You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
|
DiNardo CD, Erba HP, Freeman SD and Wei AH: Acute myeloid leukaemia. Lancet. 401:2073–2086. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ferrara F: Unanswered questions in acute myeloid leukaemia. Lancet Oncol. 5:443–450. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, Potter NE, Heuser M, Thol F, Bolli N, et al: Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 374:2209–2221. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, Dombret H, Ebert BL, Fenaux P, Larson RA, et al: Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 129:424–447. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Shallis RM, Wang R, Davidoff A, Ma X and Zeidan AM: Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 36:70–87. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, et al: The 5th edition of the world health organization classification of haematolymphoid tumours: Myeloid and histiocytic/dendritic neoplasms. Leukemia. 36:1703–1719. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Chu X, Wang J, An L, Liu Y, Li L and Xu J: Clinical characteristics and optimal therapy of acute myeloid leukemia with myelodysplasia-related changes: A retrospective analysis of a cohort of Chinese patients. Turk J Haematol. 38:188–194. 2021.PubMed/NCBI | |
|
Sengsayadeth S, Gatwood KS, Boumendil A, Labopin M, Finke J, Ganser A, Stelljes M, Ehninger G, Beelen D, Niederwieser D, et al: Conditioning intensity in secondary AML with prior myelodysplastic syndrome/myeloproliferative disorders: An EBMT ALWP study. Blood Adv. 2:2127–2135. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Boddu P, Kantarjian HM, Garcia-Manero G, Ravandi F, Verstovsek S, Jabbour E, Borthakur G, Konopleva M, Bhalla KN, Daver N, et al: Treated secondary acute myeloid leukemia: A distinct high-risk subset of AML with adverse prognosis. Blood Adv. 1:1312–1323. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Amaki K: French-American-British (FAB) classification of acute leukemia. Rinsho Ketsueki. 23:988–990. 1982.(In Japanese). PubMed/NCBI | |
|
Vardiman JW, Harris NL and Brunning RD: The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 100:2292–2302. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, Harris NL, Le Beau MM, Hellström-Lindberg E, Tefferi A and Bloomfield CD: The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood. 114:937–951. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, Pigneux A, Wetzler M, Stuart RK, Erba HP, et al: Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 125:1367–1376. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Duncavage EJ, Bagg A, Hasserjian RP, DiNardo CD, Godley LA, Iacobucci I, Jaiswal S, Malcovati L, Vannucchi AM, Patel KP, et al: Genomic profiling for clinical decision making in myeloid neoplasms and acute leukemia. Blood. 140:2228–2247. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Kao YR, Sun D, Todorova TI, Reynolds D, Narayanagari SR, Montagna C, Will B, Verma A and Steidl U: Myelodysplastic syndrome progression to acute myeloid leukemia at the stem cell level. Nat Med. 25:103–110. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dillon LW, Ghannam J, Nosiri C, Gui G, Goswami M, Calvo KR, Lindblad KE, Oetjen KA, Wilkerson MD, Soltis AR, et al: Personalized single-cell proteogenomics to distinguish acute myeloid leukemia from non-malignant clonal hematopoiesis. Blood Cancer Discov. 2:319–325. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Østgård LS, Medeiros BC, Sengeløv H, Nørgaard M, Andersen MK, Dufva IH, Friis LS, Kjeldsen E, Marcher CW, Preiss B, et al: Epidemiology and clinical significance of secondary and therapy-related acute myeloid leukemia: A national population-based cohort study. J Clin Oncol. 33:3641–3649. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Gao Y, Jia M, Mao Y, Cai H, Jiang X, Cao X, Zhou D and Li J: Distinct mutation landscapes between acute myeloid leukemia with myelodysplasia-related changes and de novo acute myeloid leukemia. Am J Clin Pathol. 157:691–700. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fang H, He R, Chiu A, Viswanatha DS, Ketterling RP, Patnaik MS and Reichard KK: Genetic factors in acute myeloid leukemia with myelodysplasia-related changes. Am J Clin Pathol. 153:656–663. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Chinese Society of Hematology and Chinese Medical Association, . Chinese guidelines for diagnosis and treatment of myelodysplastic syndromes (2019). Zhonghua Xue Ye Xue Za Zhi. 40:89–97. 2019.(In Chinese). PubMed/NCBI | |
|
