|
1
|
Chavez-Tapia NC, Murúa-Beltrán Gall S,
Ordoñez-Vázquez AL, Nuño-Lambarri N, Vidal-Cevallos P and Uribe M:
Understanding the role of metabolic syndrome as a risk factor for
hepatocellular carcinoma. J Hepatocell Carcinoma. 9:583–593. 2022.
View Article : Google Scholar
|
|
2
|
Jia G, He P, Dai T, Goh D, Wang J, Sun M,
Wee F, Li F, Lim JCT, Hao S, et al: Spatial immune scoring system
predicts hepatocellular carcinoma recurrence. Nature.
640:1031–1041. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Huang Q, Wu D, Zhao J, Yan Z, Chen L, Guo
S, Wang D, Yuan C, Wang Y, Liu X and Xing J: TFAM loss induces
nuclear actin assembly upon mDia2 malonylation to promote liver
cancer metastasis. EMBO J. 41:e1103242022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zheng Y, Shi Y, Tian C, Jiang C, Jin H,
Chen J, Almasan A, Tang H and Chen Q: Essential role of the
voltage-dependent anion channel (VDAC) in mitochondrial
permeability transition pore opening and cytochrome c release
induced by arsenic trioxide. Oncogene. 23:1239–1247. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Su Y, Luo Y, Zhang P, Lin H, Pu W, Zhang
H, Wang H, Hao Y, Xiao Y, Zhang X, et al: Glucose-induced
CRL4(COP1)-p53 axis amplifies glycometabolism to drive
tumorigenesis. Mol Cell. 83:2316–2331.e7. 2023. View Article : Google Scholar
|
|
6
|
Wang TS, Coppens I, Saorin A, Brady NR and
Hamacher-Brady A: Endolysosomal targeting of mitochondria is
integral to BAX-mediated mitochondrial permeabilization during
apoptosis signaling. Dev Cell. 53:627–645.e7. 2020. View Article : Google Scholar
|
|
7
|
Liu J, Huang B, Xiu Z, Zhou Z, Liu J, Li X
and Tang X: PI3K/Akt/HIF-1α signaling pathway mediates HPV-16
oncoprotein-induced expression of EMT-related transcription factors
in non-small cell lung cancer cells. J Cancer. 9:3456–3466. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Heslop KA, Milesi V and Maldonado EN: VDAC
modulation of cancer metabolism: Advances and therapeutic
challenges. Front Physiol. 12:7428392021. View Article : Google Scholar
|
|
9
|
Li Y, Yan H, Xu X, Liu H, Wu C and Zhao L:
Erastin/sorafenib induces cisplatin-resistant non-small cell lung
cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway.
Oncol Lett. 19:323–333. 2020.
|
|
10
|
Fang D and Maldonado EN: VDAC regulation:
A mitochondrial target to stop cell proliferation. Adv Cancer Res.
138:41–69. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Yuan S, Sun R, Shi H, Chapman NM, Hu H,
Guy C, Rankin S, Kc A, Palacios G, Meng X, et al: VDAC2 loss
elicits tumour destruction and inflammation for cancer therapy.
Nature. 640:1062–1071. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Fang Y, Liu J, Zhang Q, She C, Zheng R,
Zhang R, Chen Z, Chen C and Wu J: Overexpressed VDAC1 in breast
cancer as a novel prognostic biomarker and correlates with immune
infiltrates. World J Surg Oncol. 20:2112022. View Article : Google Scholar
|
|
13
|
Pittala S, Krelin Y and Shoshan-Barmatz V:
Targeting liver cancer and associated pathologies in mice with a
mitochondrial VDAC1-Based Peptide. Neoplasia. 20:594–609. 2018.
View Article : Google Scholar
|
|
14
|
Liu C, Li HJ, Duan WX, Duan Y, Yu Q, Zhang
T, Sun YP, Li YY, Liu YS and Xu SC: MCU upregulation overactivates
mitophagy by promoting VDAC1 Dimerization and Ubiquitination in the
Hepatotoxicity of Cadmium. Adv Sci (Weinh). 10:e22038692023.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yang C, Zhao Y, Wang L, Guo Z, Ma L, Yang
R, Wu Y, Li X, Niu J, Chu Q, et al: De novo pyrimidine biosynthetic
complexes support cancer cell proliferation and ferroptosis
defence. Nat Cell Biol. 25:836–847. 2023. View Article : Google Scholar
|
|
16
|
Mahmoud AM, Kostrzewa M, Marolda V,
Cerasuolo M, Maccarinelli F, Coltrini D, Rezzola S, Giacomini A,
Mollica MP, Motta A, et al: Cannabidiol alters mitochondrial
bioenergetics via VDAC1 and triggers cell death in
hormone-refractory prostate cancer. Pharmacol Res. 189:1066832023.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Chin HS, Li MX, Tan IKL, Ninnis RL, Reljic
B, Scicluna K, Dagley LF, Sandow JJ, Kelly GL, Samson AL, et al:
VDAC2 enables BAX to mediate apoptosis and limit tumor development.
