1
|
Sleeman KE, Gomes B, de Brito M, Shamieh O
and Harding R: The burden of serious health-related suffering among
cancer decedents: Global projections study to 2060. Palliat Med.
35:231–235. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Padinharayil H, Varghese J, John MC,
Rajanikant GK, Wilson CM, Al-Yozbaki M, Renu K, Dewanjee S, Sanyal
R, Dey A, et al: Non-small cell lung carcinoma (NSCLC):
Implications on molecular pathology and advances in early
diagnostics and therapeutics. Genes Dis. 10:960–989. 2022.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Bade BC and Dela Cruz CS: Lung cancer
2020: Epidemiology, etiology, and prevention. Clin Chest Med.
41:1–24. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nooreldeen R and Bach H: Current and
future development in lung cancer diagnosis. Int J Mol Sci.
22:86612021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cancer Genome Atlas Research Network, .
Comprehensive molecular profiling of lung adenocarcinoma. Nature.
511:543–550. 2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jordan EJ, Kim HR, Arcila ME, Barron D,
Chakravarty D, Gao J, Chang MT, Ni A, Kundra R, Jonsson P, et al:
Prospective comprehensive molecular characterization of lung
adenocarcinomas for efficient patient matching to approved and
emerging therapies. Cancer Discov. 7:596–609. 2017. View Article : Google Scholar : PubMed/NCBI
|
7
|
Ding L, Getz G, Wheeler DA, Mardis ER,
McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan
MB, et al: Somatic mutations affect key pathways in lung
adenocarcinoma. Nature. 455:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
8
|
Seo JS, Ju YS, Lee WC, Shin JY, Lee JK,
Bleazard T, Lee J, Jung YJ, Kim JO, Shin JY, et al: The
transcriptional landscape and mutational profile of lung
adenocarcinoma. Genome Res. 22:2109–2119. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Barbar J, Armach M, Hodroj MH, Assi S, El
Nakib C, Chamseddine N and Assi HI: Emerging genetic biomarkers in
lung adenocarcinoma. SAGE Open Med. 10:205031212211323522022.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Kan Z, Jaiswal BS, Stinson J, Janakiraman
V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J, et al:
Diverse somatic mutation patterns and pathway alterations in human
cancers. Nature. 466:869–873. 2010. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jha G, Azhar S, Rashid U, Khalaf H,
Alhalabi N, Ravindran D and Ahmad R: Epigenetics: The key to future
diagnostics and therapeutics of lung cancer. Cureus.
13:e197702021.PubMed/NCBI
|
12
|
Belinsky SA, Nikula KJ, Palmisano WA,
Michels R, Saccomanno G, Gabrielson E, Baylin SB and Herman JG:
Aberrant methylation of p16(INK4a) is an early event in lung cancer
and a potential biomarker for early diagnosis. Proc Natl Acad Sci
USA. 95:11891–11896. 1998. View Article : Google Scholar : PubMed/NCBI
|
13
|
Rauch TA, Wang Z, Wu X, Kernstine KH,
Riggs AD and Pfeifer GP: DNA methylation biomarkers for lung
cancer. Tumour Biol. 33:287–296. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chao YL and Pecot CV: Targeting
epigenetics in lung cancer. Cold Spring Harb Perspect Med.
11:a0380002021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Brock MV, Hooker CM, Ota-Machida E, Han Y,
Guo M, Ames S, Glöckner S, Piantadosi S, Gabrielson E, Pridham G,
et al: DNA methylation markers and early recurrence in stage I lung
cancer. N Engl J Med. 358:1118–1128. 2008. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sterlacci W, Tzankov A, Veits L, Zelger B,
Bihl MP, Foerster A, Augustin F, Fiegl M and Savic S: A
comprehensive analysis of p16 expression, gene status, and promoter
hypermethylation in surgically resected non-small cell lung
carcinomas. J Thorac Oncol. 6:1649–1657. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Munkhjargal B, Kondo K, Soejima S, Tegshee
B, Takai C, Kawakita N, Toba H and Takizawa H: Aberrant methylation
of dipeptidyl peptidase-like 6 as a potential prognostic biomarker
for lung adenocarcinoma. Oncol Lett. 25:2062023. View Article : Google Scholar : PubMed/NCBI
|
18
|
Tsuboi M, Kondo K, Masuda K, Tange S,
Kajiura K, Kohmoto T, Takizawa H, Imoto I and Tangoku A: Prognostic
significance of GAD1 overexpression in patients with resected lung
adenocarcinoma. Cancer Med. 8:4189–4199. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kajiura K, Masuda K, Naruto T, Kohmoto T,
Watabnabe M, Tsuboi M, Takizawa H, Kondo K, Tangoku A and Imoto I:
Frequent silencing of the candidate tumor suppressor TRIM58 by
promoter methylation in early-stage lung adenocarcinoma.
