Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Oncology Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 1021-335X Online ISSN: 1791-2431
Journal Cover
May-2025 Volume 53 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 53 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Purchase PDF
Review

Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review)

  • Authors:
    • Hong Qiu
    • Chaowei Zhang
    • Xiaochen Ma
    • Ying Li
  • View Affiliations / Copyright

    Affiliations: Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China, Department of Public Health, Shandong Second Medical University, Weifang, Shandong 261053, P.R. China
  • Article Number: 54
    |
    Published online on: March 19, 2025
       https://doi.org/10.3892/or.2025.8887
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Acute myeloid leukemia, myelodysplasia‑related (AML‑MR), a challenging and aggressive subtype of AML, is characterized by unique genetic abnormalities and molecular features, which contribute to its poor prognosis compared with other AML subtypes. The present review summarizes the current understanding of AML‑MR pathogenesis, highlighting notable advancements in genetic and cytogenetic insights. Critical mutations, such as those in the tumor antigen p53 and additional sex combs like 1 genes, and their role in disease progression and resistance to treatment, are explored. The review further investigates how clonal evolution and cellular microenvironment alterations drive AML‑MR transformation and impact patient outcomes. Despite the poor outlook typically associated with AML‑MR, developments in treatment approaches offer hope. The present review considers the efficacy of novel therapeutic agents, including CPX‑351, hypomethylating agents and targeted molecular therapies. Additionally, innovations in immunotherapy and allogeneic hematopoietic stem cell transplantation are discussed as promising avenues to improve patient survival rates. The challenges of treating AML‑MR, particularly in elderly and pretreated patients, underline the necessity for individualized treatment strategies that consider both the biological complexity of the disease and the overall health profile of the patient. The present review focuses on the mechanisms of AML‑MR transformation, highlighting factors that may offer a crucial theoretical foundation and pave the way for future applications in precision medicine. Future research directions include exploring novel targeted therapies and combination regimens to mitigate the transformation risks and enhance the quality of life of patients with AML‑MR.
View Figures

Figure 1

View References

1 

DiNardo CD, Erba HP, Freeman SD and Wei AH: Acute myeloid leukaemia. Lancet. 401:2073–2086. 2023. View Article : Google Scholar : PubMed/NCBI

2 

Ferrara F: Unanswered questions in acute myeloid leukaemia. Lancet Oncol. 5:443–450. 2004. View Article : Google Scholar : PubMed/NCBI

3 

Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, et al: Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374:2209–2221. 2016. View Article : Google Scholar : PubMed/NCBI

4 

Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, et al: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 129:424–447. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Shallis RM, Wang R, Davidoff A, Ma X and Zeidan AM: Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 36:70–87. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, et al: The 5th edition of the world health organization classification of haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia. 36:1703–1719. 2022. View Article : Google Scholar : PubMed/NCBI

7 

Wang L, Chu X, Wang J, An L, Liu Y, Li L and Xu J: Clinical characteristics and optimal therapy of acute myeloid leukemia with myelodysplasia-related changes: A retrospective analysis of a cohort of Chinese patients. Turk J Haematol. 38:188–194. 2021.PubMed/NCBI

8 

Sengsayadeth S, Gatwood KS, Boumendil A, Labopin M, Finke J, Ganser A, Stelljes M, Ehninger G, Beelen D, Niederwieser D, et al: Conditioning intensity in secondary AML with prior myelodysplastic syndrome/myeloproliferative disorders: An EBMT ALWP study. Blood Adv. 2:2127–2135. 2018. View Article : Google Scholar : PubMed/NCBI

9 

Boddu P, Kantarjian HM, Garcia-Manero G, Ravandi F, Verstovsek S, Jabbour E, Borthakur G, Konopleva M, Bhalla KN, Daver N, et al: Treated secondary acute myeloid leukemia: A distinct high-risk subset of AML with adverse prognosis. Blood Adv. 1:1312–1323. 2017. View Article : Google Scholar : PubMed/NCBI

10 

Amaki K: French-American-British (FAB) classification of acute leukemia. Rinsho Ketsueki. 23:988–990. 1982.(In Japanese). PubMed/NCBI

11 

Vardiman JW, Harris NL and Brunning RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 100:2292–2302. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A and Bloomfield CD: The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood. 114:937–951. 2009. View Article : Google Scholar : PubMed/NCBI

13 

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, Pigneux A, Wetzler M, Stuart RK, Erba HP, et al: Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 125:1367–1376. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, et al: Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 140:2228–2247. 2022. View Article : Google Scholar : PubMed/NCBI

16 

Chen J, Kao YR, Sun D, Todorova TI, Reynolds D, Narayanagari SR, Montagna C, Will B, Verma A and Steidl U: Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med. 25:103–110. 2019. View Article : Google Scholar : PubMed/NCBI