Nat Commun. 9:49762018. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Turcios L, Marti F, Watt DS, Kril LM,
Khurana A, Chapelin F, Liu C, Zwischenberger JB, Evers BM and
Gedaly R: Mitochondrial uncoupling and the disruption of the
metabolic network in hepatocellular carcinoma. Oncotarget.
11:3013–3024. 2020. View Article : Google Scholar
|
|
19
|
Grills C, Jithesh PV, Blayney J, Zhang SD
and Fennell DA: Gene expression meta-analysis identifies VDAC1 as a
predictor of poor outcome in early stage non-small cell lung
cancer. PLoS One. 6:e146352011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xing T, Li L, Chen Y, Ju G, Li G, Zhu X,
Ren Y, Zhao J, Cheng Z, Li Y, et al: Targeting the TCA cycle
through cuproptosis confers synthetic lethality on ARID1A-deficient
hepatocellular carcinoma. Cell Rep Med. 4:1012642023. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Ren X, Zhou H, Sun Y, Fu H, Ran Y, Yang B,
Yang F, Bjorklund M and Xu S: MIRO-1 interacts with VDAC-1 to
regulate mitochondrial membrane potential in Caenorhabditis
elegans. EMBO Rep. 24:e562972023. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Conti Nibali S, De Siervi S, Luchinat E,
Magrì A, Messina A, Brocca L, Mantovani S, Oliviero B, Ahmed MH,
Mondelli MU, et al: VDAC1-interacting molecules promote cell death
in cancer organoids through mitochondrial-dependent metabolic
interference. iScience. 27:1098532024. View Article : Google Scholar
|
|
23
|
Luo P, Zhang Q, Shen S, An Y, Yuan L, Wong
YK, Huang S, Huang S, Huang J, Cheng G, et al: Mechanistic
engineering of celastrol liposomes induces ferroptosis and
apoptosis by directly targeting VDAC2 in hepatocellular carcinoma.
Asian J Pharm Sci. 18:1008742023. View Article : Google Scholar
|
|
24
|
Yuan Z, Dewson G, Czabotar PE and
Birkinshaw RW: VDAC2 and the BCL-2 family of proteins. Biochem Soc
Trans. 49:2787–2795. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zerbib E, Arif T, Shteinfer-Kuzmine A,
Chalifa-Caspi V and Shoshan-Barmatz V: VDAC1 silencing in cancer
cells leads to metabolic reprogramming that modulates tumor
microenvironment. Cancers (Basel). 13:28502021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Nong S, Han X, Xiang Y, Qian Y, Wei Y,
Zhang T, Tian K, Shen K, Yang J and Ma X: Metabolic reprogramming
in cancer: Mechanisms and therapeutics. MedComm (2020). 4:e2182023.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Gershon TR, Crowther AJ, Tikunov A, Garcia
I, Annis R, Yuan H, Miller CR, Macdonald J, Olson J and Deshmukh M:
Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar
neurogenesis and pathogenesis of medulloblastoma. Cancer Metab.
1:22013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Ciscato F, Ferrone L, Masgras I, Laquatra
C and Rasola A: Hexokinase 2 in cancer: A prima donna playing
multiple characters. Int J Mol Sci. 22:47162021. View Article : Google Scholar
|
|
29
|
Maldonado EN: VDAC-Tubulin, an
anti-warburg pro-oxidant switch. Front Oncol. 7:42017. View Article : Google Scholar
|
|
30
|
Heslop KA, Burger P, Kappler C, Solanki
AK, Gooz M, Peterson YK, Mills C, Benton T, Duncan SA, Woster PM
and Maldonado EN: Small molecules targeting the NADH-binding pocket
of VDAC modulate mitochondrial metabolism in hepatocarcinoma cells.
