 425:88–100. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Song Y, Chen Y, Li Y, Lyu X, Cui J, Cheng Y, Zheng T, Zhao L and Zhao G: Resveratrol suppresses epithelial-mesenchymal transition in GBM by regulating Smad-dependent signaling. Biomed Res Int. 2019:13219732019. View Article : Google Scholar : PubMed/NCBI | |
|
Karalis TT, Heldin P, Vynios DH, Neill T, Buraschi S, Iozzo RV, Karamanos NK and Skandalis SS: Tumor-suppressive functions of 4-MU on breast cancer cells of different ER status: Regulation of hyaluronan/HAS2/CD44 and specific matrix effectors. Matrix Biol. 78-79:118–138. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luo X, Wang J, Chen Y, Zhou X, Shao Z, Liu K and Shang Z: Melatonin inhibits the stemness of head and neck squamous cell carcinoma by modulating HA synthesis via the FOSL1/HAS3 axis. J Pineal Res. 76:e129402024. View Article : Google Scholar : PubMed/NCBI | |
|
Lang J, Zhao X, Wang X, Zhao Y, Li Y, Zhao R, Cheng K, Li Y, Han X, Zheng X, et al: Targeted Co-delivery of the iron chelator deferoxamine and a HIF1α inhibitor impairs pancreatic tumor growth. ACS Nano. 13:2176–2189. 2019.PubMed/NCBI | |
|
Feng Q, Fang W, Guo Y, Hu P and Shi J: Nebulized therapy of early orthotopic lung cancer by iron-based nanoparticles: Macrophage-regulated ferroptosis of cancer stem cells. J Am Chem Soc. 145:24153–24165. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Cao Y, Liu B, Cai L, Li Y, Huang Y, Zhou Y, Sun X, Yang W and Sun T: G9a promotes immune suppression by targeting the Fbxw7/Notch pathway in glioma stem cells. CNS Neurosci Ther. 29:2508–2521. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S and Kossatz-Boehlert U: Cancer Stem cells-origins and biomarkers: Perspectives for targeted personalized therapies. Front Immunol. 11:12802020. View Article : Google Scholar : PubMed/NCBI | |
|
Probst A, Schaller T and Messmann H: Nonhealing gastric ulcer: Progression from gastric adenoma to early gastric cancer over 9 years. Gastrointest Endosc. 89:198–199. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Yan W, Suo X, Peng H, Yang X, Li Z, Zhang J and Liu D: Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy. Biomaterials. 200:1–14. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, Nassif Kerbauy L, Overman B, Thall P, Kaplan M, et al: Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 382:545–553. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shaim H, Shanley M, Basar R, Daher M, Gumin J, Zamler DB, Uprety N, Wang F, Huang Y, Gabrusiewicz K, et al: Targeting the αv integrin/TGF-β axis improves natural killer cell function against glioblastoma stem cells. J Clin Invest. 131:e1421162021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Ma J, Yang X, Nan F, Zhang T, Ji S, Rao D, Feng H, Gao K, Gu X and Gao Q: Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell. 187:1422–1439.e24. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Ma J, Wu Y, Ma L, Yang X, Zhang T, Song G, Li T, Gao K, Shen X, Lin J, et al: A blueprint for tumor-infiltrating B cells across human cancers. Science. 384:eadj48572024. View Article : Google Scholar : PubMed/NCBI | |
|
Ho DW, Tsui YM, Sze KM, Chan LK, Cheung TT, Lee E, Sham PC, Tsui SK, Lee TK and Ng IO: Single-cell transcriptomics reveals the landscape of intra-tumoral heterogeneity and stemness-related subpopulations in liver cancer. Cancer Lett. 459:176–185. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fan G, Xie T, Li L, Tang L, Han X and Shi Y: Single-cell and spatial analyses revealed the co-location of cancer stem cells and SPP1+ macrophage in hypoxic region that determines the poor prognosis in hepatocellular carcinoma. NPJ Precis Oncol. 8:752024. View Article : Google Scholar : PubMed/NCBI | |
|
Malta TM, Sokolov A, Gentles AJ, Burzykowski T, Poisson L, Weinstein JN, Kamińska B, Huelsken J, Omberg L, Gevaert O, et al: Machine learning identifies stemness features associated with oncogenic dedifferentiation. Cell. 173:338–354.e15. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dezem FS, Marção M, Ben-Cheikh B, Nikulina N, Omotoso A, Burnett D, Coelho P, Hurley J, Gomez C, Phan-Everson T, et al: A machine learning one-class logistic regression model to predict stemness for single cell transcriptomics and spatial omics. BMC Genomics. 24:7172023. View Article : Google Scholar : PubMed/NCBI | |
|
He B, Gao R, Lv S, Chen A, Huang J, Wang L, Feng Y, Feng J, Liu B, Lei J, et al: Cancer cell employs a microenvironmental neural signal trans-activating nucleus-mitochondria coordination to acquire stemness. Signal Transduct Target Ther. 8:2752023. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Xu L, Li X and Park S: Deep learning models for cancer stem cell detection: A brief review. Front Immunol. 14:12144252023. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang J, Qi YP, Ma N, Lu F, Gong WF, Chen B, Ma L, Zhong JH, Xiang BD and Li LQ: Overexpression of Epcam and CD133 correlates with poor prognosis in dual-phenotype hepatocellular carcinoma. J Cancer. 11:3400–3406. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jia Y, Shen P, Yan T, Zhou W, Sun J and Han X: Microfluidic tandem mechanical sorting system for enhanced cancer stem cell isolation and ingredient screening. Adv Healthc Mater. 10:e21009852021. View Article : Google Scholar : PubMed/NCBI | |
|
Sheinin R, Sharan R and Madi A: scNET: Learning context-specific gene and cell embeddings by integrating single-cell gene expression data with protein-protein interactions. Nat Methods. 22:708–716. 2025. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng H, Liu H, Li H, Dou W, Wang J, Zhang J, Liu T, Wu Y, Liu Y and Wang X: Characterization of stem cell landscape and identification of stemness-relevant prognostic gene signature to aid immunotherapy in colorectal cancer. Stem Cell Res Ther. 13:2442022. View Article : Google Scholar : PubMed/NCBI |