Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Molecular Medicine Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1791-2997 Online ISSN: 1791-3004
Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2026 Volume 33 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Purchase PDF
Article

Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review)

  • Authors:
    • Jie Wang
    • Yu Liang
    • Xiaotao Jia
    • Xinmao Yang
    • Danning Shi
    • Yuanchun Wang
    • Yanfang Pan
  • View Affiliations

    Affiliations: Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China, Department of Neurology, The Affiliated Xi'an Central Hospital of Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi 710003, P.R. China, Department of Oncology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
  • Published online on: October 21, 2025     https://doi.org/10.3892/mmr.2025.13719
  • Article Number: 9
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hepatocellular carcinoma (HCC), the predominant form of primary liver cancer, represents a substantial global health challenge with limited treatment options. The voltage‑dependent anion channel (VDAC), a critical mitochondrial outer membrane protein, has emerged as a pivotal regulator in HCC pathogenesis. Dysregulation of VDAC expression and function disrupts mitochondrial metabolism, confers resistance to apoptosis and promotes tumor proliferation. Mechanistically, VDAC facilitates HCC progression through metabolic reprogramming, evasion of programmed cell death and crosstalk with multiple oncogenic signaling pathways. Current VDAC‑targeted therapeutic approaches, including small‑molecule inhibitors and metabolic modulators, have demonstrated promising preclinical efficacy in inducing apoptosis and suppressing tumor growth. Notably, these agents may overcome therapeutic resistance and exhibit synergistic effects with conventional therapies. However, several challenges persist, particularly in elucidating isoform‑specific functions, optimizing pharmacokinetic profiles and identifying predictive biomarkers for patient stratification. The present comprehensive review critically evaluates the mechanistic involvement of VDAC in HCC progression, assesses emerging targeting strategies and proposes future research directions to establish VDAC as a viable precision medicine target for HCC management.
View Figures

Figure 1

VDAC regulation of the Warburg
effect. VDAC regulates the ratio of cytoplasmic ATP/ADP by
controlling mitochondrial metabolism. VDAC opening can increase
mitochondrial metabolism, promote a high cytoplasmic ATP/ADP ratio,
increase oxygen consumption and reduce glycolysis (anti-Warburg
effect). VDAC opening in hepatocellular carcinoma cells promotes
oxidative metabolism and reverses the Warburg phenotype. After the
binding action acts on VDAC, it will promote the closure of VDAC,
inhibit mitochondrial metabolism, reduce the ATP/ADP ratio in the
cytoplasm, decrease oxygen consumption and enhance glycolysis.
VDAC, voltage-dependent anion channel; ANT, adenine nucleotide
translocase; Pi, inorganic phosphate.

Figure 2

Phosphorylation of VDAC by GSK3
promotes binding of Bcl-XL to VDAC. The VDAC oligomer is destroyed
and the monomer VDAC can be used for Bcl-XL binding. BAX can now
freely interact with BAK to form cyt c and promote the release of
apoptotic proteins. VDAC, voltage-dependent anion channel; GSK3,
glycogen synthase kinase-3; cyt c, cytochrome c.

Figure 3

VDAC in the pathogenesis and
therapeutic targeting of HCC. VDAC, voltage-dependent anion
channel; HCC, hepatocellular carcinoma; ROS, reactive oxygen
species; HK-II, hexokinase-II.
View References

1 

Chavez-Tapia NC, Murúa-Beltrán Gall S, Ordoñez-Vázquez AL, Nuño-Lambarri N, Vidal-Cevallos P and Uribe M: Understanding the role of metabolic syndrome as a risk factor for hepatocellular carcinoma. J Hepatocell Carcinoma. 9:583–593. 2022. View Article : Google Scholar

2 

Jia G, He P, Dai T, Goh D, Wang J, Sun M, Wee F, Li F, Lim JCT, Hao S, et al: Spatial immune scoring system predicts hepatocellular carcinoma recurrence. Nature. 640:1031–1041. 2025. View Article : Google Scholar : PubMed/NCBI

3 

Huang Q, Wu D, Zhao J, Yan Z, Chen L, Guo S, Wang D, Yuan C, Wang Y, Liu X and Xing J: TFAM loss induces nuclear actin assembly upon mDia2 malonylation to promote liver cancer metastasis. EMBO J. 41:e1103242022. View Article : Google Scholar : PubMed/NCBI

4 

Zheng Y, Shi Y, Tian C, Jiang C, Jin H, Chen J, Almasan A, Tang H and Chen Q: Essential role of the voltage-dependent anion channel (VDAC) in mitochondrial permeability transition pore opening and cytochrome c release induced by arsenic trioxide. Oncogene. 23:1239–1247. 2004. View Article : Google Scholar : PubMed/NCBI

5 

Su Y, Luo Y, Zhang P, Lin H, Pu W, Zhang H, Wang H, Hao Y, Xiao Y, Zhang X, et al: Glucose-induced CRL4(COP1)-p53 axis amplifies glycometabolism to drive tumorigenesis. Mol Cell. 83:2316–2331.e7. 2023. View Article : Google Scholar

6 

Wang TS, Coppens I, Saorin A, Brady NR and Hamacher-Brady A: Endolysosomal targeting of mitochondria is integral to BAX-mediated mitochondrial permeabilization during apoptosis signaling. Dev Cell. 53:627–645.e7. 2020. View Article : Google Scholar

7 

Liu J, Huang B, Xiu Z, Zhou Z, Liu J, Li X and Tang X: PI3K/Akt/HIF-1α signaling pathway mediates HPV-16 oncoprotein-induced expression of EMT-related transcription factors in non-small cell lung cancer cells. J Cancer. 9:3456–3466. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Heslop KA, Milesi V and Maldonado EN: VDAC modulation of cancer metabolism: Advances and therapeutic challenges. Front Physiol. 12:7428392021. View Article : Google Scholar

9 

Li Y, Yan H, Xu X, Liu H, Wu C and Zhao L: Erastin/sorafenib induces cisplatin-resistant non-small cell lung cancer cell ferroptosis through inhibition of the Nrf2/xCT pathway. Oncol Lett. 19:323–333. 2020.

