Open Access

α‑lipoic acid inhibits cerulein/resistin‑induced expression of interleukin‑6 by activating peroxisome proliferator‑activated receptor‑γ in pancreatic acinar cells

  • Authors:
    • Yujin Lee
    • Joo Weon Lim
    • Hyeyoung Kim
  • View Affiliations

  • Published online on: June 22, 2022     https://doi.org/10.3892/mmr.2022.12780
  • Article Number: 264
  • Copyright: © Lee et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cerulein‑induced pancreatitis resembles human acute pancreatitis in terms of pathological events, such as enzymatic activation and inflammatory cell infiltration in the pancreas. Cerulein is a cholecystokinin analog that increases levels of reactive oxygen species (ROS) and interleukin‑6 (IL‑6) expression level in pancreatic acinar cells. Serum levels of resistin, which is secreted from adipocytes, are reportedly higher in patients with acute pancreatitis than in healthy individuals. Previously, it was shown that the adipokine resistin can aggravate the cerulein‑induced increase in ROS levels and IL‑6 expression level in pancreatic acinar cells. Peroxisome proliferator‑activated receptor‑gamma (PPAR‑γ) is a key regulator of the transcription and expression of antioxidant enzymes, including heme oxygenase 1 (HO‑1) and catalase. α‑lipoic acid, a naturally occurring dithiol antioxidant, can prevent cerulein‑induced pancreatic damage in rats. In the present study, it was aimed to investigate whether α‑lipoic acid can attenuate the cerulein/resistin‑induced increase in IL‑6 expression and ROS levels via PPAR‑γ activation in pancreatic acinar AR42J cells. The anti‑inflammatory mechanism of α‑lipoic acid was determined using reverse transcription‑quantitative PCR, western blot analysis, enzyme‑linked immunosorbent assay, immunofluorescence staining and fluorometry. Treatment with cerulein and resistin increased ROS levels and IL‑6 expression level, which were inhibited by α‑lipoic acid in pancreatic acinar cells. α‑lipoic acid increased the nuclear translocation and expression level of PPAR‑γ and the expression levels of its target genes: HO‑1 and catalase. The PPAR‑γ antagonist GW9662 and HO‑1 inhibitor zinc protoporphyrin reversed the inhibitory effect of α‑lipoic acid on cerulein/resistin‑induced increase in ROS and IL‑6 levels. In conclusion, α‑lipoic acid inhibits the cerulein/resistin‑induced increase in ROS production and IL‑6 expression levels by activating PPAR‑γ and inducing the expression of HO‑1 and catalase in pancreatic acinar cells.

Related Articles

Journal Cover

August-2022
Volume 26 Issue 2

Print ISSN: 1791-2997
Online ISSN:1791-3004

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Lee Y, Lim JW and Kim H: α‑lipoic acid inhibits cerulein/resistin‑induced expression of interleukin‑6 by activating peroxisome proliferator‑activated receptor‑γ in pancreatic acinar cells. Mol Med Rep 26: 264, 2022
APA
Lee, Y., Lim, J.W., & Kim, H. (2022). α‑lipoic acid inhibits cerulein/resistin‑induced expression of interleukin‑6 by activating peroxisome proliferator‑activated receptor‑γ in pancreatic acinar cells. Molecular Medicine Reports, 26, 264. https://doi.org/10.3892/mmr.2022.12780
MLA
Lee, Y., Lim, J. W., Kim, H."α‑lipoic acid inhibits cerulein/resistin‑induced expression of interleukin‑6 by activating peroxisome proliferator‑activated receptor‑γ in pancreatic acinar cells". Molecular Medicine Reports 26.2 (2022): 264.
Chicago
Lee, Y., Lim, J. W., Kim, H."α‑lipoic acid inhibits cerulein/resistin‑induced expression of interleukin‑6 by activating peroxisome proliferator‑activated receptor‑γ in pancreatic acinar cells". Molecular Medicine Reports 26, no. 2 (2022): 264. https://doi.org/10.3892/mmr.2022.12780