Oncotarget. 8:2890–2905. 2017. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cards G: ZNF577 gene-zinc finger protein
577. Weizmann Institute of Science, 2024. https://www.genecards.org/cgi-bin/carddisp.pl?gene=ZNF577#domains_families
|
21
|
Tan W, Zheng L, Lee WH and Boyer TG:
Functional dissection of transcription factor ZBRK1 reveals zinc
fingers with dual roles in DNA-binding and BRCA1-dependent
transcriptional repression. J Biol Chem. 279:6576–6587. 2004.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Jen J and Wang YC: Zinc finger proteins in
cancer progression. J Biomed Sci. 23:532016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sobocińska J, Molenda S, Machnik M and
Oleksiewicz U: KRAB-ZFP transcriptional regulators acting as
oncogenes and tumor suppressors: An overview. Int J Mol Sci.
22:22122021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Severson PL, Tokar EJ, Vrba L, Waalkes MP
and Futscher BW: Coordinate H3K9 and DNA methylation silencing of
ZNFs in toxicant-induced malignant transformation. Epigenetics.
8:1080–1088. 2013. View Article : Google Scholar : PubMed/NCBI
|
25
|
Goldstraw P, Crowley J, Chansky K, Giroux
DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V and Sobin L;
International Association for the Study of Lung Cancer
International Staging Committee; Participating Institutions, : The
IASLC lung cancer staging project: Proposals for the revision of
the TNM stage groupings in the forthcoming (seventh) edition of the
TNM classification of malignant tumours. J Thorac Oncol. 2:706–714.
2007. View Article : Google Scholar : PubMed/NCBI
|
26
|
Travis WD, Brambilla E, Burke AP, Marx A
and Nicholson AG: Introduction to the 2015 World Health
Organization classification of tumors of the lung, pleura, thymus,
and heart. J Thorac Oncol. 10:1240–1242. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Xu Y, Tsai CW, Chang WS, Han Y, Huang M,
Pettaway CA, Bau DT and Gu J: Epigenome-wide association study of
prostate cancer in African Americans identifies DNA methylation
biomarkers for aggressive disease. Biomolecules. 11:18262021.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Lorenzo PM, Izquierdo AG, Diaz-Lagares A,
Carreira MC, Macias-Gonzalez M, Sandoval J, Cueva J, Lopez-Lopez R,
Casanueva FF and Crujeiras AB: ZNF577 methylation levels in
leukocytes from women with breast cancer is modulated by adiposity,
menopausal state, and the mediterranean diet. Front Endocrinol
(Lausanne). 11:2452020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Crujeiras AB, Diaz-Lagares A, Stefansson
OA, Macias-Gonzalez M, Sandoval J, Cueva J, Lopez-Lopez R, Moran S,
Jonasson JG, Tryggvadottir L, et al: Obesity and menopause modify
the epigenomic profile of breast cancer. Endocr Relat Cancer.