10 

Fang D and Maldonado EN: VDAC regulation: A mitochondrial target to stop cell proliferation. Adv Cancer Res. 138:41–69. 2018. View Article : Google Scholar : PubMed/NCBI

11 

Yuan S, Sun R, Shi H, Chapman NM, Hu H, Guy C, Rankin S, Kc A, Palacios G, Meng X, et al: VDAC2 loss elicits tumour destruction and inflammation for cancer therapy. Nature. 640:1062–1071. 2025. View Article : Google Scholar : PubMed/NCBI

12 

Fang Y, Liu J, Zhang Q, She C, Zheng R, Zhang R, Chen Z, Chen C and Wu J: Overexpressed VDAC1 in breast cancer as a novel prognostic biomarker and correlates with immune infiltrates. World J Surg Oncol. 20:2112022. View Article : Google Scholar

13 

Pittala S, Krelin Y and Shoshan-Barmatz V: Targeting liver cancer and associated pathologies in mice with a mitochondrial VDAC1-Based Peptide. Neoplasia. 20:594–609. 2018. View Article : Google Scholar

14 

Liu C, Li HJ, Duan WX, Duan Y, Yu Q, Zhang T, Sun YP, Li YY, Liu YS and Xu SC: MCU upregulation overactivates mitophagy by promoting VDAC1 Dimerization and Ubiquitination in the Hepatotoxicity of Cadmium. Adv Sci (Weinh). 10:e22038692023. View Article : Google Scholar : PubMed/NCBI

15 

Yang C, Zhao Y, Wang L, Guo Z, Ma L, Yang R, Wu Y, Li X, Niu J, Chu Q, et al: De novo pyrimidine biosynthetic complexes support cancer cell proliferation and ferroptosis defence. Nat Cell Biol. 25:836–847. 2023. View Article : Google Scholar

16 

Mahmoud AM, Kostrzewa M, Marolda V, Cerasuolo M, Maccarinelli F, Coltrini D, Rezzola S, Giacomini A, Mollica MP, Motta A, et al: Cannabidiol alters mitochondrial bioenergetics via VDAC1 and triggers cell death in hormone-refractory prostate cancer. Pharmacol Res. 189:1066832023. View Article : Google Scholar : PubMed/NCBI

17 

Chin HS, Li MX, Tan IKL, Ninnis RL, Reljic B, Scicluna K, Dagley LF, Sandow JJ, Kelly GL, Samson AL, et al: VDAC2 enables BAX to mediate apoptosis and limit tumor development. Nat Commun. 9:49762018. View Article : Google Scholar : PubMed/NCBI

18 

Turcios L, Marti F, Watt DS, Kril LM, Khurana A, Chapelin F, Liu C, Zwischenberger JB, Evers BM and Gedaly R: Mitochondrial uncoupling and the disruption of the metabolic network in hepatocellular carcinoma. Oncotarget. 11:3013–3024. 2020. View Article : Google Scholar

19 

Grills C, Jithesh PV, Blayney J, Zhang SD and Fennell DA: Gene expression meta-analysis identifies VDAC1 as a predictor of poor outcome in early stage non-small cell lung cancer. PLoS One. 6:e146352011. View Article : Google Scholar : PubMed/NCBI

20 

Xing T, Li L, Chen Y, Ju G, Li G, Zhu X, Ren Y, Zhao J, Cheng Z, Li Y, et al: Targeting the TCA cycle through cuproptosis confers synthetic lethality on ARID1A-deficient hepatocellular carcinoma. Cell Rep Med. 4:1012642023. View Article : Google Scholar : PubMed/NCBI

21 

Ren X, Zhou H, Sun Y, Fu H, Ran Y, Yang B, Yang F, Bjorklund M and Xu S: MIRO-1 interacts with VDAC-1 to regulate mitochondrial membrane potential in Caenorhabditis elegans. EMBO Rep. 24:e562972023. View Article : Google Scholar : PubMed/NCBI

22 

Conti Nibali S, De Siervi S, Luchinat E, Magrì A, Messina A, Brocca L, Mantovani S, Oliviero B, Ahmed MH, Mondelli MU, et al: VDAC1-interacting molecules promote cell death in cancer organoids through mitochondrial-dependent metabolic interference. iScience. 27:1098532024. View Article : Google Scholar

23 

Luo P, Zhang Q, Shen S, An Y, Yuan L, Wong YK, Huang S, Huang S, Huang J, Cheng G, et al: Mechanistic engineering of celastrol liposomes induces ferroptosis and apoptosis by directly targeting VDAC2 in hepatocellular carcinoma. Asian J Pharm Sci. 18:1008742023. View Article : Google Scholar

24 

Yuan Z, Dewson G, Czabotar PE and Birkinshaw RW: VDAC2 and the BCL-2 family of proteins. Biochem Soc Trans. 49:2787–2795. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Zerbib E, Arif T, Shteinfer-Kuzmine A, Chalifa-Caspi V and Shoshan-Barmatz V: VDAC1 silencing in cancer cells leads to metabolic reprogramming that modulates tumor microenvironment. Cancers (Basel). 13:28502021. View Article : Google Scholar : PubMed/NCBI

26 

Nong S, Han X, Xiang Y, Qian Y, Wei Y, Zhang T, Tian K, Shen K, Yang J and Ma X: Metabolic reprogramming in cancer: Mechanisms and therapeutics. MedComm (2020). 4:e2182023. View Article : Google Scholar : PubMed/NCBI

27 

Gershon TR, Crowther AJ, Tikunov A, Garcia I, Annis R, Yuan H, Miller CR, Macdonald J, Olson J and Deshmukh M: Hexokinase-2-mediated aerobic glycolysis is integral to cerebellar neurogenesis and pathogenesis of medulloblastoma. Cancer Metab. 1:22013. View Article : Google Scholar : PubMed/NCBI