Hellström-Lindberg E, Tobiasson M and Greenberg P: Myelodysplastic syndromes: Moving towards personalized management. Haematologica. 105:1765–1779. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Woods BA and Levine RL: The role of mutations in epigenetic regulators in myeloid malignancies. Immunol Rev. 263:22–35. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yamashita M, Dellorusso PV, Olson OC and Passegué E: Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat Rev Cancer. 20:365–382. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mishra SK, Millman SE and Zhang L: Metabolism in acute myeloid leukemia: Mechanistic insights and therapeutic targets. Blood. 141:1119–1135. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Montalban-Bravo G, Kanagal-Shamanna R, Class CA, Sasaki K, Ravandi F, Cortes JE, Daver N, Takahashi K, Short NJ, DiNardo CD, et al: Outcomes of acute myeloid leukemia with myelodysplasia related changes depend on diagnostic criteria and therapy. Am J Hematol. 95:612–622. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Haase D, Germing U, Schanz J, Pfeilstöcker M, Nösslinger T, Hildebrandt B, Kundgen A, Lübbert M, Kunzmann R, Giagounidis AA, et al: New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: Evidence from a core dataset of 2124 patients. Blood. 110:4385–4395. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jädersten M, Saft L, Smith A, Kulasekararaj A, Pomplun S, Göhring G, Hedlund A, Hast R, Schlegelberger B, Porwit A, et al: TP53 mutations in low-risk myelodysplastic syndromes with del(5q) predict disease progression. J Clin Oncol. 29:1971–1979. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Pitel BA, Sharma N, Zepeda-Mendoza C, Smadbeck JB, Pearce KE, Cook JM, Vasmatzis G, Sachs Z, Kanagal-Shamanna R, Viswanatha D, et al: Myeloid malignancies with 5q and 7q deletions are associated with extreme genomic complexity, biallelic TP53 variants, and very poor prognosis. Blood Cancer J. 11:182021. View Article : Google Scholar : PubMed/NCBI | |
|
Cordoba I, González-Porras JR, Nomdedeu B, Luño E, de Paz R, Such E, Tormo M, Vallespi T, Collado R, Xicoy B, et al: Better prognosis for patients with del(7q) than for patients with monosomy 7 in myelodysplastic syndrome. Cancer. 118:127–133. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Inaba T, Honda H and Matsui H: The enigma of monosomy 7. Blood. 131:2891–2898. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nagamachi A, Matsui H, Asou H, Ozaki Y, Aki D, Kanai A, Takubo K, Suda T, Nakamura T, Wolff L, et al: Haploinsufficiency of SAMD9L, an endosome fusion facilitator, causes myeloid malignancies in mice mimicking human diseases with monosomy 7. Cancer Cell. 24:305–317. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Wong CC, Martincorena I, Rust AG, Rashid M, Alifrangis C, Alexandrov LB, Tiffen JC, Kober C; Chronic Myeloid Disorders Working Group of the International Cancer Genome Consortium; Green AR, ; et al: Inactivating CUX1 mutations promote tumorigenesis. Nat Genet. 46:33–38. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bejar R, Stevenson KE, Caughey B, Lindsley RC, Mar BG, Stojanov P, Getz G, Steensma DP, Ritz J, Soiffer R, et al: Somatic mutations predict poor outcome in patients with myelodysplastic syndrome after hematopoietic stem-cell transplantation. J Clin Oncol. 32:2691–2698. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lindsley RC, Saber W, Mar BG, Redd R, Wang T, Haagenson MD, Grauman PV, Hu ZH, Spellman SR, Lee SJ, et al: Prognostic mutations in myelodysplastic syndrome after stem-cell transplantation. N Engl J Med. 376:536–547. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Haase D, Stevenson KE, Neuberg D, Maciejewski JP, Nazha A, Sekeres MA, Ebert BL, Garcia-Manero G, Haferlach C, Haferlach T, et al: TP53 mutation status divides myelodysplastic syndromes with complex karyotypes into distinct prognostic subgroups. Leukemia. 33:1747–1758. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Levine AJ and Oren M: The first 30 years of p53: Growing ever more complex. Nat Rev Cancer. 9:749–758. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Aubrey BJ, Kelly GL, Janic A, Herold MJ and Strasser A: How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 25:104–113. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bernard E, Nannya Y, Hasserjian RP, Devlin SM, Tuechler H, Medina-Martinez JS, Yoshizato T, Shiozawa Y, Saiki R, Malcovati L, et al: Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Nat Med. 26:1549–1556. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bernard E, Nannya Y, Yoshizato T, Hasserjian RP, Saiki R, Shiozawa Y, Devlin SM, Tuechler H, Sarian A, Malcovati L, et al: TP53 state dictates genome stability, clinical presentation and outcomes in myelodysplastic syndromes. Blood. 134:6752019. View Article : Google Scholar | |
|
Yu J, Du Y, Jalil A, Ahmed Z, Mori S, Patel R, Varela JC and Chang CC: Mutational profiling of myeloid neoplasms associated genes may aid the diagnosis of acute myeloid leukemia with myelodysplasia-related changes. Leuk Res. 110:1067012021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao D, Eladl E, Zarif M, Capo-Chichi JM, Schuh A, Atenafu E, Minden M and Chang H: Molecular characterization of AML-MRC reveals TP53 mutation as an adverse prognostic factor irrespective of MRC-defining criteria, TP53 allelic state, or TP53 variant allele frequency. Cancer Med. 12:6511–6522. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Gelsi-Boyer V, Brecqueville M, Devillier R, Murati A, Mozziconacci MJ and Birnbaum D: Mutations in ASXL1 are associated with poor prognosis across the spectrum of malignant myeloid diseases. J Hematol Oncol. 5:122012. View Article : Google Scholar : PubMed/NCBI | |