17 

Dillon LW, Ghannam J, Nosiri C, Gui G, Goswami M, Calvo KR, Lindblad KE, Oetjen KA, Wilkerson MD, Soltis AR, et al: Personalized single-cell proteogenomics to distinguish acute myeloid leukemia from non-malignant clonal hematopoiesis. Blood Cancer Discov. 2:319–325. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Østgård LS, Medeiros BC, Sengeløv H, Nørgaard M, Andersen MK, Dufva IH, Friis LS, Kjeldsen E, Marcher CW, Preiss B, et al: Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: A national population-based cohort study. J Clin Oncol. 33:3641–3649. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Gao Y, Jia M, Mao Y, Cai H, Jiang X, Cao X, Zhou D and Li J: Distinct mutation landscapes between acute myeloid leukemia with myelodysplasia-related changes and de novo acute myeloid leukemia. Am J Clin Pathol. 157:691–700. 2022. View Article : Google Scholar : PubMed/NCBI

20 

Fang H, He R, Chiu A, Viswanatha DS, Ketterling RP, Patnaik MS and Reichard KK: Genetic factors in acute myeloid leukemia with myelodysplasia-related changes. Am J Clin Pathol. 153:656–663. 2020. View Article : Google Scholar : PubMed/NCBI

21 

Chinese Society of Hematology and Chinese Medical Association, . Chinese guidelines for diagnosis and treatment of myelodysplastic syndromes (2019). Zhonghua Xue Ye Xue Za Zhi. 40:89–97. 2019.(In Chinese). PubMed/NCBI

22 

Hellström-Lindberg E, Tobiasson M and Greenberg P: Myelodysplastic syndromes: Moving towards personalized management. Haematologica. 105:1765–1779. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Woods BA and Levine RL: The role of mutations in epigenetic regulators in myeloid malignancies. Immunol Rev. 263:22–35. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Yamashita M, Dellorusso PV, Olson OC and Passegué E: Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer. 20:365–382. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Mishra SK, Millman SE and Zhang L: Metabolism in acute myeloid leukemia: Mechanistic insights and therapeutic targets. Blood. 141:1119–1135. 2023. View Article : Google Scholar : PubMed/NCBI

26 

Montalban-Bravo G, Kanagal-Shamanna R, Class CA, Sasaki K, Ravandi F, Cortes JE, Daver N, Takahashi K, Short NJ, DiNardo CD, et al: Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol. 95:612–622. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Haase D, Germing U, Schanz J, Pfeilstöcker M, Nösslinger T, Hildebrandt B, Kundgen A, Lübbert M, Kunzmann R, Giagounidis AA, et al: New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: Evidence from a core dataset of 2124 patients. Blood. 110:4385–4395. 2007. View Article : Google Scholar : PubMed/NCBI

28 

Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, Hedlund A, Hast R, Schlegelberger B, Porwit A, et al: TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 29:1971–1979. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Pitel BA, Sharma N, Zepeda-Mendoza C, Smadbeck JB, Pearce KE, Cook JM, Vasmatzis G, Sachs Z, Kanagal-Shamanna R, Viswanatha D, et al: Myeloid malignancies with 5q and 7q deletions are associated with extreme genomic complexity, biallelic TP53 variants, and very poor prognosis. Blood Cancer J. 11:182021. View Article : Google Scholar : PubMed/NCBI

30 

Cordoba I, González-Porras JR, Nomdedeu B, Luño E, de Paz R, Such E, Tormo M, Vallespi T, Collado R, Xicoy B, et al: Better prognosis for patients with del(7q) than for patients with monosomy 7 in myelodysplastic syndrome. Cancer. 118:127–133. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Inaba T, Honda H and Matsui H: The enigma of monosomy 7. Blood. 131:2891–2898. 2018. View Article : Google Scholar : PubMed/NCBI

32 

Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, Takubo K, Suda T, Nakamura T, Wolff L, et al: Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 24:305–317. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, Tiffen JC, Kober C; Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium; Green AR, ; et al: Inactivating CUX1 mutations promote tumorigenesis. Nat Genet. 46:33–38. 2014. View Article : Google Scholar : PubMed/NCBI

34 

Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, Getz G, Steensma DP, Ritz J, Soiffer R, et al: Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 32:2691–2698. 2014. View Article : Google Scholar : PubMed/NCBI

35 

Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, Grauman PV, Hu ZH, Spellman SR, Lee SJ, et al: Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 376:536–547. 2017. View Article : Google Scholar : PubMed/NCBI

36 

Haase D, Stevenson KE, Neuberg D, Maciejewski JP, Nazha A, Sekeres MA, Ebert BL, Garcia-Manero G, Haferlach C, Haferlach T, et al: TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia. 33:1747–1758. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Levine AJ and Oren M: The first 30 years of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Aubrey BJ, Kelly GL, Janic A, Herold MJ and Strasser A: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI

39 

Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, Yoshizato T, Shiozawa Y, Saiki R, Malcovati L, et al: Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 26:1549–1556. 2020. View Article : Google Scholar : PubMed/NCBI

40 

Bernard E, Nannya Y, Yoshizato T, Hasserjian RP, Saiki R, Shiozawa Y, Devlin SM, Tuechler H, Sarian A, Malcovati L, et al: TP53 state dictates genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Blood. 134:6752019. View Article : Google Scholar

