miR‑143 acts as a novel Big mitogen‑activated protein kinase 1 suppressor and may inhibit invasion of glioma

  • Authors:
    • Wei‑Yi Chen
    • Zhi‑Qiang Lang
    • Chao Ren
    • Ping Yang
    • Baogang Zhang
  • View Affiliations

  • Published online on: July 3, 2019     https://doi.org/10.3892/or.2019.7218
  • Pages: 1194-1204
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Upregulation of the Big mitogen‑activated protein kinase (BMK)1 has been reported in glioma and other epithelial tumors. In addition, the decreased expression of BMK1 inhibits tumorigenesis, leading to the broad consensus that it functions as cell‑autonomous epithelial tumor promoter. Using two online miRNA target prediction databases, microRNA (miR)‑143 was predicted as the potential miRNA regulator of BMK1. RNA immunoprecipitation analysis and Luciferase reporter assay showed that miR‑143 binds to the 3' untranslated region of BMK1. Notably, the expression of miR‑143 has a strong association with the World Health Organization grade and survival rates in patients with glioma by statistical analysis. Furthermore, miR‑143 inhibited glioma cells migration and invasion through cytoskeletal rearrangement in vitro and in vivo through matrigel invasion assay, scratch assay, cellular F‑actin measurement, chemotaxis assay and intracranial brain tumor xenografts. Finally, DNA methylation assay showed that the downregulation of miR‑143 was due to hypermethylation of its promoter region. These results reveal that miR‑143 represents a potential therapeutic target in glioma by modulating BMK1.

References

1 

Rousseau A, Mokhtari K and Duyckaerts C: The 2007 WHO classification of tumors of the central nervous system-what has changed? Curr Opin Neurol. 21:720–727. 2008. View Article : Google Scholar : PubMed/NCBI

2 

Ohgaki H and Kleihues P: Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 170:1445–1453. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Demuth T and Berens ME: Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 70:217–228. 2004. View Article : Google Scholar : PubMed/NCBI

4 

Shukla A, Miller JM, Cason C, Sayan M, MacPherson MB, Beuschel SL, Hillegass J, Vacek PM, Pass HI and Mossman BT: Extracellular signal-regulated kinase 5: A potential therapeutic target for malignant mesotheliomas. Clin Cancer Res. 19:2071–2083. 2013. View Article : Google Scholar : PubMed/NCBI

5 

Chen W, Zhang B, Guo W, Gao L, Shi L, Li H, Lu S, Liu Y and Li X: miR-429 inhibits glioma invasion through BMK1 suppression. J Neurooncol. 125:43–54. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Song C, Wang L, Xu Q, Wang K, Xie D, Yu Z, Jiang K, Liao L, Yates JR, Lee JD and Yang Q: Targeting BMK1 impairs the drug resistance to combined inhibition of BRAF and MEK1/2 in melanoma. Sci Rep. 7:462442017. View Article : Google Scholar : PubMed/NCBI

7 

Rovida E, Di Maira G, Tusa I, Cannito S, Paternostro C, Navari N, Vivoli E, Deng X, Gray NS, Esparís-Ogando A, et al: The mitogen-activated protein kinase ERK5 regulates the development and growth of hepatocellular carcinoma. Gut. 64:1454–1465. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Lagos-Quintana M, Rauhut R, Lendeckel W and Tuschl T: Identification of novel genes coding for small expressed RNAs. Science. 294:853–858. 2001. View Article : Google Scholar : PubMed/NCBI

9 

Zhao L, Sun Y, Hou Y, Peng Q, Wang L, Luo H, Tang X, Zeng Z and Liu M: miRNA expression analysis of cancer-associated fibroblasts and normal fibroblasts in breast cancer. Int J Biochem Cell Biol. 44:2051–2059. 2012. View Article : Google Scholar : PubMed/NCBI