Biomed Pharmacother. 150:1129282022. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
He Z, Zhang J, Xu Y, Fine EJ, Suomivuori
CM, Dror RO and Feng L: Structure of mitochondrial pyruvate carrier
and its inhibition mechanism. Nature. 641:250–257. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen
Y, Liu H, Jiang J, Yang Y, Zheng F and Wu B: Aerobic glycolysis
enhances HBx-initiated hepatocellular carcinogenesis via
NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 41:3292022.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang Y, Li W, Bian Y, Li Y and Cong L:
Multifaceted roles of aerobic glycolysis and oxidative
phosphorylation in hepatocellular carcinoma. PeerJ. 11:e147972023.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Rostovtseva TK, Bezrukov SM and
Hoogerheide DP: Regulation of mitochondrial respiration by VDAC Is
enhanced by membrane-bound inhibitors with disordered polyanionic
C-terminal domains. Int J Mol Sci. 22:73582021. View Article : Google Scholar
|
|
35
|
Ning Z, Guo X, Liu X, Lu C, Wang A, Wang
X, Wang W, Chen H, Qin W, Liu X, et al: USP22 regulates lipidome
accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat
Commun. 13:21872022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Varughese JT, Buchanan SK and Pitt AS: The
role of voltage-dependent anion channel in mitochondrial
dysfunction and human disease. Cells. 10:17372021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Yang J, Lu X, Hao JL, Li L, Ruan YT, An
XN, Huang QL, Dong XM and Gao P: VSTM2L protects prostate cancer
cells against ferroptosis via inhibiting VDAC1 oligomerization and
maintaining mitochondria homeostasis. Nat Commun. 16:11602025.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Baar MP, Brandt RMC, Putavet DA, Klein
JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van
Willigenburg H, Feijtel DA, et al: Targeted apoptosis of senescent
cells restores tissue homeostasis in response to chemotoxicity and
aging. Cell. 169:132–147.e16. 2017. View Article : Google Scholar
|
|
39
|
Tomasello F, Messina A, Lartigue L,
Schembri L, Medina C, Reina S, Thoraval D, Crouzet M, Ichas F, De
Pinto V and De Giorgi F: Outer membrane VDAC1 controls permeability
transition of the inner mitochondrial membrane in cellulo during
stress-induced apoptosis. Cell Res. 19:1363–1376. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A and
Verma A: VDAC1 at the intersection of cell metabolism, apoptosis,
and diseases. Biomolecules. 10:14852020. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ding L, Wu JP, Xu G, Zhu B, Zeng QM, Li DF
and Lu W: Lentiviral-mediated RNAi targeting caspase-3 inhibits
apoptosis induced by serum deprivation in rat endplate chondrocytes
in vitro. Braz J Med Biol Res. 47:445–451. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Moldoveanu T: Apoptotic mitochondrial
poration by a growing list of pore-forming BCL-2 family proteins.
Bioessays. 45:e22002212023. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang X, Zhang X, Ren J, Li J, Wei X, Yu
Y, Yi Z and Wei W: Precise modelling of mitochondrial diseases
using optimized mitoBEs. Nature. 639:735–745. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Garcia S, Saldana-Caboverde A, Anwar M,
Raval AP, Nissanka N, Pinto M, Moraes CT and Diaz F: Enhanced
glycolysis and GSK3 inactivation promote brain metabolic
adaptations following neuronal mitochondrial stress. Hum Mol Genet.
31:692–704. 2022. View Article : Google Scholar
|
|
45
|
Qiu XY, Hu DX, Chen WQ, Chen RQ, Qian SR,
Li CY, Li YJ, Xiong XX, Liu D, Pan F, et al: PD-L1 confers
glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT
activation. Biochim Biophys Acta Mol Basis Dis. 1864((5 Pt A)):
1754–1769. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Yao H, Lan J, Li C, Shi H, Brosseau JP,
Wang H, Lu H, Fang C, Zhang Y, Liang L, et al: Inhibiting PD-L1
palmitoylation enhances T-cell immune responses against tumours.
Nat Biomed Eng. 3:306–317. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Shen YG, Ji MM, Yi HM, Shen R, Fu D, Cheng
S, Huang CX, Wang L, Xu PP, Dou HJ and Zhao WL: CD47 overexpression
is related to tumour-associated macrophage infiltration and diffuse
large B-cell lymphoma progression. Clin Transl Med. 14:e15322024.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Shi Y, Huang G, Jiang F, Zhu J, Xu Q, Fang
H, Lan S, Pan Z, Jian H, Li L and Zhang Y: Deciphering a
mitochondria-related signature to supervise prognosis and
immunotherapy in hepatocellular carcinoma. Front Immunol.
13:10705932022. View Article : Google Scholar
|
|
49
|
Zhang K, Yuan B, Dai X, Chen W, Zhang C,
Qiao Y, Cao W, Chen Y, Duan X, Zhang X, et al: Selection and
identification of DNA aptamer binding VDAC1 for tumor tissue
imaging and targeted drug delivery. Int J Biol Macromol. 306((Pt
1)): 1412492025. View Article : Google Scholar
|
|
50
|
Ko JH, Gu W, Lim I, Zhou T and Bang H:
Expression profiling of mitochondrial voltage-dependent anion
channel-1 associated genes predicts recurrence-free survival in
human carcinomas. PLoS One. 9:e1100942014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Ma Y, Han B, Yu Q, Zha N, Deng Z, Liang J
and Yu R: Single-cell and bulk RNA sequencing data jointly reveals
VDAC2′s impacts on prognosis and immune landscape of NSCLC. Aging
(Albany NY). 16:3160–3184. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chen S, Ning B, Song J, Yang Z, Zhou L,
Chen Z, Mao L, Liu H, Wang Q, He S and Zhou Z: Enhanced pentose
phosphate pathway activity promotes pancreatic ductal
adenocarcinoma progression via activating YAP/MMP1 axis under
chronic acidosis. Int J Biol Sci. 18:2304–2316. 2022. View Article : Google Scholar
|
|
53
|
Karmi O, Marjault HB, Bai F, Roy S, Sohn
YS, Darash Yahana M, Morcos F, Ioannidis K, Nahmias Y, Jennings PA,
et al: A VDAC1-mediated NEET protein chain transfers [2Fe-2S]
clusters between the mitochondria and the cytosol and impacts
mitochondrial dynamics. Proc Natl Acad Sci USA.