|
Thol F, Friesen I, Damm F, Yun H, Weissinger EM, Krauter J, Wagner K, Chaturvedi A, Sharma A, Wichmann M, et al: Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol. 29:2499–2506. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Inoue D, Kitaura J, Matsui H, Hou HA, Chou WC, Nagamachi A, Kawabata KC, Togami K, Nagase R, Horikawa S, et al: SETBP1 mutations drive leukemic transformation in ASXL1-mutated MDS. Leukemia. 29:847–857. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Prats-Martín C, Burillo-Sanz S, Morales-Camacho RM, Pérez-López O, Suito M, Vargas MT, Caballero-Velázquez T, Carrillo-Cruz E, González J, Bernal R and Pérez-Simón JA: ASXL1 mutation as a surrogate marker in acute myeloid leukemia with myelodysplasia-related changes and normal karyotype. Cancer Med. 9:3637–3646. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M, et al: Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci USA. 106:3925–3929. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Ichikawa M, Yoshimi A, Nakagawa M, Nishimoto N, Watanabe-Okochi N and Kurokawa M: A role for RUNX1 in hematopoiesis and myeloid leukemia. Int J Hematol. 97:726–734. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Chen CY, Lin LI, Tang JL, Ko BS, Tsay W, Chou WC, Yao M, Wu SJ, Tseng MH and Tien HF: RUNX1 gene mutation in primary myelodysplastic syndrome-the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol. 139:405–414. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Wang K, Zhou F, Cai X, Chao H, Zhang R and Chen S: Mutational landscape of patients with acute myeloid leukemia or myelodysplastic syndromes in the context of RUNX1 mutation. Hematology. 25:211–218. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kaisrlikova M, Vesela J, Kundrat D, Votavova H, Merkerova MD, Krejcik Z, Divoky V, Jedlicka M, Fric J, Klema J, et al: RUNX1 mutations contribute to the progression of MDS due to disruption of antitumor cellular defense: A study on patients with lower-risk MDS. Leukemia. 36:1898–1906. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Song WJ, Sullivan MG, Legare RD, Hutchings S, Tan X, Kufrin D, Ratajczak J, Resende IC, Haworth C, Hock R, et al: Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet. 23:166–175. 1999. View Article : Google Scholar : PubMed/NCBI | |
|
Tsai SC, Shih LY, Liang ST, Huang YJ, Kuo MC, Huang CF, Shih YS, Lin TH, Chiu MC and Liang DC: Biological activities of RUNX1 mutants predict secondary acute leukemia transformation from chronic myelomonocytic leukemia and myelodysplastic syndromes. Clin Cancer Res. 21:3541–3551. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Tang JL, Hou HA, Chen CY, Liu CY, Chou WC, Tseng MH, Huang CF, Lee FY, Liu MC, Yao M, et al: AML1/RUNX1 mutations in 470 adult patients with de novo acute myeloid leukemia: Prognostic implication and interaction with other gene alterations. Blood. 114:5352–5361. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dicker F, Haferlach C, Sundermann J, Wendland N, Weiss T, Kern W, Haferlach T and Schnittger S: Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia. 24:1528–1532. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Savage KI, Gorski JJ, Barros EM, Irwin GW, Manti L, Powell AJ, Pellagatti A, Lukashchuk N, McCance DJ, McCluggage WG, et al: Identification of a BRCA1-mRNA splicing complex required for efficient DNA repair and maintenance of genomic stability. Mol Cell. 54:445–459. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Dalton WB, Helmenstine E, Walsh N, Gondek LP, Kelkar DS, Read A, Natrajan R, Christenson ES, Roman B, Das S, et al: Hotspot SF3B1 mutations induce metabolic reprogramming and vulnerability to serine deprivation. J Clin Invest. 129:4708–4723. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Papaemmanuil E, Cazzola M, Boultwood J, Malcovati L, Vyas P, Bowen D, Pellagatti A, Wainscoat JS, Hellstrom-Lindberg E, Gambacorti-Passerini C, et al: Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med. 365:1384–1395. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Yoshida K, Sanada M, Shiraishi Y, Nowak D, Nagata Y, Yamamoto R, Sato Y, Sato-Otsubo A, Kon A, Nagasaki M, et al: Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 478:64–69. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Malcovati L, Stevenson K, Papaemmanuil E, Neuberg D, Bejar R, Boultwood J, Bowen DT, Campbell PJ, Ebert BL, Fenaux P, et al: SF3B1-mutant MDS as a distinct disease subtype: A proposal from the international working group for the prognosis of MDS. Blood. 136:157–170. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Itzykson R, Kosmider O, Renneville A, Gelsi-Boyer V, Meggendorfer M, Morabito M, Berthon C, Adès L, Fenaux P, Beyne-Rauzy O, et al: Prognostic score including gene mutations in chronic myelomonocytic leukemia. J Clin Oncol. 31:2428–2436. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ganguly BB and Kadam NN: Mutations of myelodysplastic syndromes (MDS): An update. Mutat Res Rev Mutat Res. 769:47–62. