International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
Artificial intelligence in oncology: Current status and possibilities (Review)
Artificial intelligence (AI) is increasingly reshaping oncology by enhancing diagnostic accuracy, improving prognostication and enabling personalized treatment planning. The present review aimed to critically synthesize the contemporary landscape of AI applications across cancer imaging, digital pathology, clinical outcome prediction, chemotherapy and radiotherapy. Recent advances in machine learning and deep learning, particularly convolutional neural networks and transformer‑based architectures, have demonstrated robust performance in lesion detection, tumour grading, survival prediction and treatment optimization, in several instances approaching or exceeding expert‑level accuracy. Despite these advances, translation into routine clinical practice remains limited due to dataset bias, limited generalizability, the lack of standardized data protocols, insufficient interpretability and regulatory barriers. Ethical challenges related to fairness, transparency and equitable access are especially relevant in low‑ and middle‑income countries. Emerging frontiers, including multimodal AI, foundation models, federated learning, and explainable AI, provide potential solutions to these challenges. Multidisciplinary collaboration, rigorous prospective validation and robust ethical governance will be essential to realize the full potential of AI in advancing precision oncology and improving global cancer outcomes.