119:e21214911192022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Arif T, Paul A, Krelin Y,
Shteinfer-Kuzmine A and Shoshan-Barmatz V: Mitochondrial VDAC1
silencing leads to metabolic rewiring and the reprogramming of
tumour cells into advanced differentiated states. Cancers (Basel).
10:4992018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Cervantes-Silva MP, Cox SL and Curtis AM:
Alterations in mitochondrial morphology as a key driver of immunity
and host defence. EMBO Rep. 22:e530862021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhang L, Zhang X, Liu H, Yang C, Yu J,
Zhao W, Guo J, Zhou B and Jiang N: MTFR2-dependent mitochondrial
fission promotes HCC progression. J Transl Med. 22:732024.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Qu M, Zhang G, Qu H, Vu A, Wu R, Tsukamoto
H, Jia Z, Huang W, Lenz HJ, Rich JN and Kay SA: Circadian regulator
BMAL1::CLOCK promotes cell proliferation in hepatocellular
carcinoma by controlling apoptosis and cell cycle. Proc Natl Acad
Sci USA. 120:e22148291202023. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Pan X, Zhao Y, Li Y, Chen J, Zhang W, Yang
L, Xiong YZ, Ying Y, Xu H, Zhang Y, et al: Mitochondrial dynamics
govern whole-body regeneration through stem cell pluripotency and
mitonuclear balance. Nat Commun. 15:106812024. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Medeiros HCD and Lunt SY: The Warburg
effect: Saturation of mitochondrial NADH shuttles triggers aerobic
lactate fermentation. Mol Cell. 82:3119–3121. 2022. View Article : Google Scholar
|
|
60
|
Vijayan M, Alvir RV, Alvir RV, Bunquin LE,
Pradeepkiran JA and Reddy PH: A partial reduction of VDAC1 enhances
mitophagy, autophagy, synaptic activities in a transgenic Tau mouse
model. Aging Cell. 21:e136632022. View Article : Google Scholar
|
|
61
|
Amsalem Z, Arif T, Shteinfer-Kuzmine A,
Chalifa-Caspi V and Shoshan-Barmatz V: The mitochondrial protein
VDAC1 at the crossroads of cancer cell metabolism: The epigenetic
link. Cancers (Basel). 12:10312020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Shen S, Dean DC, Yu Z and Duan Z: Role of
cyclin-dependent kinases (CDKs) in hepatocellular carcinoma:
Therapeutic potential of targeting the CDK signaling pathway.
Hepatol Res. 49:1097–1108. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Tian LY, Smit DJ and Jücker M: The Role of
PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int
J Mol Sci. 24:26522023. View Article : Google Scholar
|
|
64
|
Gottlob K, Majewski N, Kennedy S, Kandel
E, Robey RB and Hay N: Inhibition of early apoptotic events by
Akt/PKB is dependent on the first committed step of glycolysis and
mitochondrial hexokinase. Genes Dev. 15:1406–1418. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang W, Tang Y, Yang P, Chen Y, Xu Z, Qi
C, Huang H, Liu R, Qin H, Ke H, et al: TMX2 potentiates cell
viability of hepatocellular carcinoma by promoting autophagy and
mitophagy. Autophagy. 20:2146–2163. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xie X, Shu R, Yu C, Fu Z and Li Z:
Mammalian AKT, the emerging roles on mitochondrial function in
diseases. Aging Dis. 13:157–174. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Deldar Abad Paskeh M, Mirzaei S,
Ashrafizadeh M, Zarrabi A and Sethi G: Wnt/β-catenin signaling as a
driver of hepatocellular carcinoma progression: An emphasis on
molecular pathways. J Hepatocell Carcinoma. 8:1415–1444. 2021.
View Article : Google Scholar
|
|
68
|
Liang Y, Mei Q, He E, Ballar P, Wei C,
Wang Y, Dong Y, Zhou J, Tao X, Qu W, et al: MANF serves as a novel
hepatocyte factor to promote liver regeneration after 2/3 partial
hepatectomy via doubly targeting Wnt/β-catenin signaling. Cell
Death Dis. 15:6812024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hwang WY, Kostiuk V, González DP, Lusk CP
and Khokha MK: Kap-β2/Transportin mediates β-catenin nuclear
transport in Wnt signaling. Elife. 11:e704952022. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Guo Q, Kim A, Li B, Ransick A, Bugacov H,
Chen X, Lindström N, Brown A, Oxburgh L, Ren B and McMahon AP: A
beta-catenin-driven switch in TCF/LEF transcription factor binding
to DNA target sites promotes commitment of mammalian nephron
progenitor cells. Elife. 10:e644442021. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao
C, Xu X and Zhang H: Wnt/β-Catenin signaling pathway in
hepatocellular carcinoma: pathogenic role and therapeutic target.