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Thol F, Kade S, Schlarmann C, Löffeld P, Morgan M, Krauter J, Wlodarski MW, Kölking B, Wichmann M, Görlich K, et al: Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood. 119:3578–3584. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Makishima H, Visconte V, Sakaguchi H, Jankowska AM, Kar SA, Jerez A, Przychodzen B, Bupathi M, Guinta K, Afable MG, et al: Mutations in the spliceosome machinery, a novel and ubiquitous pathway in leukemogenesis. Blood. 119:3203–3210. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Harada H and Harada Y: Recent advances in myelodysplastic syndromes: Molecular pathogenesis and its implications for targeted therapies. Cancer Sci. 106:329–336. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wu SJ, Tang JL, Lin CT, Kuo YY, Li LY, Tseng MH, Huang CF, Lai YJ, Lee FY, Liu MC, et al: Clinical implications of U2AF1 mutation in patients with myelodysplastic syndrome and its stability during disease progression. Am J Hematol. 88:E277–E282. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Park SM, Ou J, Chamberlain L, Simone TM, Yang H, Virbasius CM, Ali AM, Zhu LJ, Mukherjee S, Raza A and Green MR: U2AF35(S34F) promotes transformation by directing aberrant ATG7 Pre-mRNA 3′ end formation. Mol Cell. 62:479–490. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, Gordon-Mitchell S, Von Ahrens D, Pradhan K, Steeples V, et al: U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 21:640–650. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shirai CL, White BS, Tripathi M, Tapia R, Ley JN, Ndonwi M, Kim S, Shao J, Carver A, Saez B, et al: Mutant U2AF1-expressing cells are sensitive to pharmacological modulation of the spliceosome. Nat Commun. 8:140602017. View Article : Google Scholar : PubMed/NCBI | |
|
Raddatz G, Gao Q, Bender S, Jaenisch R and Lyko F: Dnmt3a protects active chromosome domains against cancer-associated hypomethylation. PLoS Genet. 8:e10031462012. View Article : Google Scholar : PubMed/NCBI | |
|
Ley TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, Kandoth C, Payton JE, Baty J, Welch J, et al: DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 363:2424–2433. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Thol F, Winschel C, Lüdeking A, Yun H, Friesen I, Damm F, Wagner K, Krauter J, Heuser M and Ganser A: Rare occurrence of DNMT3A mutations in myelodysplastic syndromes. Haematologica. 96:1870–1873. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R, et al: Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature. 468:839–843. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X, et al: Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 20:11–24. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Seethy AA, Pethusamy K, Kushwaha T, Kumar G, Talukdar J, Chaubey R, Sundaram UD, Mahapatra M, Saxena R, Dhar R, et al: Alterations of the expression of TET2 and DNA 5-hmC predict poor prognosis in myelodysplastic neoplasms. BMC Cancer. 23:10352023. View Article : Google Scholar : PubMed/NCBI | |
|
Greenberg PL, Tuechler H, Schanz J, Sanz G, Garcia-Manero G, Solé F, Bennett JM, Bowen D, Fenaux P, Dreyfus F, et al: Revised international prognostic scoring system for myelodysplastic syndromes. Blood. 120:2454–2465. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Figueroa ME, Abdel-Wahab O, Lu C, Ward PS, Patel J, Shih A, Li Y, Bhagwat N, Vasanthakumar A, Fernandez HF, et al: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 18:553–567. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Thol F, Weissinger EM, Krauter J, Wagner K, Damm F, Wichmann M, Göhring G, Schumann C, Bug G, Ottmann O, et al: IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica. 95:1668–1674. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Zarnegar-Lumley S, Alonzo TA, Gerbing RB, Othus M, Sun Z, Ries RE, Wang J, Leonti A, Kutny MA, Ostronoff F, et al: Characteristics and prognostic impact of IDH mutations in AML: A COG, SWOG, and ECOG analysis. Blood Adv. 7:5941–5953. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Jaiswal S and Ebert BL: Clonal hematopoiesis in human aging and disease. Science. 366:eaan46732019. View Article : Google Scholar : PubMed/NCBI | |
|
Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM, Morrison CG and Passegué E: Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell. 7:174–185. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Medina EA, Delma CR and Yang FC: ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol. 15:1272022. View Article : Google Scholar : PubMed/NCBI | |
|