28 

Ciscato F, Ferrone L, Masgras I, Laquatra C and Rasola A: Hexokinase 2 in cancer: A prima donna playing multiple characters. Int J Mol Sci. 22:47162021. View Article : Google Scholar

29 

Maldonado EN: VDAC-Tubulin, an anti-warburg pro-oxidant switch. Front Oncol. 7:42017. View Article : Google Scholar

30 

Heslop KA, Burger P, Kappler C, Solanki AK, Gooz M, Peterson YK, Mills C, Benton T, Duncan SA, Woster PM and Maldonado EN: Small molecules targeting the NADH-binding pocket of VDAC modulate mitochondrial metabolism in hepatocarcinoma cells. Biomed Pharmacother. 150:1129282022. View Article : Google Scholar : PubMed/NCBI

31 

He Z, Zhang J, Xu Y, Fine EJ, Suomivuori CM, Dror RO and Feng L: Structure of mitochondrial pyruvate carrier and its inhibition mechanism. Nature. 641:250–257. 2025. View Article : Google Scholar : PubMed/NCBI

32 

Chen L, Lin X, Lei Y, Xu X, Zhou Q, Chen Y, Liu H, Jiang J, Yang Y, Zheng F and Wu B: Aerobic glycolysis enhances HBx-initiated hepatocellular carcinogenesis via NF-κBp65/HK2 signalling. J Exp Clin Cancer Res. 41:3292022. View Article : Google Scholar : PubMed/NCBI

33 

Zhang Y, Li W, Bian Y, Li Y and Cong L: Multifaceted roles of aerobic glycolysis and oxidative phosphorylation in hepatocellular carcinoma. PeerJ. 11:e147972023. View Article : Google Scholar : PubMed/NCBI

34 

Rostovtseva TK, Bezrukov SM and Hoogerheide DP: Regulation of mitochondrial respiration by VDAC Is enhanced by membrane-bound inhibitors with disordered polyanionic C-terminal domains. Int J Mol Sci. 22:73582021. View Article : Google Scholar

35 

Ning Z, Guo X, Liu X, Lu C, Wang A, Wang X, Wang W, Chen H, Qin W, Liu X, et al: USP22 regulates lipidome accumulation by stabilizing PPARγ in hepatocellular carcinoma. Nat Commun. 13:21872022. View Article : Google Scholar : PubMed/NCBI

36 

Varughese JT, Buchanan SK and Pitt AS: The role of voltage-dependent anion channel in mitochondrial dysfunction and human disease. Cells. 10:17372021. View Article : Google Scholar : PubMed/NCBI

37 

Yang J, Lu X, Hao JL, Li L, Ruan YT, An XN, Huang QL, Dong XM and Gao P: VSTM2L protects prostate cancer cells against ferroptosis via inhibiting VDAC1 oligomerization and maintaining mitochondria homeostasis. Nat Commun. 16:11602025. View Article : Google Scholar : PubMed/NCBI

38 

Baar MP, Brandt RMC, Putavet DA, Klein JDD, Derks KWJ, Bourgeois BRM, Stryeck S, Rijksen Y, van Willigenburg H, Feijtel DA, et al: Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 169:132–147.e16. 2017. View Article : Google Scholar

39 

Tomasello F, Messina A, Lartigue L, Schembri L, Medina C, Reina S, Thoraval D, Crouzet M, Ichas F, De Pinto V and De Giorgi F: Outer membrane VDAC1 controls permeability transition of the inner mitochondrial membrane in cellulo during stress-induced apoptosis. Cell Res. 19:1363–1376. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Shoshan-Barmatz V, Shteinfer-Kuzmine A and Verma A: VDAC1 at the intersection of cell metabolism, apoptosis, and diseases. Biomolecules. 10:14852020. View Article : Google Scholar : PubMed/NCBI

41 

Ding L, Wu JP, Xu G, Zhu B, Zeng QM, Li DF and Lu W: Lentiviral-mediated RNAi targeting caspase-3 inhibits apoptosis induced by serum deprivation in rat endplate chondrocytes in vitro. Braz J Med Biol Res. 47:445–451. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Moldoveanu T: Apoptotic mitochondrial poration by a growing list of pore-forming BCL-2 family proteins. Bioessays. 45:e22002212023. View Article : Google Scholar : PubMed/NCBI

43 

Zhang X, Zhang X, Ren J, Li J, Wei X, Yu Y, Yi Z and Wei W: Precise modelling of mitochondrial diseases using optimized mitoBEs. Nature. 639:735–745. 2025. View Article : Google Scholar : PubMed/NCBI

44 

Garcia S, Saldana-Caboverde A, Anwar M, Raval AP, Nissanka N, Pinto M, Moraes CT and Diaz F: Enhanced glycolysis and GSK3 inactivation promote brain metabolic adaptations following neuronal mitochondrial stress. Hum Mol Genet. 31:692–704. 2022. View Article : Google Scholar

45 

Qiu XY, Hu DX, Chen WQ, Chen RQ, Qian SR, Li CY, Li YJ, Xiong XX, Liu D, Pan F, et al: PD-L1 confers glioblastoma multiforme malignancy via Ras binding and Ras/Erk/EMT activation. Biochim Biophys Acta Mol Basis Dis. 1864((5 Pt A)): 1754–1769. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, Lu H, Fang C, Zhang Y, Liang L, et al: Inhibiting PD-L1 palmitoylation enhances T-cell immune responses against tumours. Nat Biomed Eng. 3:306–317. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Shen YG, Ji MM, Yi HM, Shen R, Fu D, Cheng S, Huang CX, Wang L, Xu PP, Dou HJ and Zhao WL: CD47 overexpression is related to tumour-associated macrophage infiltration and diffuse large B-cell lymphoma progression. Clin Transl Med. 14:e15322024. View Article : Google Scholar : PubMed/NCBI