Front Oncol. 14:13673642024. View Article : Google Scholar
|
|
72
|
Moon H and Ro SW: MAPK/ERK signaling
pathway in hepatocellular carcinoma. Cancers (Basel). 13:30262021.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hacohen Lev-Ran A and Seger R: Retention
of ERK in the cytoplasm mediates the pluripotency of embryonic stem
cells. Stem Cell Reports. 18:305–318. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Bhattacharya R, Ray Chaudhuri S and Roy
SS: FGF9-induced ovarian cancer cell invasion involves
VEGF-A/VEGFR2 augmentation by virtue of ETS1 upregulation and
metabolic reprogramming. J Cell Biochem. 119:8174–8189. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lang L, Loveless R, Dou J, Lam T, Chen A,
Wang F, Sun L, Juarez J, Qin ZS, Saba NF, et al: ATAD3A mediates
activation of RAS-independent mitochondrial ERK1/2 signaling,
favoring head and neck cancer development. J Exp Clin Cancer Res.
41:432022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang
Y, Zhou Y, Fu B, Sun R, Zheng X, et al: Interleukin-34-orchestrated
tumor-associated macrophage reprogramming is required for tumor
immune escape driven by p53 inactivation. Immunity.
57:2344–2361.e7. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Shen J, Wang Q, Mao Y, Gao W and Duan S:
Targeting the p53 signaling pathway in cancers: Molecular
mechanisms and clinical studies. MedComm (2020). 4:e2882023.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Zhou Y, Cui G, Xu H, Chun J, Yang D, Zhang
Z, Yang L, Wang J, Wan M, Calvisi DF, et al: Loss of TP53
cooperates with c-MET overexpression to drive hepatocarcinogenesis.
Cell Death Dis. 14:4762023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chen C, Du Y, Nie R, Wang S, Wang H and Li
P: Notch signaling in cancers: mechanism and potential therapy.
Front Cell Dev Biol. 13:15429672025. View Article : Google Scholar
|
|
80
|
Hou SS, Ikegawa Y, Kwon Y, Wieckiewicz N,
Houser MCQ, Lundin B, Bacskai BJ, Berezovska O and Maesako M:
Recording gamma-secretase activity in living mouse brains. ELife.
13:RP968482024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Townson JM, Gomez-Lamarca MJ, Santa Cruz
Mateos C and Bray SJ: OptIC-Notch reveals mechanism that regulates
receptor interactions with CSL. Development. 150:dev2017852023.
|
|
82
|
Wang X, Guo Y, Lin P, Yu M, Song S, Xu W,
Kong D, Wang Y, Zhang Y, Lu F, et al: Nuclear receptor E75/NR1D2
promotes tumor malignant transformation by integrating Hippo and
Notch pathways. EMBO J. 43:6336–6363. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Kumari L, Mishra L, Sharma Y, Chahar K,
Kumar M, Patel P, Gupta GD and Kurmi BD: NOTCH signaling pathway:
Occurrence, mechanism, and NOTCH-directed therapy for the
management of cancer. Cancer Biother Radiopharm. 39:19–34. 2024.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Huang D, Xu M, Wang H, Zhao Y, Zhang Z, Yu
M, Zhou M, Pan J, Zeng H, Yu Z, et al: SIRPα blockade therapy
potentiates immunotherapy by inhibiting PD-L1(+) myeloid cells in
hepatocellular carcinoma. Cell Death Dis. 16:4512025. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Ding WZ, Han GY, Jin HH, Zhan CF, Ji Y and
Huang XL: Anti-IL-20 monoclonal antibody suppresses hepatocellular
carcinoma progression. Oncol Lett. 16:6156–6162. 2018.
|
|
86
|
Kinsey E and Lee HM: Management of
hepatocellular carcinoma in 2024: The multidisciplinary paradigm in
an evolving treatment landscape. Cancers (Basel). 16:6662024.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhu X, Luo L, Xiong Y, Jiang N, Wang Y, Lv
Y and Xie Y: VDAC1 oligomerization may enhance DDP-induced
hepatocyte apoptosis by exacerbating oxidative stress and
mitochondrial DNA damage. FEBS Open Bio. 12:516–522. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Arbel N, Ben-Hail D and Shoshan-Barmatz V:
Mediation of the antiapoptotic activity of Bcl-xL protein upon
interaction with VDAC1 protein. J Biol Chem. 287:23152–23161. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Rosencrans WM, Rajendran M, Bezrukov SM
and Rostovtseva TK: VDAC regulation of mitochondrial calcium flux:
From channel biophysics to disease. Cell Calcium. 94:1023562021.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Lu W and Kang Y: Epithelial-mesenchymal
plasticity in cancer progression and metastasis. Dev Cell.