41 

Yu J, Du Y, Jalil A, Ahmed Z, Mori S, Patel R, Varela JC and Chang CC: Mutational profiling of myeloid neoplasms associated genes may aid the diagnosis of acute myeloid leukemia with myelodysplasia-related changes. Leuk Res. 110:1067012021. View Article : Google Scholar : PubMed/NCBI

42 

Zhao D, Eladl E, Zarif M, Capo-Chichi JM, Schuh A, Atenafu E, Minden M and Chang H: Molecular characterization of AML-MRC reveals TP53 mutation as an adverse prognostic factor irrespective of MRC-defining criteria, TP53 allelic state, or TP53 variant allele frequency. Cancer Med. 12:6511–6522. 2023. View Article : Google Scholar : PubMed/NCBI

43 

Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ and Birnbaum D: Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 5:122012. View Article : Google Scholar : PubMed/NCBI

44 

Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, Wagner K, Chaturvedi A, Sharma A, Wichmann M, et al: Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 29:2499–2506. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Inoue D, Kitaura J, Matsui H, Hou HA, Chou WC, Nagamachi A, Kawabata KC, Togami K, Nagase R, Horikawa S, et al: SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia. 29:847–857. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Prats-Martín C, Burillo-Sanz S, Morales-Camacho RM, Pérez-López O, Suito M, Vargas MT, Caballero-Velázquez T, Carrillo-Cruz E, González J, Bernal R and Pérez-Simón JA: ASXL1 mutation as a surrogate marker in acute myeloid leukemia with myelodysplasia-related changes and normal karyotype. Cancer Med. 9:3637–3646. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M, et al: Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 106:3925–3929. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N and Kurokawa M: A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 97:726–734. 2013. View Article : Google Scholar : PubMed/NCBI

49 

Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC, Yao M, Wu SJ, Tseng MH and Tien HF: RUNX1 gene mutation in primary myelodysplastic syndrome-the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol. 139:405–414. 2007. View Article : Google Scholar : PubMed/NCBI

50 

Wang K, Zhou F, Cai X, Chao H, Zhang R and Chen S: Mutational landscape of patients with acute myeloid leukemia or myelodysplastic syndromes in the context of RUNX1 mutation. Hematology. 25:211–218. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Kaisrlikova M, Vesela J, Kundrat D, Votavova H, Merkerova MD, Krejcik Z, Divoky V, Jedlicka M, Fric J, Klema J, et al: RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: A study on patients with lower-risk MDS. Leukemia. 36:1898–1906. 2022. View Article : Google Scholar : PubMed/NCBI

52 

Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, et al: Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 23:166–175. 1999. View Article : Google Scholar : PubMed/NCBI

53 

Tsai SC, Shih LY, Liang ST, Huang YJ, Kuo MC, Huang CF, Shih YS, Lin TH, Chiu MC and Liang DC: Biological activities of RUNX1 mutants predict secondary acute leukemia transformation from chronic myelomonocytic leukemia and myelodysplastic syndromes. Clin Cancer Res. 21:3541–3551. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, et al: AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: Prognostic implication and interaction with other gene alterations. Blood. 114:5352–5361. 2009. View Article : Google Scholar : PubMed/NCBI

55 

Dicker F, Haferlach C, Sundermann J, Wendland N, Weiss T, Kern W, Haferlach T and Schnittger S: Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia. 24:1528–1532. 2010. View Article : Google Scholar : PubMed/NCBI

56 

Savage KI, Gorski JJ, Barros EM, Irwin GW, Manti L, Powell AJ, Pellagatti A, Lukashchuk N, McCance DJ, McCluggage WG, et al: Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol Cell. 54:445–459. 2014. View Article : Google Scholar : PubMed/NCBI

57 

Dalton WB, Helmenstine E, Walsh N, Gondek LP, Kelkar DS, Read A, Natrajan R, Christenson ES, Roman B, Das S, et al: Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J Clin Invest. 129:4708–4723. 2019. View Article : Google Scholar : PubMed/NCBI

58 

Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C, et al: Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 365:1384–1395. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, et al: Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 478:64–69. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Malcovati L, Stevenson K, Papaemmanuil E, Neuberg D, Bejar R, Boultwood J, Bowen DT, Campbell PJ, Ebert BL, Fenaux P, et al: SF3B1-mutant MDS as a distinct disease subtype: A proposal from the international working group for the prognosis of MDS. Blood. 136:157–170. 2020. View Article : Google Scholar : PubMed/NCBI

61 

Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, Berthon C, Adès L, Fenaux P, Beyne-Rauzy O, et al: Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 31:2428–2436. 2013. View Article : Google Scholar : PubMed/NCBI

62 

Ganguly BB and Kadam NN: Mutations of myelodysplastic syndromes (MDS): An update. Mutat Res Rev Mutat Res. 769:47–62. 2016. View Article : Google Scholar : PubMed/NCBI

63 

Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, Wlodarski MW, Kölking B, Wichmann M, Görlich K, et al: Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 119:3578–3584. 2012. View Article : Google Scholar : PubMed/NCBI

