|
1
|
Chandrasekaran P and Weiskirchen R: The
role of obesity in type 2 diabetes mellitus-an overview. Int J Mol
Sci. 25:18822024. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Ahmed B, Sultana R and Greene MW: Adipose
tissue and insulin resistance in obese. Biomed Pharmacother.
137:1113152021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ruze R, Liu T, Zou X, Song J, Chen Y, Xu
R, Yin X and Xu Q: Obesity and type 2 diabetes mellitus:
Connections in epidemiology, pathogenesis, and treatments. Front
Endocrinol (Lausanne). 14:11615212023. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Marcelin G and Clément K: Adipose tissue
fibrosis: An aggravating factor in obesity. Med Sci (Paris).
34:424–431. 2018.(In French). View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Ferrannini E: Is insulin resistance the
cause of the metabolic syndrome? Ann Med. 38:42–51. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kashyap S, Belfort R, Gastaldelli A,
Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L,
DeFronzo R and Cusi K: A sustained increase in plasma free fatty
acids impairs insulin secretion in nondiabetic subjects genetically
predisposed to develop type 2 diabetes. Diabetes. 52:2461–2474.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Litwin M and Kułaga Z: Obesity, metabolic
syndrome, and primary hypertension. Pediatr Nephrol. 36:825–837.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Khalid M, Alkaabi J, Khan MAB and Adem A:
Insulin signal transduction perturbations in insulin resistance.
Int J Mol Sci. 22:85902021. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Koh JH, Hancock CR, Han DH, Holloszy JO,
Nair KS and Dasari S: AMPK and PPARβ positive feedback loop
regulates endurance exercise training-mediated GLUT4 expression in
skeletal muscle. Am J Physiol Endocrinol Metab. 316:E931–E939.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Lim CT, Kola B and Korbonits M: AMPK as a
mediator of hormonal signalling. J Mol Endocrinol. 44:87–97. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Pinto-Junior DC, Silva KS, Michalani ML,
Yonamine CY, Esteves JV, Fabre NT, Thieme K, Catanozi S, Okamoto
MM, Seraphim PM, et al: Advanced glycation end products-induced
insulin resistance involves repression of skeletal muscle GLUT4
expression. Sci Rep. 8:81092018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Li X, Wang F, Xu M, Howles P and Tso P:
ApoA-IV improves insulin sensitivity and glucose uptake in mouse
adipocytes via PI3K-Akt signaling. Sci Rep. 7:412892017. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Aierken A, Li B, Liu P, Cheng X, Kou Z,
Tan N, Zhang M, Yu S, Shen Q, Du X, et al: Melatonin treatment
improves human umbilical cord mesenchymal stem cell therapy in a
mouse model of type II diabetes mellitus via the PI3K/AKT signaling
pathway. Stem Cell Res Ther. 13:1642022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Si Y, Fan W and Sun L: A review of the
relationship between CTRP family and coronary artery disease. Curr
Atheroscler Rep. 22:222020. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Vester SK, Beavil RL, Lynham S, Beavil AJ,
Cunninghame Graham DS, McDonnell JM and Vyse TJ: Nucleolin acts as
the receptor for C1QTNF4 and supports C1QTNF4-mediated innate
immunity modulation. J Biol Chem. 296:1005132021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Sun JL, Ryu JH, Cho W, Oh H, Abd El-Aty
AM, Özkal Eminoğlu D, Jeong JH and Jung TW: CTRP4 ameliorates
inflammation, thereby attenuating the interaction between HUVECs
and THP-1 monocytes through SIRT6/Nrf2 signaling. Biochem Biophys
Res Commun. 691:1492932024. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cao L, Deng J, Chen W, He M, Zhao N, Huang
H, Ling L, Li Q, Zhu X and Wang L: CTRP4/interleukin-6 receptor
signaling ameliorates autoimmune encephalomyelitis by suppressing
Th17 cell differentiation. J Clin Invest. 134:e1683842023.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Cho W, Oh H, Choi SW, Abd El-Aty AM,
Birdal O, Jeong JH, Song JH and Jung TW: CTRP4 attenuates apoptosis
and epithelial-mesenchymal transition markers in podocytes through
an AMPK/autophagy-dependent pathway. Biochem Biophys Res Commun.
682:104–110. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cao L, Tan W, Chen W, Huang H, He M, Li Q,
Zhu X and Wang L: CTRP4 acts as an anti-inflammatory factor in
macrophages and protects against endotoxic shock. Eur J Immunol.