49:361–374. 2019. View Article : Google Scholar
|
|
91
|
Qiu Z, Wang X, Yang Z, Liao S, Dong W, Sun
T, Wu H, Zhang Q, Pan Z, Lam SM, et al: GBA1-dependent membrane
glucosylceramide reprogramming promotes liver cancer metastasis via
activation of the Wnt/β-catenin signalling pathway. Cell Death Dis.
13:5082022. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Cristofanon S and Fulda S: Correction:
ABT-737 promotes tBid mitochondrial accumulation to enhance
TRAIL-induced apoptosis in glioblastoma cells. Cell Death Dis.
15:6792024. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Assenat E, Ben Abdelghani M, Gourgou S,
Perrier H, Akouz FK, Desgrippes R, Galais MP, Janiszewski C, Mazard
T, Rinaldi Y, et al: Impact of lean body mass-based oxaliplatin
dose calculation on neurotoxicity in adjuvant treatment of stage
III colon cancer: Results of the Phase II randomized LEANOX trial.
J Clin Oncol. 43:2616–2627. 2025. View Article : Google Scholar
|
|
94
|
Deng J, Paulus A, Fang DD, Manna A, Wang
G, Wang H, Zhu S, Chen J, Min P, Yin Y, et al: Lisaftoclax
(APG-2575) Is a Novel BCL-2 inhibitor with robust antitumor
activity in preclinical models of hematologic malignancy. Clin
Cancer Res. 28:5455–5468. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Sakai K, Inoue M, Mikami S, Nishimura H,
Kuwabara Y, Kojima A, Toda M, Ogawa-Kobayashi Y, Kikuchi S, Hirata
Y, et al: Functional inhibition of heat shock protein 70 by
VER-155008 suppresses pleural mesothelioma cell proliferation via
an autophagy mechanism. Thorac Cancer. 12:491–503. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Alsaab HO and Almalki AH: Anti-HSP70
alleviates cell migration and proliferation in colorectal cancer
cells (CRC) by targeting CXCR4 (in vitro study). Med Oncol.
40:2562023. View Article : Google Scholar
|
|
97
|
Xu F, Lin D, Jiang W, Meng L, Xu Y, Wang
C, Wang X, He H, Xu D and Zhu Y: HSP70 inhibitor VER155008
suppresses pheochromocytoma cell and xenograft growth by inhibition
of PI3K/AKT/mTOR and MEK/ERK pathways. Int J Clin Exp Pathol.
12:2585–2594. 2019.
|
|
98
|
Lin X, Li L, Li S, Li Q, Xie D, Zhou M and
Huang Y: Targeting the opening of mitochondrial permeability
transition pores potentiates nanoparticle drug delivery and
mitigates cancer metastasis. Adv Sci (Weinh). 8:20028342021.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Shuxian Y, Haiyan X and Li C: Recent
advances in heat shock proteins in cancer diagnosis, prognosis,
metabolism and treatment. Biomed Pharmacother. 142:1120742021.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lai P, Liu L, Bancaro N, Troiani M, Calì
B, Li Y, Chen J, Singh PK, Arzola RA, Attanasio G, et al:
Mitochondrial DNA released by senescent tumor cells enhances
PMN-MDSC-driven immunosuppression through the cGAS-STING pathway.
Immunity. 58:811–825.e7. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Chen Y, Li Z, Chen X and Zhang S: Long
non-coding RNAs: From disease code to drug role. Acta Pharm Sin B.
11:340–354. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Ertl HCJ: Immunogenicity and toxicity of
AAV gene therapy. Front Immunol. 13:9758032022. View Article : Google Scholar
|
|
103
|
Chan YK, Wang SK, Chu CJ, Copland DA,
Letizia AJ, Costa Verdera H, Chiang JJ, Sethi M, Wang MK,
Neidermyer WJ Jr, et al: Engineering adeno-associated viral vectors
to evade innate immune and inflammatory responses. Sci Transl Med.
13:eabd34382021. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Knudson KM, Hicks KC, Luo X, Chen JQ,
Schlom J and Gameiro SR: M7824, a novel bifunctional
anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy
as monotherapy and in combination with vaccine. Oncoimmunology.
7:e14265192018. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang H, Zhang Y, Dong J, Zuo S, Meng G,
Wu J and Wei J: Recombinant adenovirus expressing the fusion
protein PD1PVR improves CD8(+) T cell-mediated antitumor efficacy
with long-term tumor-specific immune surveillance in hepatocellular
carcinoma. Cell Oncol (Dordr). 44:1243–1255. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Sun Y, Deng R and Zhang C: Erastin induces
apoptotic and ferroptotic cell death by inducing ROS accumulation
by causing mitochondrial dysfunction in gastric cancer cell HGC-27.
Mol Med Rep. 22:2826–2832. 2020.PubMed/NCBI
|
|
107
|
Takeyama N, Miki S, Hirakawa A and Tanaka
T: Role of the mitochondrial permeability transition and cytochrome
C release in hydrogen peroxide-induced apoptosis. Exp Cell Res.