64 

Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Kar SA, Jerez A, Przychodzen B, Bupathi M, Guinta K, Afable MG, et al: Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 119:3203–3210. 2012. View Article : Google Scholar : PubMed/NCBI

65 

Harada H and Harada Y: Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Cancer Sci. 106:329–336. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Wu SJ, Tang JL, Lin CT, Kuo YY, Li LY, Tseng MH, Huang CF, Lai YJ, Lee FY, Liu MC, et al: Clinical implications of U2AF1 mutation in patients with myelodysplastic syndrome and its stability during disease progression. Am J Hematol. 88:E277–E282. 2013. View Article : Google Scholar : PubMed/NCBI

67 

Park SM, Ou J, Chamberlain L, Simone TM, Yang H, Virbasius CM, Ali AM, Zhu LJ, Mukherjee S, Raza A and Green MR: U2AF35(S34F) promotes transformation by directing aberrant ATG7 Pre-mRNA 3′ end formation. Mol Cell. 62:479–490. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D, Pradhan K, Steeples V, et al: U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 21:640–650. 2019. View Article : Google Scholar : PubMed/NCBI

69 

Shirai CL, White BS, Tripathi M, Tapia R, Ley JN, Ndonwi M, Kim S, Shao J, Carver A, Saez B, et al: Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun. 8:140602017. View Article : Google Scholar : PubMed/NCBI

70 

Raddatz G, Gao Q, Bender S, Jaenisch R and Lyko F: Dnmt3a protects active chromosome domains against cancer-associated hypomethylation. PLoS Genet. 8:e10031462012. View Article : Google Scholar : PubMed/NCBI

71 

Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, et al: DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 363:2424–2433. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Thol F, Winschel C, Lüdeking A, Yun H, Friesen I, Damm F, Wagner K, Krauter J, Heuser M and Ganser A: Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica. 96:1870–1873. 2011. View Article : Google Scholar : PubMed/NCBI

73 

Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, et al: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 468:839–843. 2010. View Article : Google Scholar : PubMed/NCBI

74 

Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X, et al: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 20:11–24. 2011. View Article : Google Scholar : PubMed/NCBI

75 

Seethy AA, Pethusamy K, Kushwaha T, Kumar G, Talukdar J, Chaubey R, Sundaram UD, Mahapatra M, Saxena R, Dhar R, et al: Alterations of the expression of TET2 and DNA 5-hmC predict poor prognosis in myelodysplastic neoplasms. BMC Cancer. 23:10352023. View Article : Google Scholar : PubMed/NCBI

76 

Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, et al: Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 120:2454–2465. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, et al: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 18:553–567. 2010. View Article : Google Scholar : PubMed/NCBI

78 

Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M, Göhring G, Schumann C, Bug G, Ottmann O, et al: IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 95:1668–1674. 2010. View Article : Google Scholar : PubMed/NCBI

79 

Zarnegar-Lumley S, Alonzo TA, Gerbing RB, Othus M, Sun Z, Ries RE, Wang J, Leonti A, Kutny MA, Ostronoff F, et al: Characteristics and prognostic impact of IDH mutations in AML: A COG, SWOG, and ECOG analysis. Blood Adv. 7:5941–5953. 2023. View Article : Google Scholar : PubMed/NCBI

80 

Jaiswal S and Ebert BL: Clonal hematopoiesis in human aging and disease. Science. 366:eaan46732019. View Article : Google Scholar : PubMed/NCBI

81 

Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM, Morrison CG and Passegué E: Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell. 7:174–185. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Medina EA, Delma CR and Yang FC: ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol. 15:1272022. View Article : Google Scholar : PubMed/NCBI

83 

Issa JP: Epigenetic changes in the myelodysplastic syndrome. Hematol Oncol Clin North Am. 24:317–330. 2010. View Article : Google Scholar : PubMed/NCBI

84 

Claus R and Lübbert M: Epigenetic targets in hematopoietic malignancies. Oncogene. 22:6489–6496. 2003. View Article : Google Scholar : PubMed/NCBI

85 

Brakensiek K, Länger F, Schlegelberger B, Kreipe H and Lehmann U: Hypermethylation of the suppressor of cytokine signalling-1 (SOCS-1) in myelodysplastic syndrome. Br J Haematol. 130:209–217. 2005. View Article : Google Scholar : PubMed/NCBI

86 

Christiansen DH, Andersen MK and Pedersen-Bjergaard J: Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 17:1813–1819. 2003. View Article : Google Scholar : PubMed/NCBI

87 

Stintzing S, Kemmerling R, Kiesslich T, Alinger B, Ocker M and Neureiter D: Myelodysplastic syndrome and histone deacetylase inhibitors: ‘To be or not to be acetylated’? J Biomed Biotechnol. 2011:2141432011.PubMed/NCBI

88 

Gill H, Leung AY and Kwong YL: Molecular and cellular mechanisms of myelodysplastic syndrome: Implications on targeted therapy. Int J Mol Sci. 17:4402016. View Article : Google Scholar : PubMed/NCBI