48 

Shi Y, Huang G, Jiang F, Zhu J, Xu Q, Fang H, Lan S, Pan Z, Jian H, Li L and Zhang Y: Deciphering a mitochondria-related signature to supervise prognosis and immunotherapy in hepatocellular carcinoma. Front Immunol. 13:10705932022. View Article : Google Scholar

49 

Zhang K, Yuan B, Dai X, Chen W, Zhang C, Qiao Y, Cao W, Chen Y, Duan X, Zhang X, et al: Selection and identification of DNA aptamer binding VDAC1 for tumor tissue imaging and targeted drug delivery. Int J Biol Macromol. 306((Pt 1)): 1412492025. View Article : Google Scholar

50 

Ko JH, Gu W, Lim I, Zhou T and Bang H: Expression profiling of mitochondrial voltage-dependent anion channel-1 associated genes predicts recurrence-free survival in human carcinomas. PLoS One. 9:e1100942014. View Article : Google Scholar : PubMed/NCBI

51 

Ma Y, Han B, Yu Q, Zha N, Deng Z, Liang J and Yu R: Single-cell and bulk RNA sequencing data jointly reveals VDAC2′s impacts on prognosis and immune landscape of NSCLC. Aging (Albany NY). 16:3160–3184. 2024. View Article : Google Scholar : PubMed/NCBI

52 

Chen S, Ning B, Song J, Yang Z, Zhou L, Chen Z, Mao L, Liu H, Wang Q, He S and Zhou Z: Enhanced pentose phosphate pathway activity promotes pancreatic ductal adenocarcinoma progression via activating YAP/MMP1 axis under chronic acidosis. Int J Biol Sci. 18:2304–2316. 2022. View Article : Google Scholar

53 

Karmi O, Marjault HB, Bai F, Roy S, Sohn YS, Darash Yahana M, Morcos F, Ioannidis K, Nahmias Y, Jennings PA, et al: A VDAC1-mediated NEET protein chain transfers [2Fe-2S] clusters between the mitochondria and the cytosol and impacts mitochondrial dynamics. Proc Natl Acad Sci USA. 119:e21214911192022. View Article : Google Scholar : PubMed/NCBI

54 

Arif T, Paul A, Krelin Y, Shteinfer-Kuzmine A and Shoshan-Barmatz V: Mitochondrial VDAC1 silencing leads to metabolic rewiring and the reprogramming of tumour cells into advanced differentiated states. Cancers (Basel). 10:4992018. View Article : Google Scholar : PubMed/NCBI

55 

Cervantes-Silva MP, Cox SL and Curtis AM: Alterations in mitochondrial morphology as a key driver of immunity and host defence. EMBO Rep. 22:e530862021. View Article : Google Scholar : PubMed/NCBI

56 

Zhang L, Zhang X, Liu H, Yang C, Yu J, Zhao W, Guo J, Zhou B and Jiang N: MTFR2-dependent mitochondrial fission promotes HCC progression. J Transl Med. 22:732024. View Article : Google Scholar : PubMed/NCBI

57 

Qu M, Zhang G, Qu H, Vu A, Wu R, Tsukamoto H, Jia Z, Huang W, Lenz HJ, Rich JN and Kay SA: Circadian regulator BMAL1::CLOCK promotes cell proliferation in hepatocellular carcinoma by controlling apoptosis and cell cycle. Proc Natl Acad Sci USA. 120:e22148291202023. View Article : Google Scholar : PubMed/NCBI

58 

Pan X, Zhao Y, Li Y, Chen J, Zhang W, Yang L, Xiong YZ, Ying Y, Xu H, Zhang Y, et al: Mitochondrial dynamics govern whole-body regeneration through stem cell pluripotency and mitonuclear balance. Nat Commun. 15:106812024. View Article : Google Scholar : PubMed/NCBI

59 

Medeiros HCD and Lunt SY: The Warburg effect: Saturation of mitochondrial NADH shuttles triggers aerobic lactate fermentation. Mol Cell. 82:3119–3121. 2022. View Article : Google Scholar

60 

Vijayan M, Alvir RV, Alvir RV, Bunquin LE, Pradeepkiran JA and Reddy PH: A partial reduction of VDAC1 enhances mitophagy, autophagy, synaptic activities in a transgenic Tau mouse model. Aging Cell. 21:e136632022. View Article : Google Scholar

61 

Amsalem Z, Arif T, Shteinfer-Kuzmine A, Chalifa-Caspi V and Shoshan-Barmatz V: The mitochondrial protein VDAC1 at the crossroads of cancer cell metabolism: The epigenetic link. Cancers (Basel). 12:10312020. View Article : Google Scholar : PubMed/NCBI

62 

Shen S, Dean DC, Yu Z and Duan Z: Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol Res. 49:1097–1108. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Tian LY, Smit DJ and Jücker M: The Role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int J Mol Sci. 24:26522023. View Article : Google Scholar

64 

Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB and Hay N: Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15:1406–1418. 2001. View Article : Google Scholar : PubMed/NCBI

65 

Zhang W, Tang Y, Yang P, Chen Y, Xu Z, Qi C, Huang H, Liu R, Qin H, Ke H, et al: TMX2 potentiates cell viability of hepatocellular carcinoma by promoting autophagy and mitophagy. Autophagy. 20:2146–2163. 2024. View Article : Google Scholar : PubMed/NCBI

66 

Xie X, Shu R, Yu C, Fu Z and Li Z: Mammalian AKT, the emerging roles on mitochondrial function in diseases. Aging Dis. 13:157–174. 2022. View Article : Google Scholar : PubMed/NCBI

67 

Deldar Abad Paskeh M, Mirzaei S, Ashrafizadeh M, Zarrabi A and Sethi G: Wnt/β-catenin signaling as a driver of hepatocellular carcinoma progression: An emphasis on molecular pathways. J Hepatocell Carcinoma. 8:1415–1444. 2021. View Article : Google Scholar