Issa JP: Epigenetic changes in the myelodysplastic syndrome. Hematol Oncol Clin North Am. 24:317–330. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Claus R and Lübbert M: Epigenetic targets in hematopoietic malignancies. Oncogene. 22:6489–6496. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Brakensiek K, Länger F, Schlegelberger B, Kreipe H and Lehmann U: Hypermethylation of the suppressor of cytokine signalling-1 (SOCS-1) in myelodysplastic syndrome. Br J Haematol. 130:209–217. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Christiansen DH, Andersen MK and Pedersen-Bjergaard J: Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia. 17:1813–1819. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Stintzing S, Kemmerling R, Kiesslich T, Alinger B, Ocker M and Neureiter D: Myelodysplastic syndrome and histone deacetylase inhibitors: ‘To be or not to be acetylated’? J Biomed Biotechnol. 2011:2141432011.PubMed/NCBI | |
|
Gill H, Leung AY and Kwong YL: Molecular and cellular mechanisms of myelodysplastic syndrome: Implications on targeted therapy. Int J Mol Sci. 17:4402016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen D, Xia S, Zhang R, Li Y, Famulare CA, Fan H, Wu R, Wang M, Zhu AC, Elf SE, et al: Lysine acetylation restricts mutant IDH2 activity to optimize transformation in AML cells. Mol Cell. 81:3833–3847.e3811. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sundaravel S, Duggan R, Bhagat T, Ebenezer DL, Liu H, Yu Y, Bartenstein M, Unnikrishnan M, Karmakar S, Liu TC, et al: Reduced DOCK4 expression leads to erythroid dysplasia in myelodysplastic syndromes. Proc Natl Acad Sci USA. 112:E6359–E6368. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Lujambio A and Lowe SW: The microcosmos of cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
O'Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB and Baltimore D: MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA. 107:14235–14240. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Wen J, Huang Y, Li H, Zhang X, Cheng P, Deng D, Peng Z, Luo J, Zhao W, Lai Y and Liu Z: Over-expression of miR-196b-5p is significantly associated with the progression of myelodysplastic syndrome. Int J Hematol. 105:777–783. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Miller PG, Al-Shahrour F, Hartwell KA, Chu LP, Järås M, Puram RV, Puissant A, Callahan KP, Ashton J, McConkey ME, et al: In vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. Cancer Cell. 24:45–58. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Burger JA and Peled A: CXCR4 antagonists: Targeting the microenvironment in leukemia and other cancers. Leukemia. 23:43–52. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Dührsen U and Hossfeld DK: Stromal abnormalities in neoplastic bone marrow diseases. Ann Hematol. 73:53–70. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Behrmann L, Wellbrock J and Fiedler W: Acute myeloid leukemia and the bone marrow niche-take a closer look. Front Oncol. 8:4442018. View Article : Google Scholar : PubMed/NCBI | |
|
Sha C, Jia G, Jingjing Z, Yapeng H, Zhi L and Guanghui X: miR-486 is involved in the pathogenesis of acute myeloid leukemia by regulating JAK-STAT signaling. Naunyn Schmiedebergs Arch Pharmacol. 394:177–187. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fattizzo B, Giannotta JA and Barcellini W: Mesenchymal stem cells in aplastic anemia and myelodysplastic syndromes: The ‘Seed and Soil’ crosstalk. Int J Mol Sci. 21:54382020. View Article : Google Scholar : PubMed/NCBI | |
|
Bhagat TD, Chen S, Bartenstein M, Barlowe AT, Von Ahrens D, Choudhary GS, Tivnan P, Amin E, Marcondes AM, Sanders MA, et al: Epigenetically aberrant stroma in MDS propagates disease via Wnt/β-catenin activation. Cancer Res. 77:4846–4857. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kode A, Manavalan JS, Mosialou I, Bhagat G, Rathinam CV, Luo N, Khiabanian H, Lee A, Murty VV, Friedman R, et al: Leukaemogenesis induced by an activating β-catenin mutation in osteoblasts. Nature. 506:240–244. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kuek V, Hughes AM, Kotecha RS and Cheung LC: Therapeutic targeting of the leukaemia microenvironment. Int J Mol Sci. 22:68882021. View Article : Google Scholar : PubMed/NCBI | |
|
Fiedler W, Graeven U, Ergün S, Verago S, Kilic N, Stockschläder M and Hossfeld DK: Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia. Blood. 89:1870–1875. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Cancilla D, Rettig MP and DiPersio JF: Targeting CXCR4 in AML and ALL. Front Oncol. 10:16722020. View Article : Google Scholar : PubMed/NCBI | |
|
Barbier V, Erbani J, Fiveash C, Davies JM, Tay J, Tallack MR, Lowe J, Magnani JL, Pattabiraman DR, Perkins AC, et al: Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance. Nat Commun. 11:20422020. View Article : Google Scholar : PubMed/NCBI | |
|