89 

Chen D, Xia S, Zhang R, Li Y, Famulare CA, Fan H, Wu R, Wang M, Zhu AC, Elf SE, et al: Lysine acetylation restricts mutant IDH2 activity to optimize transformation in AML cells. Mol Cell. 81:3833–3847.e3811. 2021. View Article : Google Scholar : PubMed/NCBI

90 

Sundaravel S, Duggan R, Bhagat T, Ebenezer DL, Liu H, Yu Y, Bartenstein M, Unnikrishnan M, Karmakar S, Liu TC, et al: Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes. Proc Natl Acad Sci USA. 112:E6359–E6368. 2015. View Article : Google Scholar : PubMed/NCBI

91 

Lujambio A and Lowe SW: The microcosmos of cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI

92 

O'Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB and Baltimore D: MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA. 107:14235–14240. 2010. View Article : Google Scholar : PubMed/NCBI

93 

Wen J, Huang Y, Li H, Zhang X, Cheng P, Deng D, Peng Z, Luo J, Zhao W, Lai Y and Liu Z: Over-expression of miR-196b-5p is significantly associated with the progression of myelodysplastic syndrome. Int J Hematol. 105:777–783. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Miller PG, Al-Shahrour F, Hartwell KA, Chu LP, Järås M, Puram RV, Puissant A, Callahan KP, Ashton J, McConkey ME, et al: In vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. Cancer Cell. 24:45–58. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Burger JA and Peled A: CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia. 23:43–52. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Dührsen U and Hossfeld DK: Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol. 73:53–70. 1996. View Article : Google Scholar : PubMed/NCBI

97 

Behrmann L, Wellbrock J and Fiedler W: Acute myeloid leukemia and the bone marrow niche-take a closer look. Front Oncol. 8:4442018. View Article : Google Scholar : PubMed/NCBI

98 

Sha C, Jia G, Jingjing Z, Yapeng H, Zhi L and Guanghui X: miR-486 is involved in the pathogenesis of acute myeloid leukemia by regulating JAK-STAT signaling. Naunyn Schmiedebergs Arch Pharmacol. 394:177–187. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Fattizzo B, Giannotta JA and Barcellini W: Mesenchymal stem cells in aplastic anemia and myelodysplastic syndromes: The ‘Seed and Soil’ crosstalk. Int J Mol Sci. 21:54382020. View Article : Google Scholar : PubMed/NCBI

100 

Bhagat TD, Chen S, Bartenstein M, Barlowe AT, Von Ahrens D, Choudhary GS, Tivnan P, Amin E, Marcondes AM, Sanders MA, et al: Epigenetically aberrant stroma in MDS propagates disease via Wnt/β-catenin activation. Cancer Res. 77:4846–4857. 2017. View Article : Google Scholar : PubMed/NCBI

101 

Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, Khiabanian H, Lee A, Murty VV, Friedman R, et al: Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature. 506:240–244. 2014. View Article : Google Scholar : PubMed/NCBI

102 

Kuek V, Hughes AM, Kotecha RS and Cheung LC: Therapeutic targeting of the leukaemia microenvironment. Int J Mol Sci. 22:68882021. View Article : Google Scholar : PubMed/NCBI

103 

Fiedler W, Graeven U, Ergün S, Verago S, Kilic N, Stockschläder M and Hossfeld DK: Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 89:1870–1875. 1997. View Article : Google Scholar : PubMed/NCBI

104 

Cancilla D, Rettig MP and DiPersio JF: Targeting CXCR4 in AML and ALL. Front Oncol. 10:16722020. View Article : Google Scholar : PubMed/NCBI

105 

Barbier V, Erbani J, Fiveash C, Davies JM, Tay J, Tallack MR, Lowe J, Magnani JL, Pattabiraman DR, Perkins AC, et al: Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat Commun. 11:20422020. View Article : Google Scholar : PubMed/NCBI

106 

Kotsianidis I, Bouchliou I, Nakou E, Spanoudakis E, Margaritis D, Christophoridou AV, Anastasiades A, Tsigalou C, Bourikas G, Karadimitris A and Tsatalas C: Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 23:510–518. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Tay C, Tanaka A and Sakaguchi S: Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell. 41:450–465. 2023. View Article : Google Scholar : PubMed/NCBI

108 

Ehrchen JM, Sunderkötter C, Foell D, Vogl T and Roth J: The endogenous toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 86:557–566. 2009. View Article : Google Scholar : PubMed/NCBI

109 

Gañán-Gómez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, Bohannan ZS, Verma A, Steidl U and Garcia-Manero G: Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 29:1458–1469. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI

111 

Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C and Sohn C: PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat. 40:294–297. 2017. View Article : Google Scholar : PubMed/NCBI

112 

Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, Engblom C, Pfirschke C, Siwicki M, Gungabeesoon J, et al: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 49:1148–1161.e1147. 2018. View Article : Google Scholar : PubMed/NCBI

113 

Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI

114 

Woan KV and Miller JS: Harnessing natural killer cell antitumor immunity: From the bench to bedside. Cancer Immunol Res. 7:1742–1747. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, Casas SB, Ernst G, Traboulsi AA, Hashi N, et al: Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood. 132:1792–1804. 2018. View Article : Google Scholar : PubMed/NCBI