68 

Liang Y, Mei Q, He E, Ballar P, Wei C, Wang Y, Dong Y, Zhou J, Tao X, Qu W, et al: MANF serves as a novel hepatocyte factor to promote liver regeneration after 2/3 partial hepatectomy via doubly targeting Wnt/β-catenin signaling. Cell Death Dis. 15:6812024. View Article : Google Scholar : PubMed/NCBI

69 

Hwang WY, Kostiuk V, González DP, Lusk CP and Khokha MK: Kap-β2/Transportin mediates β-catenin nuclear transport in Wnt signaling. Elife. 11:e704952022. View Article : Google Scholar : PubMed/NCBI

70 

Guo Q, Kim A, Li B, Ransick A, Bugacov H, Chen X, Lindström N, Brown A, Oxburgh L, Ren B and McMahon AP: A beta-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. Elife. 10:e644442021. View Article : Google Scholar : PubMed/NCBI

71 

Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X and Zhang H: Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol. 14:13673642024. View Article : Google Scholar

72 

Moon H and Ro SW: MAPK/ERK signaling pathway in hepatocellular carcinoma. Cancers (Basel). 13:30262021. View Article : Google Scholar : PubMed/NCBI

73 

Hacohen Lev-Ran A and Seger R: Retention of ERK in the cytoplasm mediates the pluripotency of embryonic stem cells. Stem Cell Reports. 18:305–318. 2023. View Article : Google Scholar : PubMed/NCBI

74 

Bhattacharya R, Ray Chaudhuri S and Roy SS: FGF9-induced ovarian cancer cell invasion involves VEGF-A/VEGFR2 augmentation by virtue of ETS1 upregulation and metabolic reprogramming. J Cell Biochem. 119:8174–8189. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Lang L, Loveless R, Dou J, Lam T, Chen A, Wang F, Sun L, Juarez J, Qin ZS, Saba NF, et al: ATAD3A mediates activation of RAS-independent mitochondrial ERK1/2 signaling, favoring head and neck cancer development. J Exp Clin Cancer Res. 41:432022. View Article : Google Scholar : PubMed/NCBI

76 

Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, Zhou Y, Fu B, Sun R, Zheng X, et al: Interleukin-34-orchestrated tumor-associated macrophage reprogramming is required for tumor immune escape driven by p53 inactivation. Immunity. 57:2344–2361.e7. 2024. View Article : Google Scholar : PubMed/NCBI

77 

Shen J, Wang Q, Mao Y, Gao W and Duan S: Targeting the p53 signaling pathway in cancers: Molecular mechanisms and clinical studies. MedComm (2020). 4:e2882023. View Article : Google Scholar : PubMed/NCBI

78 

Zhou Y, Cui G, Xu H, Chun J, Yang D, Zhang Z, Yang L, Wang J, Wan M, Calvisi DF, et al: Loss of TP53 cooperates with c-MET overexpression to drive hepatocarcinogenesis. Cell Death Dis. 14:4762023. View Article : Google Scholar : PubMed/NCBI

79 

Chen C, Du Y, Nie R, Wang S, Wang H and Li P: Notch signaling in cancers: mechanism and potential therapy. Front Cell Dev Biol. 13:15429672025. View Article : Google Scholar

80 

Hou SS, Ikegawa Y, Kwon Y, Wieckiewicz N, Houser MCQ, Lundin B, Bacskai BJ, Berezovska O and Maesako M: Recording gamma-secretase activity in living mouse brains. ELife. 13:RP968482024. View Article : Google Scholar : PubMed/NCBI

81 

Townson JM, Gomez-Lamarca MJ, Santa Cruz Mateos C and Bray SJ: OptIC-Notch reveals mechanism that regulates receptor interactions with CSL. Development. 150:dev2017852023.

82 

Wang X, Guo Y, Lin P, Yu M, Song S, Xu W, Kong D, Wang Y, Zhang Y, Lu F, et al: Nuclear receptor E75/NR1D2 promotes tumor malignant transformation by integrating Hippo and Notch pathways. EMBO J. 43:6336–6363. 2024. View Article : Google Scholar : PubMed/NCBI

83 

Kumari L, Mishra L, Sharma Y, Chahar K, Kumar M, Patel P, Gupta GD and Kurmi BD: NOTCH signaling pathway: Occurrence, mechanism, and NOTCH-directed therapy for the management of cancer. Cancer Biother Radiopharm. 39:19–34. 2024. View Article : Google Scholar : PubMed/NCBI

84 

Huang D, Xu M, Wang H, Zhao Y, Zhang Z, Yu M, Zhou M, Pan J, Zeng H, Yu Z, et al: SIRPα blockade therapy potentiates immunotherapy by inhibiting PD-L1(+) myeloid cells in hepatocellular carcinoma. Cell Death Dis. 16:4512025. View Article : Google Scholar : PubMed/NCBI

85 

Ding WZ, Han GY, Jin HH, Zhan CF, Ji Y and Huang XL: Anti-IL-20 monoclonal antibody suppresses hepatocellular carcinoma progression. Oncol Lett. 16:6156–6162. 2018.

86 

Kinsey E and Lee HM: Management of hepatocellular carcinoma in 2024: The multidisciplinary paradigm in an evolving treatment landscape. Cancers (Basel). 16:6662024. View Article : Google Scholar : PubMed/NCBI

87 

Zhu X, Luo L, Xiong Y, Jiang N, Wang Y, Lv Y and Xie Y: VDAC1 oligomerization may enhance DDP-induced hepatocyte apoptosis by exacerbating oxidative stress and mitochondrial DNA damage. FEBS Open Bio. 12:516–522. 2022. View Article : Google Scholar : PubMed/NCBI

88 

Arbel N, Ben-Hail D and Shoshan-Barmatz V: Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem. 287:23152–23161. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Rosencrans WM, Rajendran M, Bezrukov SM and Rostovtseva TK: VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium. 94:1023562021. View Article : Google Scholar : PubMed/NCBI

90 

Lu W and Kang Y: Epithelial-mesenchymal plasticity in cancer progression and metastasis. Dev Cell. 49:361–374. 2019. View Article : Google Scholar