Kotsianidis I, Bouchliou I, Nakou E, Spanoudakis E, Margaritis D, Christophoridou AV, Anastasiades A, Tsigalou C, Bourikas G, Karadimitris A and Tsatalas C: Kinetics, function and bone marrow trafficking of CD4+CD25+FOXP3+ regulatory T cells in myelodysplastic syndromes (MDS). Leukemia. 23:510–518. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Tay C, Tanaka A and Sakaguchi S: Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell. 41:450–465. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Ehrchen JM, Sunderkötter C, Foell D, Vogl T and Roth J: The endogenous toll-like receptor 4 agonist S100A8/S100A9 (calprotectin) as innate amplifier of infection, autoimmunity, and cancer. J Leukoc Biol. 86:557–566. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Gañán-Gómez I, Wei Y, Starczynowski DT, Colla S, Yang H, Cabrero-Calvo M, Bohannan ZS, Verma A, Steidl U and Garcia-Manero G: Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. Leukemia. 29:1458–1469. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Cha JH, Chan LC, Li CW, Hsu JL and Hung MC: Mechanisms controlling PD-L1 expression in cancer. Mol Cell. 76:359–370. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C and Sohn C: PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat. 40:294–297. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Garris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, Engblom C, Pfirschke C, Siwicki M, Gungabeesoon J, et al: Successful anti-PD-1 cancer immunotherapy requires T cell-dendritic cell crosstalk involving the cytokines IFN-γ and IL-12. Immunity. 49:1148–1161.e1147. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Han Y, Liu D and Li L: PD-1/PD-L1 pathway: Current researches in cancer. Am J Cancer Res. 10:727–742. 2020.PubMed/NCBI | |
|
Woan KV and Miller JS: Harnessing natural killer cell antitumor immunity: From the bench to bedside. Cancer Immunol Res. 7:1742–1747. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, Casas SB, Ernst G, Traboulsi AA, Hashi N, et al: Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function. Blood. 132:1792–1804. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Janowska-Wieczorek A, Marquez-Curtis LA, Gan K, Larratt L and Woods A: TNF-α stimulates matrix metalloproteinase expression in myelodysplastic syndromes (MDS):: Therapeutic potential for inhibitors of TNF-α and MMPs. Blood. 106:962A. 2005. View Article : Google Scholar | |
|
Bruno S, Mancini M, De Santis S, Monaldi C, Cavo M and Soverini S: The role of hypoxic bone marrow microenvironment in acute myeloid leukemia and future therapeutic opportunities. Int J Mol Sci. 22:68572021. View Article : Google Scholar : PubMed/NCBI | |
|
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA and Martelli AM: Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. Biochim Biophys Acta. 1863:449–463. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Clem B, Telang S, Clem A, Yalcin A, Meier J, Simmons A, Rasku MA, Arumugam S, Dean WL, Eaton J, et al: Small-molecule inhibition of 6-phosphofructo-2-kinase activity suppresses glycolytic flux and tumor growth. Mol Cancer Ther. 7:110–120. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Yang L, Yang Z, Tang Y, Tao Y, Zhan Q, Lei L, Jing Y, Jiang X, Jin H, et al: Glycolytic enzyme PKM2 mediates autophagic activation to promote cell survival in NPM1-mutated leukemia. Int J Biol Sci. 15:882–894. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dunn WG, McLoughlin MA and Vassiliou GS: Clonal hematopoiesis and hematological malignancy. J Clin Invest. 134:e1800652024. View Article : Google Scholar : PubMed/NCBI | |
|
Bowman RL, Busque L and Levine RL: Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 22:157–170. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wilkinson AC, Morita M, Nakauchi H and Yamazaki S: Branched-chain amino acid depletion conditions bone marrow for hematopoietic stem cell transplantation avoiding amino acid imbalance-associated toxicity. Exp Hematol. 63:12–16.e11. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, Barnert A, et al: BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature. 551:384–388. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Walter MJ, Shen D, Shao J, Ding L, White BS, Kandoth C, Miller CA, Niu B, McLellan MD, Dees ND, et al: Clonal diversity of recurrently mutated genes in myelodysplastic syndromes. Leukemia. 27:1275–1282. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Mortera-Blanco T, Dimitriou M, Woll PS, Karimi M, Elvarsdottir E, Conte S, Tobiasson M, Jansson M, Douagi I, Moarii M, et al: SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells. Blood. 130:881–890. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Makishima H, Yoshizato T, Yoshida K, Sekeres MA, Radivoyevitch T, Suzuki H, Przychodzen B, Nagata Y, Meggendorfer M, Sanada M, et al: Dynamics of clonal evolution in myelodysplastic syndromes. Nat Genet. 49:204–212. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Seymour JF, Döhner H, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, et al: Azacitidine improves clinical outcomes in older patients with acute myeloid leukaemia with myelodysplasia-related changes compared with conventional care regimens. BMC Cancer. 17:8522017. View Article : Google Scholar : PubMed/NCBI | |
|
Abdallah M, Xie Z, Ready A, Manogna D, Mendler JH and Loh KP: Management of acute myeloid leukemia (AML) in older patients. Curr Oncol Rep. 22:1032020. View Article : Google Scholar : PubMed/NCBI | |
|