274:16–24. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Zhu W, Liang Q, Yang X, Yu Y, Shen X and
Sun G: Combination of sorafenib and Valproic acid synergistically
induces cell apoptosis and inhibits hepatocellular carcinoma growth
via down-regulating Notch3 and pAkt. Am J Cancer Res. 7:2503–2514.
2017.PubMed/NCBI
|
|
109
|
Wang Q, Liu J, Chen Z, Zheng J, Wang Y and
Dong J: Targeting metabolic reprogramming in hepatocellular
carcinoma to overcome therapeutic resistance: A comprehensive
review. Biomed Pharmacother. 170:1160212024. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Liu Y, Song J, Shi Q, Chen B, Qiu W, Liu
Y, Huang S and He X: Glucose-induced LINC01419 reprograms the
glycolytic pathway by recruiting YBX1 to enhance PDK1 mRNA
stability in hepatocellular carcinoma. Clin Transl Med.
14:e701222024. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Lv JL, Lai WQ, Gong YQ, Zheng KY, Zhang
XY, Lu ZP, Li MW, Wang XY and Dai LS: Bombyx mori voltage-dependent
anion-selective channel induces programmed cell death to defend
against Bombyx mori nucleopolyhedrovirus infection. Pest Manag Sci.
80:3752–3762. 2024. View Article : Google Scholar
|
|
112
|
Ventura C, Junco M, Santiago Valtierra FX,
Gooz M, Zhiwei Y, Townsend DM, Woster PM and Maldonado EN:
Synergism of small molecules targeting VDAC with sorafenib,
regorafenib or lenvatinib on hepatocarcinoma cell proliferation and
survival. Eur J Pharmacol. 957:1760342023. View Article : Google Scholar
|
|
113
|
Lan T, Gao F, Cai Y, Lv Y, Zhu J, Liu H,
Xie S, Wan H, He H, Xie K, et al: The protein circPETH-147aa
regulates metabolic reprogramming in hepatocellular carcinoma cells
to remodel immunosuppressive microenvironment. Nat Commun.
16:3332025. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wang Y, Zhu GQ, Yang R, Wang C, Qu WF, Chu
TH, Tang Z, Yang C, Yang L, Zhou CW, et al: Deciphering
intratumoral heterogeneity of hepatocellular carcinoma with
microvascular invasion with radiogenomic analysis. J Transl Med.
21:7342023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Wang Z, Cheng Y, Song Z and Zhao R:
Pan-cancer analysis of voltage-dependent anion channel (VDAC1) as a
cancer therapeutic target or diagnostic biomarker. Dis Markers.
2022:59461102022. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Fujita M, Chen MM, Siwak DR, Sasagawa S,
Oosawa-Tatsuguchi A, Arihiro K, Ono A, Miura R, Maejima K, Aikata
H, et al: Proteo-genomic characterization of virus-associated liver
cancers reveals potential subtypes and therapeutic targets. Nat
Commun. 13:64812022. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Brunelle JK and Letai A: Control of
mitochondrial apoptosis by the Bcl-2 family. J Cell Sci. 122((Pt
4)): 437–441. 2009. View Article : Google Scholar
|
|
118
|
Khan MW, Terry AR, Priyadarshini M,
Ilievski V, Farooq Z, Guzman G, Cordoba-Chacon J, Ben-Sahra I,
Wicksteed B and Layden BT: The hexokinase ‘HKDC1’ interaction with
the mitochondria is essential for liver cancer progression. Cell
Death Dis. 13:6602022. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Wang Z, Rehman AU, Qin X, Zhu C and Wu S:
PI3K/AKT/mtor pathway-associated genes reveal a putative prognostic
signature correlated with immune infiltration in hepatocellular
carcinoma. Dis Markers. 2022:75456662022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC,
Mu J, Li J, Yao H and Chen K: Role of tumor microenvironment in
cancer progression and therapeutic strategy. Cancer Med.
12:11149–11165. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Liu R, Guo Y, Wang L, Yin G, Tuo H, Zhu Y,
Yang W, Liu Q and Wang Y: A novel hypoxia-induced lncRNA, SZT2-AS1,
boosts HCC progression by mediating HIF heterodimerization and
histone trimethylation under a hypoxic microenvironment. Cell Death
Differ. 32:714–729. 2025. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Ramos LCB, Rodrigues FP, Biazzotto JC, de
Paula Machado S, Slep LD, Hamblin MR and da Silva RS: Targeting the
mitochondrial VDAC in hepatocellular carcinoma using a polyclonal
antibody-conjugated to a nitrosyl ruthenium complex. J Biol Inorg
Chem. 23:903–916. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Yang Y, Luo M, Zhang K, Zhang J, Gao T,
Connell DO, Yao F, Mu C, Cai B, Shang Y and Chen W: Nedd4
ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in
melanoma. Nat Commun. 11:4332020. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Seliger B: Combinatorial approaches with
checkpoint inhibitors to enhance anti-tumor immunity. Front
Immunol. 10:9992019. View Article : Google Scholar
|
|
125
|
Zheng Y, Ye S, Huang S, Cheng Y, Zhang Y,
Leng Y, He M, Wu E, Chen J, Kong L and Zhang H: Lefamulin overcomes
acquired drug resistance via regulating mitochondrial homeostasis
by targeting ILF3 in hepatocellular carcinoma. Adv Sci (Weinh).