116 

Janowska-Wieczorek A, Marquez-Curtis LA, Gan K, Larratt L and Woods A: TNF-α stimulates matrix metalloproteinase expression in myelodysplastic syndromes (MDS):: Therapeutic potential for inhibitors of TNF-α and MMPs. Blood. 106:962A. 2005. View Article : Google Scholar

117 

Bruno S, Mancini M, De Santis S, Monaldi C, Cavo M and Soverini S: The role of hypoxic bone marrow microenvironment in acute myeloid leukemia and future therapeutic opportunities. Int J Mol Sci. 22:68572021. View Article : Google Scholar : PubMed/NCBI

118 

Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA and Martelli AM: Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 1863:449–463. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI

120 

Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, et al: Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 7:110–120. 2008. View Article : Google Scholar : PubMed/NCBI

121 

Wang L, Yang L, Yang Z, Tang Y, Tao Y, Zhan Q, Lei L, Jing Y, Jiang X, Jin H, et al: Glycolytic enzyme PKM2 mediates autophagic activation to promote cell survival in NPM1-mutated leukemia. Int J Biol Sci. 15:882–894. 2019. View Article : Google Scholar : PubMed/NCBI

122 

Dunn WG, McLoughlin MA and Vassiliou GS: Clonal hematopoiesis and hematological malignancy. J Clin Invest. 134:e1800652024. View Article : Google Scholar : PubMed/NCBI

123 

Bowman RL, Busque L and Levine RL: Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 22:157–170. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Wilkinson AC, Morita M, Nakauchi H and Yamazaki S: Branched-chain amino acid depletion conditions bone marrow for hematopoietic stem cell transplantation avoiding amino acid imbalance-associated toxicity. Exp Hematol. 63:12–16.e11. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, Barnert A, et al: BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 551:384–388. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C, Miller CA, Niu B, McLellan MD, Dees ND, et al: Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia. 27:1275–1282. 2013. View Article : Google Scholar : PubMed/NCBI

127 

Mortera-Blanco T, Dimitriou M, Woll PS, Karimi M, Elvarsdottir E, Conte S, Tobiasson M, Jansson M, Douagi I, Moarii M, et al: SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood. 130:881–890. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H, Przychodzen B, Nagata Y, Meggendorfer M, Sanada M, et al: Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 49:204–212. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Seymour JF, Döhner H, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, et al: Azacitidine improves clinical outcomes in older patients with acute myeloid leukaemia with myelodysplasia-related changes compared with conventional care regimens. BMC Cancer. 17:8522017. View Article : Google Scholar : PubMed/NCBI

130 

Abdallah M, Xie Z, Ready A, Manogna D, Mendler JH and Loh KP: Management of acute myeloid leukemia (AML) in older patients. Curr Oncol Rep. 22:1032020. View Article : Google Scholar : PubMed/NCBI

131 

LeBlanc TW and Erba HP: Shifting paradigms in the treatment of older adults with AML. Semin Hematol. 56:110–117. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Kronfol MM, Jahr FM, Dozmorov MG, Phansalkar PS, Xie LY, Aberg KA, McRae M, Price ET, Slattum PW, Gerk PM and McClay JL: DNA methylation and histone acetylation changes to cytochrome P450 2E1 regulation in normal aging and impact on rates of drug metabolism in the liver. Geroscience. 42:819–832. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Bose P and Grant S: Rational combinations of targeted agents in AML. J Clin Med. 4:634–664. 2015. View Article : Google Scholar : PubMed/NCBI

134 

Sotiropoulou IM, Manetas-Stavrakakis N, Kourek C, Xanthopoulos A, Magouliotis D, Giamouzis G, Skoularigis J and Briasoulis A: Prevention of anthracyclines and HER2 inhibitor-induced cardiotoxicity: A systematic review and meta-analysis. Cancers (Basel). 16:24192024. View Article : Google Scholar : PubMed/NCBI

135 

Doval D, Sharma SK, Kumar M, Khandelwal V and Choudhary D: Cytarabine ears-A side effect of cytarabine therapy. J Oncol Pharm Pract. 26:471–473. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Gardin C, Pautas C, Fournier E, Itzykson R, Lemasle E, Bourhis JH, Adès L, Marolleau JP, Malfuson JV, Gastaud L, et al: Added prognostic value of secondary AML-like gene mutations in ELN intermediate-risk older AML: ALFA-1200 study results. Blood Adv. 4:1942–1949. 2020. View Article : Google Scholar : PubMed/NCBI

137 

Russell NH: Improving outcomes for elderly patients with AML. Lancet Oncol. 13:1065–1066. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Brandwein JM, Geddes M, Kassis J, Kew AK, Leber B, Nevill T, Sabloff M, Sandhu I, Schuh AC, Storring JM and Ashkenas J: Treatment of older patients with acute myeloid leukemia (AML): A Canadian consensus. Am J Blood Res. 3:141–164. 2013.PubMed/NCBI