51:380–392. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Duan L, Liu Z, Wang L, Ma B, Fan Y, Xu Y
and Guo F: C1q and tumor necrosis factor related protein 4 (CTRP4)
suppresses caspase-1/IL-1β inflammatory pathway in trophoblasts of
rat models with preeclampsia. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi.
32:1441–1445. 2016.(In Chinese). PubMed/NCBI
|
|
21
|
Liu Z, Lu J, Zhang D, Niu L and Shi B:
Decreased serum C1Q/TNF-related protein 4 concentrations are
associated with type 2 diabetes mellitus. Ther Adv Endocrinol
Metab. 12:204201882110598842021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Han J, Fan H, Dai Y and Cheng X: Serum
C1q/TNF-Related protein 4 levels are associated with nonalcoholic
fatty liver disease in type 2 diabetic patients. Metab Syndr Relat
Disord. 21:163–168. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Sarver DC, Stewart AN, Rodriguez S, Little
HC, Aja S and Wong GW: Loss of CTRP4 alters adiposity and food
intake behaviors in obese mice. Am J Physiol Endocrinol Metab.
319:E1084–E1100. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Chen K, Shen Z, Gu W, Lyu Z, Qi X, Mu Y
and Ning Y; Meinian Investigator Group, : Prevalence of obesity and
associated complications in China: A cross-sectional, real-world
study in 15.8 million adults. Diabetes Obes Metab. 25:3390–3399.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Bardia A, Holtan SG, Slezak JM and
Thompson WG: Diagnosis of obesity by primary care physicians and
impact on obesity management. Mayo Clin Proc. 82:927–932. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Weir CB and Jan A: BMI Classification
Percentile and Cut Off Points. StatPearls. StatPearls Publishing;
Treasure Island, FL: 2023
|
|
27
|
Salgado AL, Carvalho Ld, Oliveira AC,
Santos VN, Vieira JG and Parise ER: Insulin resistance index
(HOMA-IR) in the differentiation of patients with non-alcoholic
fatty liver disease and healthy individuals. Arq Gastroenterol.
47:165–169. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang C, Liu Z, Zhang P, Ma X, Che K and
Wang Y: The differences in homeostasis model assessment values in
type 2 diabetic patients with different lengths of history of
diabetes. Arch Endocrinol Metab. 63:222–227. 2019.PubMed/NCBI
|
|
29
|
Luan G, Li G, Ma X, Jin Y, Hu N, Li J,
Wang Z and Wang H: Dexamethasone-induced mitochondrial dysfunction
and insulin resistance-study in 3T3-L1 adipocytes and mitochondria
isolated from mouse liver. Molecules. 24:19822019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Gao J, Rouzi MRY, Zhang H, Cai X, Xu B, Lu
J and Lei T: Association of serum CTRP4 levels with vascular
endothelial function in patients with type 2 diabetes mellitus:
CTRP4 ameliorating inflammation, proliferation and migration in
human umbilical vein endothelial cells. Acta Diabetol. 61:565–575.
2024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Jung TW, Park HS, Choi GH, Kim D and Lee
T: β-aminoisobutyric acid attenuates LPS-induced inflammation and
insulin resistance in adipocytes through AMPK-mediated pathway. J
Biomed Sci. 25:272018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhao W, Pu M, Shen S and Yin F: Geniposide
improves insulin resistance through AMPK-mediated Txnip protein
degradation in 3T3-L1 adipocytes. Acta Biochim Biophys Sin
(Shanghai). 53:160–169. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Krycer JR, Quek LE, Francis D, Zadoorian
A, Weiss FC, Cooke KC, Nelson ME, Diaz-Vegas A, Humphrey SJ, Scalzo
R, et al: Insulin signaling requires glucose to promote lipid
anabolism in adipocytes. J Biol Chem. 295:13250–13266. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Guilherme A, Virbasius JV, Puri V and
Czech MP: Adipocyte dysfunctions linking obesity to insulin
resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 9:367–377.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stumvoll M and Häring H: Insulin
resistance and insulin sensitizers. Horm Res. 55 (Suppl 2):S3–S13.