11:e24017892024. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Hu Y, Zhou M, Tang J, Li S, Liu H, Hu J,
Ma H, Liu J, Qin T, Yu X, et al: Efficacy and safety of
stereotactic body radiotherapy combined with camrelizumab and
apatinib in patients with hepatocellular carcinoma with portal vein
tumor thrombus. Clin Cancer Res. 29:4088–4097. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Wang T, He M, Zhang X, Guo Z, Wang P and
Long F: Deciphering the impact of circRNA-mediated autophagy on
tumor therapeutic resistance: A novel perspective. Cell Mol Biol
Lett. 29:602024. View Article : Google Scholar
|
|
128
|
Seydi H, Nouri K, Rezaei N, Tamimi A,
Hassan M, Mirzaei H and Vosough M: Autophagy orchestrates
resistance in hepatocellular carcinoma cells. Biomed Pharmacother.
161:1144872023. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Song JQ, Shen LJ, Wang HJ, Liu QB, Ye LB,
Liu K, Shi L, Cai B, Lin HS and Pang T: Discovery of balasubramide
derivative with tissue-specific anti-inflammatory activity against
acute lung injury by targeting VDAC1. Adv Sci (Weinh).
11:e24105502024. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Keiser MS, Ranum PT, Yrigollen CM, Carrell
EM, Smith GR, Muehlmatt AL, Chen YH, Stein JM, Wolf RL, Radaelli E,
et al: Toxicity after AAV delivery of RNAi expression constructs
into nonhuman primate brain. Nat Med. 27:1982–1989. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Kaushal A: Innate immune regulations and
various siRNA modalities. Drug Deliv Transl Res. 13:2704–2718.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Zhang Z, Zhai M, Bao S, Sun X, Chen R,
Wang B, Yang F, Yang L and Zhou M: Integrative multi-omics
profiling deciphers tumor microenvironment heterogeneity and
immunotherapy vulnerabilities in lung neuroendocrine carcinomas. J
Adv Res. Jun 11–2025.(Epub ahead of print).
|
|
133
|
Li Y, Li XM, Wei LS and Ye JF:
Advancements in mitochondrial-targeted nanotherapeutics: Overcoming
biological obstacles and optimizing drug delivery. Front Immunol.
15:14519892024. View Article : Google Scholar
|
|
134
|
Xiao Y, He Z, Li W, Chen D, Niu X, Yang X,
Zeng W, Wang M, Qian Y, Su Y, et al: A covalent peptide-based
lysosome-targeting protein degradation platform for cancer
immunotherapy. Nat Commun. 16:13882025. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Monty MA, Islam MA, Nan X, Tan J, Tuhin
IJ, Tang X, Miao M, Wu D and Yu L: Emerging role of RNA
interference in immune cells engineering and its therapeutic
synergism in immunotherapy. Br J Pharmacol. 178:1741–1755. 2021.
View Article : Google Scholar
|
|
136
|
Kim J, Gupta R, Blanco LP, Yang S,
Shteinfer-Kuzmine A, Wang K, Zhu J, Yoon HE, Wang X, Kerkhofs M, et
al: VDAC oligomers form mitochondrial pores to release mtDNA
fragments and promote lupus-like disease. Science. 366:1531–1536.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Yang L, Zhu B, Zhou S, Zhao M, Li R, Zhou
Y, Shi X, Han J, Zhang W and Zhou B: Mitochondrial dysfunction was
involved in decabromodiphenyl ethane-induced glucolipid metabolism
disorders and neurotoxicity in zebrafish larvae. Environ Sci
Technol. 57:11043–11055. 2023. View Article : Google Scholar
|
|
138
|
Hu Y, Tian C, Chen F, Zhang A and Wang W:
The mystery of methylmercury-perturbed calcium homeostasis:
AMPK-DRP1-dependent mitochondrial fission initiates ER-mitochondria
contact formation. Sci Total Environ. 923:1713982024. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Harter MF, Recaldin T, Gerard R, Avignon
B, Bollen Y, Esposito C, Guja-Jarosz K, Kromer K, Filip A, Aubert
J, et al: Analysis of off-tumour toxicities of T-cell-engaging
bispecific antibodies via donor-matched intestinal organoids and
tumouroids. Nat Biomed Eng. 8:345–360. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Hu X, Zhang M, Quan C, Ren S, Chen W and
Wang J: ROS-responsive and triple-synergistic mitochondria-targeted
polymer micelles for efficient induction of ICD in tumor
therapeutics. Bioact Mater. 36:490–507. 2024. View Article : Google Scholar : PubMed/NCBI
|