139 

Zhao D, Zarif M, Eladl E, Capo-Chichi JM, Smith AC, Atenafu EG, Tierens A, Minden MD, Schuh A and Chang H: NPM1-mutated AML-MRC diagnosed on the basis of history of MDS or MDS/MPN frequently harbours secondary-type mutations and confers inferior outcome compared to AML with mutated NPM1. Leuk Res. 118:1068692022. View Article : Google Scholar : PubMed/NCBI

140 

Cruijsen M, Lübbert M, Wijermans P and Huls G: Clinical Results of Hypomethylating agents in AML treatment. J Clin Med. 4:1–17. 2014. View Article : Google Scholar : PubMed/NCBI

141 

Stomper J and Lübbert M: Can we predict responsiveness to hypomethylating agents in AML? Semin Hematol. 56:118–124. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Sadeghi M, Khodakarami A, Ahmadi A, Navashenaq JG, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Akbari AA and Jadidi-Niaragh F: The prognostic and therapeutic potentials of CTLA-4 in hematological malignancies. Expert Opin Ther Targets. 26:1057–1071. 2022. View Article : Google Scholar : PubMed/NCBI

143 

Tan J, Yu Z, Huang J, Chen Y, Huang S, Yao D, Xu L, Lu Y, Chen S and Li Y: Increased PD-1+Tim-3+ exhausted T cells in bone marrow may influence the clinical outcome of patients with AML. Biomark Res. 8:62020. View Article : Google Scholar : PubMed/NCBI

144 

Wang D, Zhou F, He L, Wang X, Song L, Wang H, Sun S, Guo Z, Ma K, Xu J and Cui C: AML cell-derived exosomes suppress the activation and cytotoxicity of NK cells in AML via PD-1/PD-L1 pathway. Cell Biol Int. 48:1588–1598. 2024. View Article : Google Scholar : PubMed/NCBI

145 

Hwang HS, Han AR, Lee JY, Park GS, Min WS and Kim HJ: Enhanced anti-leukemic effects through induction of immunomodulating microenvironment by blocking CXCR4 and PD-L1 in an AML mouse model. Immunol Invest. 48:96–105. 2019. View Article : Google Scholar : PubMed/NCBI

146 

Kotsiafti A, Giannakas K, Christoforou P and Liapis K: Progress toward better treatment of therapy-related AML. Cancers (Basel). 15:16582023. View Article : Google Scholar : PubMed/NCBI

147 

Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K and Burnett AK: Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: Results of the United Kingdom MRC AML-15 trial. Blood. 120:2826–2835. 2012. View Article : Google Scholar : PubMed/NCBI

148 

Canaani J: Management of AML beyond ‘3 + 7’ in 2019. Clin Hematol Int. 1:10–18. 2019. View Article : Google Scholar : PubMed/NCBI

149 

Alfayez M, Kantarjian H, Kadia T, Ravandi-Kashani F and Daver N: CPX-351 (vyxeos) in AML. Leuk Lymphoma. 61:288–297. 2020. View Article : Google Scholar : PubMed/NCBI

150 

National Comprehensive Cancer Network (NCCN), . NCCN Guidelines Version 2.2024: Acute myeloid leukemia. NCCN; Plymouth Meeting, PA: 2024

151 

Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, et al: CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 36:2684–2692. 2018. View Article : Google Scholar : PubMed/NCBI

152 

Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, Janoria KG, Gieser G, Bateman DA, Przepiorka D, et al: FDA approval summary: (Daunorubicin and Cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 25:2685–2690. 2019. View Article : Google Scholar : PubMed/NCBI

153 

Wang Q, Tardi P, Sadowski N, Xie S, Heller D and Mayer L: Pharmacokinetics, drug metabolism, and tissue distribution of CPX-351 in animals. Nanomedicine. 30:1022752020. View Article : Google Scholar : PubMed/NCBI

154 

Chiche E, Rahmé R, Bertoli S, Dumas PY, Micol JB, Hicheri Y, Pasquier F, Peterlin P, Chevallier P and Thomas X: Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: A multicentric French cohort. Blood Adv. 5:176–184. 2021. View Article : Google Scholar : PubMed/NCBI

155 

Tolcher AW and Mayer LD: Improving combination cancer therapy: The CombiPlex® development platform. Future Oncol. 14:1317–1332. 2018. View Article : Google Scholar : PubMed/NCBI

156 

Hellström-Lindberg ES and Kröger N: Clinical decision-making and treatment of myelodysplastic syndromes. Blood. 142:2268–2281. 2023. View Article : Google Scholar : PubMed/NCBI

157 

Koenig KL, Sahasrabudhe KD, Sigmund AM and Bhatnagar B: AML with myelodysplasia-related changes: Development, challenges, and treatment advances. Genes (Basel). 11:8452020. View Article : Google Scholar : PubMed/NCBI

158 

Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, et al: International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 126:291–299. 2015. View Article : Google Scholar : PubMed/NCBI

159 

Liu J, Jia JS, Gong LZ, Lu SY, Zhu HH, Huang XJ and Jiang H: Efficacy and safety of decitabine in combination with G-CSF, low-dose cytarabine and aclarubicin in MDS-EB and AML-MRC. Zhonghua Xue Ye Xue Za Zhi. 39:734–738. 2018.(In Chinese). PubMed/NCBI