91 

Qiu Z, Wang X, Yang Z, Liao S, Dong W, Sun T, Wu H, Zhang Q, Pan Z, Lam SM, et al: GBA1-dependent membrane glucosylceramide reprogramming promotes liver cancer metastasis via activation of the Wnt/β-catenin signalling pathway. Cell Death Dis. 13:5082022. View Article : Google Scholar : PubMed/NCBI

92 

Cristofanon S and Fulda S: Correction: ABT-737 promotes tBid mitochondrial accumulation to enhance TRAIL-induced apoptosis in glioblastoma cells. Cell Death Dis. 15:6792024. View Article : Google Scholar : PubMed/NCBI

93 

Assenat E, Ben Abdelghani M, Gourgou S, Perrier H, Akouz FK, Desgrippes R, Galais MP, Janiszewski C, Mazard T, Rinaldi Y, et al: Impact of lean body mass-based oxaliplatin dose calculation on neurotoxicity in adjuvant treatment of stage III colon cancer: Results of the Phase II randomized LEANOX trial. J Clin Oncol. 43:2616–2627. 2025. View Article : Google Scholar

94 

Deng J, Paulus A, Fang DD, Manna A, Wang G, Wang H, Zhu S, Chen J, Min P, Yin Y, et al: Lisaftoclax (APG-2575) Is a Novel BCL-2 inhibitor with robust antitumor activity in preclinical models of hematologic malignancy. Clin Cancer Res. 28:5455–5468. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Sakai K, Inoue M, Mikami S, Nishimura H, Kuwabara Y, Kojima A, Toda M, Ogawa-Kobayashi Y, Kikuchi S, Hirata Y, et al: Functional inhibition of heat shock protein 70 by VER-155008 suppresses pleural mesothelioma cell proliferation via an autophagy mechanism. Thorac Cancer. 12:491–503. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Alsaab HO and Almalki AH: Anti-HSP70 alleviates cell migration and proliferation in colorectal cancer cells (CRC) by targeting CXCR4 (in vitro study). Med Oncol. 40:2562023. View Article : Google Scholar

97 

Xu F, Lin D, Jiang W, Meng L, Xu Y, Wang C, Wang X, He H, Xu D and Zhu Y: HSP70 inhibitor VER155008 suppresses pheochromocytoma cell and xenograft growth by inhibition of PI3K/AKT/mTOR and MEK/ERK pathways. Int J Clin Exp Pathol. 12:2585–2594. 2019.

98 

Lin X, Li L, Li S, Li Q, Xie D, Zhou M and Huang Y: Targeting the opening of mitochondrial permeability transition pores potentiates nanoparticle drug delivery and mitigates cancer metastasis. Adv Sci (Weinh). 8:20028342021. View Article : Google Scholar : PubMed/NCBI

99 

Shuxian Y, Haiyan X and Li C: Recent advances in heat shock proteins in cancer diagnosis, prognosis, metabolism and treatment. Biomed Pharmacother. 142:1120742021. View Article : Google Scholar : PubMed/NCBI

100 

Lai P, Liu L, Bancaro N, Troiani M, Calì B, Li Y, Chen J, Singh PK, Arzola RA, Attanasio G, et al: Mitochondrial DNA released by senescent tumor cells enhances PMN-MDSC-driven immunosuppression through the cGAS-STING pathway. Immunity. 58:811–825.e7. 2025. View Article : Google Scholar : PubMed/NCBI

101 

Chen Y, Li Z, Chen X and Zhang S: Long non-coding RNAs: From disease code to drug role. Acta Pharm Sin B. 11:340–354. 2021. View Article : Google Scholar : PubMed/NCBI

102 

Ertl HCJ: Immunogenicity and toxicity of AAV gene therapy. Front Immunol. 13:9758032022. View Article : Google Scholar

103 

Chan YK, Wang SK, Chu CJ, Copland DA, Letizia AJ, Costa Verdera H, Chiang JJ, Sethi M, Wang MK, Neidermyer WJ Jr, et al: Engineering adeno-associated viral vectors to evade innate immune and inflammatory responses. Sci Transl Med. 13:eabd34382021. View Article : Google Scholar : PubMed/NCBI

104 

Knudson KM, Hicks KC, Luo X, Chen JQ, Schlom J and Gameiro SR: M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology. 7:e14265192018. View Article : Google Scholar : PubMed/NCBI

105 

Zhang H, Zhang Y, Dong J, Zuo S, Meng G, Wu J and Wei J: Recombinant adenovirus expressing the fusion protein PD1PVR improves CD8(+) T cell-mediated antitumor efficacy with long-term tumor-specific immune surveillance in hepatocellular carcinoma. Cell Oncol (Dordr). 44:1243–1255. 2021. View Article : Google Scholar : PubMed/NCBI

106 

Sun Y, Deng R and Zhang C: Erastin induces apoptotic and ferroptotic cell death by inducing ROS accumulation by causing mitochondrial dysfunction in gastric cancer cell HGC-27. Mol Med Rep. 22:2826–2832. 2020.PubMed/NCBI

107 

Takeyama N, Miki S, Hirakawa A and Tanaka T: Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis. Exp Cell Res. 274:16–24. 2002. View Article : Google Scholar : PubMed/NCBI

108 

Zhu W, Liang Q, Yang X, Yu Y, Shen X and Sun G: Combination of sorafenib and Valproic acid synergistically induces cell apoptosis and inhibits hepatocellular carcinoma growth via down-regulating Notch3 and pAkt. Am J Cancer Res. 7:2503–2514. 2017.PubMed/NCBI

109 

Wang Q, Liu J, Chen Z, Zheng J, Wang Y and Dong J: Targeting metabolic reprogramming in hepatocellular carcinoma to overcome therapeutic resistance: A comprehensive review. Biomed Pharmacother. 170:1160212024. View Article : Google Scholar : PubMed/NCBI