LeBlanc TW and Erba HP: Shifting paradigms in the treatment of older adults with AML. Semin Hematol. 56:110–117. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kronfol MM, Jahr FM, Dozmorov MG, Phansalkar PS, Xie LY, Aberg KA, McRae M, Price ET, Slattum PW, Gerk PM and McClay JL: DNA methylation and histone acetylation changes to cytochrome P450 2E1 regulation in normal aging and impact on rates of drug metabolism in the liver. Geroscience. 42:819–832. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bose P and Grant S: Rational combinations of targeted agents in AML. J Clin Med. 4:634–664. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Sotiropoulou IM, Manetas-Stavrakakis N, Kourek C, Xanthopoulos A, Magouliotis D, Giamouzis G, Skoularigis J and Briasoulis A: Prevention of anthracyclines and HER2 inhibitor-induced cardiotoxicity: A systematic review and meta-analysis. Cancers (Basel). 16:24192024. View Article : Google Scholar : PubMed/NCBI | |
|
Doval D, Sharma SK, Kumar M, Khandelwal V and Choudhary D: Cytarabine ears-A side effect of cytarabine therapy. J Oncol Pharm Pract. 26:471–473. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gardin C, Pautas C, Fournier E, Itzykson R, Lemasle E, Bourhis JH, Adès L, Marolleau JP, Malfuson JV, Gastaud L, et al: Added prognostic value of secondary AML-like gene mutations in ELN intermediate-risk older AML: ALFA-1200 study results. Blood Adv. 4:1942–1949. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Russell NH: Improving outcomes for elderly patients with AML. Lancet Oncol. 13:1065–1066. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Brandwein JM, Geddes M, Kassis J, Kew AK, Leber B, Nevill T, Sabloff M, Sandhu I, Schuh AC, Storring JM and Ashkenas J: Treatment of older patients with acute myeloid leukemia (AML): A Canadian consensus. Am J Blood Res. 3:141–164. 2013.PubMed/NCBI | |
|
Zhao D, Zarif M, Eladl E, Capo-Chichi JM, Smith AC, Atenafu EG, Tierens A, Minden MD, Schuh A and Chang H: NPM1-mutated AML-MRC diagnosed on the basis of history of MDS or MDS/MPN frequently harbours secondary-type mutations and confers inferior outcome compared to AML with mutated NPM1. Leuk Res. 118:1068692022. View Article : Google Scholar : PubMed/NCBI | |
|
Cruijsen M, Lübbert M, Wijermans P and Huls G: Clinical Results of Hypomethylating agents in AML treatment. J Clin Med. 4:1–17. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Stomper J and Lübbert M: Can we predict responsiveness to hypomethylating agents in AML? Semin Hematol. 56:118–124. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sadeghi M, Khodakarami A, Ahmadi A, Navashenaq JG, Mohammadi H, Yousefi M, Hojjat-Farsangi M, Akbari AA and Jadidi-Niaragh F: The prognostic and therapeutic potentials of CTLA-4 in hematological malignancies. Expert Opin Ther Targets. 26:1057–1071. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tan J, Yu Z, Huang J, Chen Y, Huang S, Yao D, Xu L, Lu Y, Chen S and Li Y: Increased PD-1+Tim-3+ exhausted T cells in bone marrow may influence the clinical outcome of patients with AML. Biomark Res. 8:62020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang D, Zhou F, He L, Wang X, Song L, Wang H, Sun S, Guo Z, Ma K, Xu J and Cui C: AML cell-derived exosomes suppress the activation and cytotoxicity of NK cells in AML via PD-1/PD-L1 pathway. Cell Biol Int. 48:1588–1598. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Hwang HS, Han AR, Lee JY, Park GS, Min WS and Kim HJ: Enhanced anti-leukemic effects through induction of immunomodulating microenvironment by blocking CXCR4 and PD-L1 in an AML mouse model. Immunol Invest. 48:96–105. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Kotsiafti A, Giannakas K, Christoforou P and Liapis K: Progress toward better treatment of therapy-related AML. Cancers (Basel). 15:16582023. View Article : Google Scholar : PubMed/NCBI | |
|
Yin JA, O'Brien MA, Hills RK, Daly SB, Wheatley K and Burnett AK: Minimal residual disease monitoring by quantitative RT-PCR in core binding factor AML allows risk stratification and predicts relapse: Results of the United Kingdom MRC AML-15 trial. Blood. 120:2826–2835. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Canaani J: Management of AML beyond ‘3 + 7’ in 2019. Clin Hematol Int. 1:10–18. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Alfayez M, Kantarjian H, Kadia T, Ravandi-Kashani F and Daver N: CPX-351 (vyxeos) in AML. Leuk Lymphoma. 61:288–297. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
National Comprehensive Cancer Network (NCCN), . NCCN Guidelines Version 2.2024: Acute myeloid leukemia. NCCN; Plymouth Meeting, PA: 2024 | |
|
Lancet JE, Uy GL, Cortes JE, Newell LF, Lin TL, Ritchie EK, Stuart RK, Strickland SA, Hogge D, Solomon SR, et al: CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. J Clin Oncol. 36:2684–2692. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, Janoria KG, Gieser G, Bateman DA, Przepiorka D, et al: FDA approval summary: (Daunorubicin and Cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin Cancer Res. 25:2685–2690. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q, Tardi P, Sadowski N, Xie S, Heller D and Mayer L: Pharmacokinetics, drug metabolism, and tissue distribution of CPX-351 in animals. Nanomedicine. 30:1022752020. View Article : Google Scholar : PubMed/NCBI | |
|