24:351–363. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Peters FS, Peeters AMA, Mandaviya PR, van
Meurs JBJ, Hofland LJ, van de Wetering J, Betjes MGH, Baan CC and
Boer K: Differentially methylated regions in T cells identify
kidney transplant patients at risk for de novo skin cancer. Clin
Epigenetics. 10:812018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Barrio S, Gallardo M, Albizua E, Jiménez
A, Rapado I, Ayala R, Gilsanz F, Martin-Subero JI and
Martinez-Lopez J: Epigenomic profiling in polycythaemia vera and
essential thrombocythaemia shows low levels of aberrant DNA
methylation. J Clin Pathol. 64:1010–1013. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Krzyzewska IM, Lauffer P, Mul AN, van der
Laan L, Yim AYFL, Cobben JM, Niklinski J, Chomczyk MA, Smigiel R,
Mannens MMAM and Henneman P: Expression quantitative trait
methylation analysis identifies whole blood molecular footprint in
fetal alcohol spectrum disorder (FASD). Int J Mol Sci. 24:66012023.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Allott EH, Masko EM and Freedland SJ:
Obesity and prostate cancer: Weighing the evidence. Eur Urol.
63:800–809. 2013. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hill VK, Ricketts C, Bieche I, Vacher S,
Gentle D, Lewis C, Maher ER and Latif F: Genome-wide DNA
methylation profiling of CpG islands in breast cancer identifies
novel genes associated with tumorigenicity. Cancer Res.
71:2988–2999. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lupo A, Cesaro E, Montano G, Zurlo D, Izzo
P and Costanzo P: KRAB-zinc finger proteins: A repressor family
displaying multiple biological functions. Curr Genomics.
14:268–278. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Cao L, Wang S, Zhang Y, Wong KC, Nakatsu
G, Wang X, Wong S, Ji J and Yu J: Zinc-finger protein 471
suppresses gastric cancer through transcriptionally repressing
downstream oncogenic PLS3 and TFAP2A. Oncogene. 37:3601–3616. 2018.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Sun R, Xiang T, Tang J, Peng W, Luo J, Li
L, Qiu Z, Tan Y, Ye L, Zhang M, et al: 19q13 KRAB zinc-finger
protein ZNF471 activates MAPK10/JNK3 signaling but is frequently
silenced by promoter CpG methylation in esophageal cancer.
Theranostics. 10:2243–2259. 2020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Tao C, Luo J, Tang J, Zhou D, Feng S, Qiu
Z, Putti TC, Xiang T, Tao Q, Li L and Ren G: The tumor suppressor
zinc finger protein 471 suppresses breast cancer growth and
metastasis through inhibiting AKT and Wnt/β-catenin signaling. Clin
Epigenetics. 12:1732020. View Article : Google Scholar : PubMed/NCBI
|
40
|
Bhat S, Kabekkodu SP, Adiga D, Fernandes
R, Shukla V, Bhandari P, Pandey D, Sharan K and Satyamoorthy K:
ZNF471 modulates EMT and functions as methylation regulated tumor
suppressor with diagnostic and prognostic significance in cervical
cancer. Cell Biol Toxicol. 37:731–749. 2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Bhat S, Kabekkodu SP, Jayaprakash C,
Radhakrishnan R, Ray S and Satyamoorthy K: Gene promoter-associated
CpG island hypermethylation in squamous cell carcinoma of the
tongue. Virchows Arch. 470:445–454. 2017. View Article : Google Scholar : PubMed/NCBI
|
42
|
Cheng Y, Geng H, Cheng SH, Liang P, Bai Y,
Li J, Srivastava G, Ng MH, Fukagawa T, Wu X, et al: KRAB zinc
finger protein ZNF382 is a proapoptotic tumor suppressor that
represses multiple oncogenes and is commonly silenced in multiple
carcinomas. Cancer Res. 70:6516–6526. 2010. View Article : Google Scholar : PubMed/NCBI
|
43
|
Cheng Y, Liang P, Geng H, Wang Z, Li L,
Cheng SH, Ying J, Su X, Ng KM, Ng MH, et al: A novel 19q13
nucleolar zinc finger protein suppresses tumor cell growth through
inhibiting ribosome biogenesis and inducing apoptosis but is
frequently silenced in multiple carcinomas. Mol Cancer Res.
10:925–936. 2012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Rakhra G and Rakhra G: Zinc finger
proteins: Insights into the transcriptional and post
transcriptional regulation of immune response. Mol Biol Rep.
48:5735–5743. 2021. View Article : Google Scholar : PubMed/NCBI
|