110 

Liu Y, Song J, Shi Q, Chen B, Qiu W, Liu Y, Huang S and He X: Glucose-induced LINC01419 reprograms the glycolytic pathway by recruiting YBX1 to enhance PDK1 mRNA stability in hepatocellular carcinoma. Clin Transl Med. 14:e701222024. View Article : Google Scholar : PubMed/NCBI

111 

Lv JL, Lai WQ, Gong YQ, Zheng KY, Zhang XY, Lu ZP, Li MW, Wang XY and Dai LS: Bombyx mori voltage-dependent anion-selective channel induces programmed cell death to defend against Bombyx mori nucleopolyhedrovirus infection. Pest Manag Sci. 80:3752–3762. 2024. View Article : Google Scholar

112 

Ventura C, Junco M, Santiago Valtierra FX, Gooz M, Zhiwei Y, Townsend DM, Woster PM and Maldonado EN: Synergism of small molecules targeting VDAC with sorafenib, regorafenib or lenvatinib on hepatocarcinoma cell proliferation and survival. Eur J Pharmacol. 957:1760342023. View Article : Google Scholar

113 

Lan T, Gao F, Cai Y, Lv Y, Zhu J, Liu H, Xie S, Wan H, He H, Xie K, et al: The protein circPETH-147aa regulates metabolic reprogramming in hepatocellular carcinoma cells to remodel immunosuppressive microenvironment. Nat Commun. 16:3332025. View Article : Google Scholar : PubMed/NCBI

114 

Wang Y, Zhu GQ, Yang R, Wang C, Qu WF, Chu TH, Tang Z, Yang C, Yang L, Zhou CW, et al: Deciphering intratumoral heterogeneity of hepatocellular carcinoma with microvascular invasion with radiogenomic analysis. J Transl Med. 21:7342023. View Article : Google Scholar : PubMed/NCBI

115 

Wang Z, Cheng Y, Song Z and Zhao R: Pan-cancer analysis of voltage-dependent anion channel (VDAC1) as a cancer therapeutic target or diagnostic biomarker. Dis Markers. 2022:59461102022. View Article : Google Scholar : PubMed/NCBI

116 

Fujita M, Chen MM, Siwak DR, Sasagawa S, Oosawa-Tatsuguchi A, Arihiro K, Ono A, Miura R, Maejima K, Aikata H, et al: Proteo-genomic characterization of virus-associated liver cancers reveals potential subtypes and therapeutic targets. Nat Commun. 13:64812022. View Article : Google Scholar : PubMed/NCBI

117 

Brunelle JK and Letai A: Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci. 122((Pt 4)): 437–441. 2009. View Article : Google Scholar

118 

Khan MW, Terry AR, Priyadarshini M, Ilievski V, Farooq Z, Guzman G, Cordoba-Chacon J, Ben-Sahra I, Wicksteed B and Layden BT: The hexokinase ‘HKDC1’ interaction with the mitochondria is essential for liver cancer progression. Cell Death Dis. 13:6602022. View Article : Google Scholar : PubMed/NCBI

119 

Wang Z, Rehman AU, Qin X, Zhu C and Wu S: PI3K/AKT/mtor pathway-associated genes reveal a putative prognostic signature correlated with immune infiltration in hepatocellular carcinoma. Dis Markers. 2022:75456662022. View Article : Google Scholar : PubMed/NCBI

120 

Wang Q, Shao X, Zhang Y, Zhu M, Wang FXC, Mu J, Li J, Yao H and Chen K: Role of tumor microenvironment in cancer progression and therapeutic strategy. Cancer Med. 12:11149–11165. 2023. View Article : Google Scholar : PubMed/NCBI

121 

Liu R, Guo Y, Wang L, Yin G, Tuo H, Zhu Y, Yang W, Liu Q and Wang Y: A novel hypoxia-induced lncRNA, SZT2-AS1, boosts HCC progression by mediating HIF heterodimerization and histone trimethylation under a hypoxic microenvironment. Cell Death Differ. 32:714–729. 2025. View Article : Google Scholar : PubMed/NCBI

122 

Ramos LCB, Rodrigues FP, Biazzotto JC, de Paula Machado S, Slep LD, Hamblin MR and da Silva RS: Targeting the mitochondrial VDAC in hepatocellular carcinoma using a polyclonal antibody-conjugated to a nitrosyl ruthenium complex. J Biol Inorg Chem. 23:903–916. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Yang Y, Luo M, Zhang K, Zhang J, Gao T, Connell DO, Yao F, Mu C, Cai B, Shang Y and Chen W: Nedd4 ubiquitylates VDAC2/3 to suppress erastin-induced ferroptosis in melanoma. Nat Commun. 11:4332020. View Article : Google Scholar : PubMed/NCBI

124 

Seliger B: Combinatorial approaches with checkpoint inhibitors to enhance anti-tumor immunity. Front Immunol. 10:9992019. View Article : Google Scholar

125 

Zheng Y, Ye S, Huang S, Cheng Y, Zhang Y, Leng Y, He M, Wu E, Chen J, Kong L and Zhang H: Lefamulin overcomes acquired drug resistance via regulating mitochondrial homeostasis by targeting ILF3 in hepatocellular carcinoma. Adv Sci (Weinh). 11:e24017892024. View Article : Google Scholar : PubMed/NCBI

126 

Hu Y, Zhou M, Tang J, Li S, Liu H, Hu J, Ma H, Liu J, Qin T, Yu X, et al: Efficacy and safety of stereotactic body radiotherapy combined with camrelizumab and apatinib in patients with hepatocellular carcinoma with portal vein tumor thrombus. Clin Cancer Res. 29:4088–4097. 2023. View Article : Google Scholar : PubMed/NCBI

127 

Wang T, He M, Zhang X, Guo Z, Wang P and Long F: Deciphering the impact of circRNA-mediated autophagy on tumor therapeutic resistance: A novel perspective. Cell Mol Biol Lett. 29:602024. View Article : Google Scholar