Chiche E, Rahmé R, Bertoli S, Dumas PY, Micol JB, Hicheri Y, Pasquier F, Peterlin P, Chevallier P and Thomas X: Real-life experience with CPX-351 and impact on the outcome of high-risk AML patients: A multicentric French cohort. Blood Adv. 5:176–184. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tolcher AW and Mayer LD: Improving combination cancer therapy: The CombiPlex® development platform. Future Oncol. 14:1317–1332. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hellström-Lindberg ES and Kröger N: Clinical decision-making and treatment of myelodysplastic syndromes. Blood. 142:2268–2281. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Koenig KL, Sahasrabudhe KD, Sigmund AM and Bhatnagar B: AML with myelodysplasia-related changes: Development, challenges, and treatment advances. Genes (Basel). 11:8452020. View Article : Google Scholar : PubMed/NCBI | |
|
Dombret H, Seymour JF, Butrym A, Wierzbowska A, Selleslag D, Jang JH, Kumar R, Cavenagh J, Schuh AC, Candoni A, et al: International phase 3 study of azacitidine vs conventional care regimens in older patients with newly diagnosed AML with >30% blasts. Blood. 126:291–299. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Jia JS, Gong LZ, Lu SY, Zhu HH, Huang XJ and Jiang H: Efficacy and safety of decitabine in combination with G-CSF, low-dose cytarabine and aclarubicin in MDS-EB and AML-MRC. Zhonghua Xue Ye Xue Za Zhi. 39:734–738. 2018.(In Chinese). PubMed/NCBI | |
|
Assi R, Kantarjian H, Ravandi F and Daver N: Immune therapies in acute myeloid leukemia: A focus on monoclonal antibodies and immune checkpoint inhibitors. Curr Opin Hematol. 25:136–145. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan XL, Wu YB, Song XL, Chen Y, Lu Y, Lai XY, Shi JM, Liu LZ, Zhao YM, Yu J, et al: Efficacy and prognostic factors of allogeneic hematopoietic stem cell transplantation in the treatment of secondary acute myeloid leukemia. Zhonghua Xue Ye Xue Za Zhi. 45:41–47. 2024.PubMed/NCBI | |
|
Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, Cortes J, DeAngelo DJ, Debose L, Mu H, et al: Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 4:362–375. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, Konopleva M, Döhner H, Letai A, Fenaux P, et al: Azacitidine and venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 383:617–629. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Waclawiczek A, Leppä AM, Renders S, Stumpf K, Reyneri C, Betz B, Janssen M, Shahswar R, Donato E, Karpova D, et al: Combinatorial bcl2 family expression in acute myeloid leukemia stem cells predicts clinical response to Azacitidine/Venetoclax. Cancer Discov. 13:1408–1427. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Wan CL, Liu YQ, Liu FT, Huang YH, Cao HY, Huang SM, Tan KW, Ge SS, Wang M, Liu MJ, et al: Venetoclax with hypomethylating agents versus intensive chemotherapy in newly diagnosed acute myeloid leukemia with myelodysplasia related changes: A propensity score-matched analysis based on international consensus classification. Blood Cancer J. 14:1442024. View Article : Google Scholar : PubMed/NCBI | |
|
Fiskus W, Sharma S, Shah B, Portier BP, Devaraj SGT, Liu K, Iyer SP, Bearss D and Bhalla KN: Highly effective combination of LSD1 (KDM1A) antagonist and pan-histone deacetylase inhibitor against human AML cells. Leukemia. 28:2155–2164. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Sugino N, Kawahara M, Tatsumi G, Kanai A, Matsui H, Yamamoto R, Nagai Y, Fujii S, Shimazu Y, Hishizawa M, et al: A novel LSD1 inhibitor NCD38 ameliorates MDS-related leukemia with complex karyotype by attenuating leukemia programs via activating super-enhancers. Leukemia. 31:2303–2314. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
List A, Dewald G, Bennett J, Giagounidis A, Raza A, Feldman E, Powell B, Greenberg P, Thomas D, Stone R, et al: Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med. 355:1456–1465. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
List A, Kurtin S, Roe DJ, Buresh A, Mahadevan D, Fuchs D, Rimsza L, Heaton R, Knight R and Zeldis JB: Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med. 352:549–557. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Nimer SD: Clinical management of myelodysplastic syndromes with interstitial deletion of chromosome 5q. J Clin Oncol. 24:2576–2582. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Brune MM, Stüssi G, Lundberg P, Vela V, Heim D, Manz MG, Haralambieva E, Pabst T, Banz Y, Bargetzi M, et al: Effects of lenalidomide on the bone marrow microenvironment in acute myeloid leukemia: Translational analysis of the HOVON103 AML/SAKK30/10 Swiss trial cohort. Ann Hematol. 100:1169–1179. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Daver N, Konopleva M, Maiti A, Kadia TM, DiNardo CD, Loghavi S, Pemmaraju N, Jabbour EJ, Montalban-Bravo G, Tang G, et al: Phase I/II study of azacitidine (AZA) with venetoclax (VEN) and magrolimab (Magro) in patients (pts) with newly diagnosed older/unfit or high-risk acute myeloid leukemia (AML) and relapsed/refractory (R/R) AML. Blood. 138:371–374. 2021. View Article : Google Scholar |