160 

Assi R, Kantarjian H, Ravandi F and Daver N: Immune therapies in acute myeloid leukemia: A focus on monoclonal antibodies and immune checkpoint inhibitors. Curr Opin Hematol. 25:136–145. 2018. View Article : Google Scholar : PubMed/NCBI

161 

Yuan XL, Wu YB, Song XL, Chen Y, Lu Y, Lai XY, Shi JM, Liu LZ, Zhao YM, Yu J, et al: Efficacy and prognostic factors of allogeneic hematopoietic stem cell transplantation in the treatment of secondary acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi. 45:41–47. 2024.PubMed/NCBI

162 

Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, Cortes J, DeAngelo DJ, Debose L, Mu H, et al: Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 4:362–375. 2014. View Article : Google Scholar : PubMed/NCBI

163 

DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, Konopleva M, Döhner H, Letai A, Fenaux P, et al: Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 383:617–629. 2020. View Article : Google Scholar : PubMed/NCBI

164 

Waclawiczek A, Leppä AM, Renders S, Stumpf K, Reyneri C, Betz B, Janssen M, Shahswar R, Donato E, Karpova D, et al: Combinatorial bcl2 family expression in acute myeloid leukemia stem cells predicts clinical response to Azacitidine/Venetoclax. Cancer Discov. 13:1408–1427. 2023. View Article : Google Scholar : PubMed/NCBI

165 

Wan CL, Liu YQ, Liu FT, Huang YH, Cao HY, Huang SM, Tan KW, Ge SS, Wang M, Liu MJ, et al: Venetoclax with hypomethylating agents versus intensive chemotherapy in newly diagnosed acute myeloid leukemia with myelodysplasia related changes: A propensity score-matched analysis based on international consensus classification. Blood Cancer J. 14:1442024. View Article : Google Scholar : PubMed/NCBI

166 

Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SGT, Liu K, Iyer SP, Bearss D and Bhalla KN: Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia. 28:2155–2164. 2014. View Article : Google Scholar : PubMed/NCBI

167 

Sugino N, Kawahara M, Tatsumi G, Kanai A, Matsui H, Yamamoto R, Nagai Y, Fujii S, Shimazu Y, Hishizawa M, et al: A novel LSD1 inhibitor NCD38 ameliorates MDS-related leukemia with complex karyotype by attenuating leukemia programs via activating super-enhancers. Leukemia. 31:2303–2314. 2017. View Article : Google Scholar : PubMed/NCBI

168 

List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, Powell B, Greenberg P, Thomas D, Stone R, et al: Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 355:1456–1465. 2006. View Article : Google Scholar : PubMed/NCBI

169 

List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, Rimsza L, Heaton R, Knight R and Zeldis JB: Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 352:549–557. 2005. View Article : Google Scholar : PubMed/NCBI

170 

Nimer SD: Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol. 24:2576–2582. 2006. View Article : Google Scholar : PubMed/NCBI

171 

Brune MM, Stüssi G, Lundberg P, Vela V, Heim D, Manz MG, Haralambieva E, Pabst T, Banz Y, Bargetzi M, et al: Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 100:1169–1179. 2021. View Article : Google Scholar : PubMed/NCBI

172 

Daver N, Konopleva M, Maiti A, Kadia TM, DiNardo CD, Loghavi S, Pemmaraju N, Jabbour EJ, Montalban-Bravo G, Tang G, et al: Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AML. Blood. 138:371–374. 2021. View Article : Google Scholar

Related Articles

  • Abstract
  • Purchase
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Qiu H, Zhang C, Ma X and Li Y: Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review). Oncol Rep 53: 54, 2025.
APA
Qiu, H., Zhang, C., Ma, X., & Li, Y. (2025). Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review). Oncology Reports, 53, 54. https://doi.org/10.3892/or.2025.8887
MLA
Qiu, H., Zhang, C., Ma, X., Li, Y."Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review)". Oncology Reports 53.5 (2025): 54.
Chicago
Qiu, H., Zhang, C., Ma, X., Li, Y."Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review)". Oncology Reports 53, no. 5 (2025): 54. https://doi.org/10.3892/or.2025.8887
Copy and paste a formatted citation
x
Spandidos Publications style
Qiu H, Zhang C, Ma X and Li Y: Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review). Oncol Rep 53: 54, 2025.
APA
Qiu, H., Zhang, C., Ma, X., & Li, Y. (2025). Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review). Oncology Reports, 53, 54. https://doi.org/10.3892/or.2025.8887
MLA
Qiu, H., Zhang, C., Ma, X., Li, Y."Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review)". Oncology Reports 53.5 (2025): 54.
Chicago
Qiu, H., Zhang, C., Ma, X., Li, Y."Molecular insights and treatment innovations: Advancing outcomes in acute myeloid leukemia with myelodysplasia‑related changes (Review)". Oncology Reports 53, no. 5 (2025): 54. https://doi.org/10.3892/or.2025.8887
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team