10 

Ying Z, Li Y, Wu J, Zhu X, Yang Y, Tian H, Li W, Hu B, Cheng SY and Li M: Loss of miR-204 expression enhances glioma migration and stem cell-like phenotype. Cancer Res. 73:990–999. 2013. View Article : Google Scholar : PubMed/NCBI

11 

Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS and Johnson JM: Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 433:769–773. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M and Rajewsky N: Combinatorial microRNA target predictions. Nat Genet. 37:495–500. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al: MicroRNA expression profiles classify human cancers. Nature. 435:834–838. 2005. View Article : Google Scholar : PubMed/NCBI

14 

Garzon R, Calin GA and Croce CM: MicroRNAs in cancer. Annu Rev Med. 60:167–179. 2009. View Article : Google Scholar : PubMed/NCBI

15 

Michael MZ, O'Connor SM, van Holst Pellekaan NG, Young GP and James RJ: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res. 1:882–891. 2003.PubMed/NCBI

16 

Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, Sugihara K and Mori M: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol. 34:1069–1075. 2009.PubMed/NCBI

17 

Bandres E, Cubedo E, Agirre X, Malumbres R, Zárate R, Ramirez N, Abajo A, Navarro A, Moreno I, Monzó M and García-Foncillas J: Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues. Mol Cancer. 5:292006. View Article : Google Scholar : PubMed/NCBI

18 

Schepeler T, Reinert JT, Ostenfeld MS, Christensen LL, Silahtaroglu AN, Dyrskjøt L, Wiuf C, Sørensen FJ, Kruhøffer M, Laurberg S, et al: Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res. 68:6416–6424. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Papaconstantinou IG, Manta A, Gazouli M, Lyberopoulou A, Lykoudis PM, Polymeneas G and Voros D: Expression of microRNAs in patients with pancreatic cancer and its prognostic significance. Pancreas. 42:67–71. 2013. View Article : Google Scholar : PubMed/NCBI

20 

Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N and Akao Y: Decreased expression of microRNA-143 and −145 in human gastric cancers. Oncology. 77:12–21. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Sun L, Zhang B, Liu Y, Shi L, Li H and Lu S: miR125a-5p acting as a novel Gab2 suppressor inhibits invasion of glioma. Mol Carcinog. 55:40–51. 2016. View Article : Google Scholar : PubMed/NCBI

22 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI

23 

Ufkin ML, Peterson S, Yang X, Driscoll H, Duarte C and Sathyanarayana P: miR-125a regulates cell cycle, proliferation, and apoptosis by targeting the ErbB pathway in acute myeloid leukemia. Leuk Res. 38:402–410. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Jiang L, Lin C, Song L, Wu J, Chen B, Ying Z, Fang L, Yan X, He M, Li J and Li M: MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-κB/IκBα negative feedback loop. J Clin Invest. 122:33–47. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Li H, Yin C, Zhang B, Sun Y, Shi L, Liu N, Liang S, Lu S, Liu Y, Zhang J, et al: PTTG1 promotes migration and invasion of human non-small cell lung cancer cells and is modulated by miR-186. Carcinogenesis. 34:2145–2155. 2013. View Article : Google Scholar : PubMed/NCBI

26 

Li J, Tu Y, Wen J, Yao F, Wei W and Sun S: Role for ezrin in breast cancer cell chemotaxis to CCL5. Oncol Rep. 24:965–971. 2010.PubMed/NCBI

27 

Wang LH, Xiang J, Yan M, Zhang Y, Zhao Y, Yue CF, Xu J, Zheng FM, Chen JN, Kang Z, et al: The mitotic kinase Aurora-A induces mammary cell migration and breast cancer metastasis by activating the Cofilin-F-actin pathway. Cancer Res. 70:9118–9128. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Hall EH, Gurel V, Dahlberg AE, McMichael J and Brautigan DL: Inhibition of human breast cancer Matrigel invasion by Streptolysin O activation of the EGF receptor ErbB1. Cell Signal. 23:1972–1977. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Tan LP, Seinen E, Duns G, de Jong D, Sibon OC, Poppema S, Kroesen BJ, Kok K and van den Berg A: A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res. 37:e1372009. View Article : Google Scholar : PubMed/NCBI