2001.
|
|
36
|
Jebeile H, Kelly AS, O'Malley G and Baur
LA: Obesity in children and adolescents: Epidemiology, causes,
assessment, and management. Lancet Diabetes Endocrinol. 10:351–365.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Park SY, Gautier JF and Chon S: Assessment
of insulin secretion and insulin resistance in human. Diabetes
Metab J. 45:641–654. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
González-González JG, Violante-Cumpa JR,
Zambrano-Lucio M, Burciaga-Jimenez E, Castillo-Morales PL,
Garcia-Campa M, Solis RC, González-Colmenero AD and
Rodríguez-Gutiérrez R: HOMA-IR as a predictor of Health outcomes in
patients with metabolic risk factors: A systematic review and
meta-analysis. High Blood Press Cardiovasc Prev. 29:547–564. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wang L: CTRP4: A new member of the
adipocytokine family. Cell Mol Immunol. 14:868–870. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ye L, Jia G, Li Y, Wang Y, Chen H, Yu L
and Wu D: C1q/TNF-related protein 4 restores leptin sensitivity by
downregulating NF-κB signaling and microglial activation. J
Neuroinflammation. 18:1592021. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hagve M, Gjessing PF, Fuskevåg OM, Larsen
TS and Irtun Ø: Skeletal muscle mitochondria exhibit decreased
pyruvate oxidation capacity and increased ROS emission during
surgery-induced acute insulin resistance. Am J Physiol Endocrinol
Metab. 308:E613–E620. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Park JE, Kang E and Han JS: HM-chromanone
attenuates TNF-α-mediated inflammation and insulin resistance by
controlling JNK activation and NF-κB pathway in 3T3-L1 adipocytes.
Eur J Pharmacol. 921:1748842022. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kim M, Song K and Kim YS: Alantolactone
improves palmitate-induced glucose intolerance and inflammation in
both lean and obese states in vitro: Adipocyte and
adipocyte-macrophage co-culture system. Int Immunopharmacol.
49:187–194. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Hotamisligil GS, Peraldi P, Budavari A,
Ellis R, White MF and Spiegelman BM: IRS-1-mediated inhibition of
insulin receptor tyrosine kinase activity in TNF-alpha- and
obesity-induced insulin resistance. Science. 271:665–668. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Wang C, Li X, Zhang W, Liu W, Lv Z, Gui R,
Li M, Li Y, Sun X, Liu P, et al: ETNPPL impairs autophagy through
regulation of the ARG2-ROS signaling axis, contributing to palmitic
acid-induced hepatic insulin resistance. Free Radic Biol Med.
199:126–140. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Li H, Yu L and Zhao C: Dioscin attenuates
high-fat diet-induced insulin resistance of adipose tissue through
the IRS-1/PI3K/Akt signaling pathway. Mol Med Rep. 19:1230–1237.
2019.PubMed/NCBI
|
|
47
|
Lee RA, Chang M, Yiv N, Tsay A, Tian S, Li
D, Poulard C, Stallcup MR, Pufall MA and Wang JC: Transcriptional
coactivation by EHMT2 restricts glucocorticoid-induced insulin
resistance in a study with male mice. Nat Commun. 14:31432023.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Giorgino F, Almahfouz A, Goodyear LJ and
Smith RJ: Glucocorticoid regulation of insulin receptor and
substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in
vivo. J Clin Invest. 91:2020–2030. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Chen H, Li J, Zhang Y, Zhang W, Li X, Tang
H, Liu Y, Li T, He H, Du B, et al: Bisphenol F suppresses
insulin-stimulated glucose metabolism in adipocytes by inhibiting
IRS-1/PI3K/AKT pathway. Ecotoxicol Environ Saf. 231:1132012022.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Wu Z, Yu W, Ni W, Teng C, Ye W, Yu C and
Zeng Y: Improvement of obesity by Liupao tea is through the
IRS-1/PI3K/AKT/GLUT4 signaling pathway according to network
pharmacology and experimental verification. Phytomedicine.
110:1546332023. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Song K, Kong X, Xian Y, Yu Z, He M, Xiao
D, Liang D, Zhang Z, Liu T, Huang Z, et al: Roux-en-Y gastric
bypass improves liver and glucose homeostasis in Zucker diabetic
fatty rats by upregulating hepatic trefoil factor family 3 and
activating the phosphatidylinositol 3-kinase/protein kinase B
pathway. Surg Obes Relat Dis. 21:792–805. 2025. View Article : Google Scholar : PubMed/NCBI
|