128 

Seydi H, Nouri K, Rezaei N, Tamimi A, Hassan M, Mirzaei H and Vosough M: Autophagy orchestrates resistance in hepatocellular carcinoma cells. Biomed Pharmacother. 161:1144872023. View Article : Google Scholar : PubMed/NCBI

129 

Song JQ, Shen LJ, Wang HJ, Liu QB, Ye LB, Liu K, Shi L, Cai B, Lin HS and Pang T: Discovery of balasubramide derivative with tissue-specific anti-inflammatory activity against acute lung injury by targeting VDAC1. Adv Sci (Weinh). 11:e24105502024. View Article : Google Scholar : PubMed/NCBI

130 

Keiser MS, Ranum PT, Yrigollen CM, Carrell EM, Smith GR, Muehlmatt AL, Chen YH, Stein JM, Wolf RL, Radaelli E, et al: Toxicity after AAV delivery of RNAi expression constructs into nonhuman primate brain. Nat Med. 27:1982–1989. 2021. View Article : Google Scholar : PubMed/NCBI

131 

Kaushal A: Innate immune regulations and various siRNA modalities. Drug Deliv Transl Res. 13:2704–2718. 2023. View Article : Google Scholar : PubMed/NCBI

132 

Zhang Z, Zhai M, Bao S, Sun X, Chen R, Wang B, Yang F, Yang L and Zhou M: Integrative multi-omics profiling deciphers tumor microenvironment heterogeneity and immunotherapy vulnerabilities in lung neuroendocrine carcinomas. J Adv Res. Jun 11–2025.(Epub ahead of print).

133 

Li Y, Li XM, Wei LS and Ye JF: Advancements in mitochondrial-targeted nanotherapeutics: Overcoming biological obstacles and optimizing drug delivery. Front Immunol. 15:14519892024. View Article : Google Scholar

134 

Xiao Y, He Z, Li W, Chen D, Niu X, Yang X, Zeng W, Wang M, Qian Y, Su Y, et al: A covalent peptide-based lysosome-targeting protein degradation platform for cancer immunotherapy. Nat Commun. 16:13882025. View Article : Google Scholar : PubMed/NCBI

135 

Monty MA, Islam MA, Nan X, Tan J, Tuhin IJ, Tang X, Miao M, Wu D and Yu L: Emerging role of RNA interference in immune cells engineering and its therapeutic synergism in immunotherapy. Br J Pharmacol. 178:1741–1755. 2021. View Article : Google Scholar

136 

Kim J, Gupta R, Blanco LP, Yang S, Shteinfer-Kuzmine A, Wang K, Zhu J, Yoon HE, Wang X, Kerkhofs M, et al: VDAC oligomers form mitochondrial pores to release mtDNA fragments and promote lupus-like disease. Science. 366:1531–1536. 2019. View Article : Google Scholar : PubMed/NCBI

137 

Yang L, Zhu B, Zhou S, Zhao M, Li R, Zhou Y, Shi X, Han J, Zhang W and Zhou B: Mitochondrial dysfunction was involved in decabromodiphenyl ethane-induced glucolipid metabolism disorders and neurotoxicity in zebrafish larvae. Environ Sci Technol. 57:11043–11055. 2023. View Article : Google Scholar

138 

Hu Y, Tian C, Chen F, Zhang A and Wang W: The mystery of methylmercury-perturbed calcium homeostasis: AMPK-DRP1-dependent mitochondrial fission initiates ER-mitochondria contact formation. Sci Total Environ. 923:1713982024. View Article : Google Scholar : PubMed/NCBI

139 

Harter MF, Recaldin T, Gerard R, Avignon B, Bollen Y, Esposito C, Guja-Jarosz K, Kromer K, Filip A, Aubert J, et al: Analysis of off-tumour toxicities of T-cell-engaging bispecific antibodies via donor-matched intestinal organoids and tumouroids. Nat Biomed Eng. 8:345–360. 2024. View Article : Google Scholar : PubMed/NCBI

140 

Hu X, Zhang M, Quan C, Ren S, Chen W and Wang J: ROS-responsive and triple-synergistic mitochondria-targeted polymer micelles for efficient induction of ICD in tumor therapeutics. Bioact Mater. 36:490–507. 2024. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • Purchase
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Liang Y, Jia X, Yang X, Shi D, Wang Y and Pan Y: Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review). Mol Med Rep 33: 9, 2026.
APA
Wang, J., Liang, Y., Jia, X., Yang, X., Shi, D., Wang, Y., & Pan, Y. (2026). Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review). Molecular Medicine Reports, 33, 9. https://doi.org/10.3892/mmr.2025.13719
MLA
Wang, J., Liang, Y., Jia, X., Yang, X., Shi, D., Wang, Y., Pan, Y."Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review)". Molecular Medicine Reports 33.1 (2026): 9.
Chicago
Wang, J., Liang, Y., Jia, X., Yang, X., Shi, D., Wang, Y., Pan, Y."Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review)". Molecular Medicine Reports 33, no. 1 (2026): 9. https://doi.org/10.3892/mmr.2025.13719
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Liang Y, Jia X, Yang X, Shi D, Wang Y and Pan Y: Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review). Mol Med Rep 33: 9, 2026.
APA
Wang, J., Liang, Y., Jia, X., Yang, X., Shi, D., Wang, Y., & Pan, Y. (2026). Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review). Molecular Medicine Reports, 33, 9. https://doi.org/10.3892/mmr.2025.13719
MLA
Wang, J., Liang, Y., Jia, X., Yang, X., Shi, D., Wang, Y., Pan, Y."Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review)". Molecular Medicine Reports 33.1 (2026): 9.
Chicago
Wang, J., Liang, Y., Jia, X., Yang, X., Shi, D., Wang, Y., Pan, Y."Mitochondrial gatekeeper in hepatocellular carcinoma: Unraveling the multifaceted roles of VDAC in metabolic reprogramming, apoptosis evasion and therapeutic innovation (Review)". Molecular Medicine Reports 33, no. 1 (2026): 9. https://doi.org/10.3892/mmr.2025.13719
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team