30 

Cheng GZ, Zhang W and Wang LH: Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res. 68:957–960. 2008. View Article : Google Scholar : PubMed/NCBI

31 

Shi L, Sun X, Zhang J, Zhao C, Li H, Liu Z, Fang C, Wang X, Zhao C, Zhang X, et al: Gab2 expression in glioma and its implications for tumor invasion. Acta Oncol. 52:1739–1750. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Villa C, Miquel C, Mosses D, Bernier M and Di Stefano AL: The 2016 World Health Organization classification of tumours of the central nervous system. Presse Med. 47:e187–e200. 2018. View Article : Google Scholar : PubMed/NCBI

33 

He Y, Li D, Cook SL, Yoon MS, Kapoor A, Rao CV, Kenis PJ, Chen J and Wang F: Mammalian target of rapamycin and Rictor control neutrophil chemotaxis by regulating Rac/Cdc42 activity and the actin cytoskeleton. Mol Biol Cell. 24:3369–3380. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS and Condeelis JS: Cofilin promotes actin polymerization and defines the direction of cell motility. Science. 304:743–746. 2004. View Article : Google Scholar : PubMed/NCBI

35 

Etienne-Manneville S and Hall A: Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell. 106:489–498. 2001. View Article : Google Scholar : PubMed/NCBI

36 

Tran TT, Uhl M, Ma JY, Janssen L, Sriram V, Aulwurm S, Kerr I, Lam A, Webb HK, Kapoun AM, et al: Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. Neuro Oncol. 9:259–270. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Yim RL, Wong KY, Kwong YL, Loong F, Leung CY, Chu R, Lam WW, Hui PK, Lai R and Chim CS: Methylation of miR-155-3p in mantle cell lymphoma and other non-Hodgkin's lymphomas. Oncotarget. 5:9770–9782. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Noritake J, Watanabe T, Sato K, Wang S and Kaibuchi K: IQGAP1: A key regulator of adhesion and migration. J Cell Sci. 118:2085–2092. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Zhang B, Gu F, She C, Guo H, Li W, Niu R, Fu L, Zhang N and Ma Y: Reduction of Akt2 inhibits migration and invasion of glioma cells. Int J Cancer. 125:585–595. 2009. View Article : Google Scholar : PubMed/NCBI

40 

Fu TG, Wang L, Li W, Li JZ and Li J: miR-143 inhibits oncogenic traits by degrading NUAK2 in glioblastoma. Int J Mol Med. 37:1627–1635. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Wynter CV: The dialectics of cancer: A theory of the initiation and development of cancer through errors in RNAi. Med Hypotheses. 66:612–635. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Ren X, McHale CM, Skibola CF, Smith AH, Smith MT and Zhang L: An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect. 119:11–19. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

September 2019
Volume 42 Issue 3

Print ISSN: 1021-335X
Online ISSN:1791-2431

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Chen, W., Lang, Z., Ren, C., Yang, P., & Zhang, B. (2019). miR‑143 acts as a novel Big mitogen‑activated protein kinase 1 suppressor and may inhibit invasion of glioma. Oncology Reports, 42, 1194-1204. https://doi.org/10.3892/or.2019.7218
MLA
Chen, W., Lang, Z., Ren, C., Yang, P., Zhang, B."miR‑143 acts as a novel Big mitogen‑activated protein kinase 1 suppressor and may inhibit invasion of glioma". Oncology Reports 42.3 (2019): 1194-1204.
Chicago
Chen, W., Lang, Z., Ren, C., Yang, P., Zhang, B."miR‑143 acts as a novel Big mitogen‑activated protein kinase 1 suppressor and may inhibit invasion of glioma". Oncology Reports 42, no. 3 (2019): 1194-1204. https://doi.org/10.3892/or.2019.7218