Prevalence of the Janus kinase 2 V617F mutation in Philadelphia‑negative myeloproliferative neoplasms in a Portuguese population

  • Authors:
    • Ana Paula Azevedo
    • Susana N. Silva
    • Alice Reichert
    • Fernando Lima
    • Esmeraldina Júnior
    • José Rueff
  • View Affiliations

  • Published online on: September 5, 2017     https://doi.org/10.3892/br.2017.977
  • Pages: 370-376
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Myeloproliferative neoplasms (MPNs) result from the malignant transformation of a hematopoietic stem‑cell (HSC), leading to abnormal amplification and proliferation of myeloid lineages. Identification of the Janus kinase 2 (JAK2) V617F mutation developed the knowledge of Philadelphia‑negative (PN)‑MPNs, contributing to and influencing the definition of the phenotype and prognostic impact. Considering the lack of Portuguese epidemiological data, the present study intends to characterize the prevalence of the JAK2 mutation in a PN‑MPN versus a control Portuguese population. Caucasian Portuguese PN‑MPN patients (n=133) and 281 matched control subjects were investigated. No significant differences were identified between the case and control groups concerning age distribution or smoking habits. Pathology distribution was as follows: 60.2% with essential thrombocythemia (ET), 29.3% with polycythemia vera (PV) and 10.5% with primary myelofibrosis (PMF). A total of 75.0% of patients were positive for the presence of the JAK2 V617F mutation. In addition, the prevalence of PV was 87.2%, ET was 73.4% and PMF was 50.0%. The JAK2 V617F mutation is observed in various MPN phenotypes, and has an increased incidence in ET patients and a decreased incidence in PV patients. These data may contribute to improving the knowledge of the pathophysiology of these disorders, and to a more rational and efficient selection of therapeutic strategies to be adopted, notably because most of the patients are JAK2 V617F negative.

References

1 

Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J and Vardiman JW: WHO Classification of Tumours of Haematopioetic and Lymphoid Tissues. World Health Organization; Lyon: 2008

2 

Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Titmarsh GJ, Duncombe AS, McMullin MF, O'Rorke M, Mesa R, De Vocht F, Horan S, Fritschi L, Clarke M and Anderson LA: How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol. 89:581–587. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Moulard O, Mehta J, Fryzek J, Olivares R, Iqbal U and Mesa RA: Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol. 92:289–297. 2014. View Article : Google Scholar : PubMed/NCBI

5 

Cross NC: Genetic and epigenetic complexity in myeloproliferative neoplasms. Hematology (Am Soc Hematol Educ Program). 2011:208–214. 2011.PubMed/NCBI

6 

Tefferi A and Pardanani A: Myeloproliferative Neoplasms: A Contemporary Review. JAMA Oncol. 1:97–105. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Duletić AN, Dekanić A, Hadzisejdić I, Kusen I, Matusan-Ilijas K, Grohovac D, Grahovac B and Jonjić N: JAK2-v617F mutation is associated with clinical and laboratory features of myeloproliferative neoplasms. Coll Antropol. 36:859–865. 2012.PubMed/NCBI

8 

Tefferi A and Vardiman JW: Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 22:14–22. 2008. View Article : Google Scholar : PubMed/NCBI

9 

James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, et al: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 434:1144–1148. 2005. View Article : Google Scholar : PubMed/NCBI

10 

Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI

11 

Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et al: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM and Curtin N: Cancer Genome Project: Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 365:1054–1061. 2005. View Article : Google Scholar : PubMed/NCBI

13 

Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, et al: JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 356:459–468. 2007. View Article : Google Scholar : PubMed/NCBI

14 

Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, et al: Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 369:2391–2405. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Levine RL: Mechanisms of mutations in myeloproliferative neoplasms. Best Pract Res Clin Haematol. 22:489–494. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, Mountain JL, Francke U, Tung JY, Nguyen HM, et al: Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 128:1121–1128. 2016. View Article : Google Scholar : PubMed/NCBI

17 

Cazzola M and Kralovics R: From Janus kinase 2 to calreticulin: The clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 123:3714–3719. 2014. View Article : Google Scholar : PubMed/NCBI

18 

Oh ST and Gotlib J: JAK2 V617F and beyond: Role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol. 3:323–337. 2010. View Article : Google Scholar : PubMed/NCBI

19 

Bolufer P, Barragan E, Collado M, Cervera J, López JA and Sanz MA: Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res. 30:1471–1491. 2006. View Article : Google Scholar : PubMed/NCBI

20 

Delhommeau F, Jeziorowska D, Marzac C and Casadevall N: Molecular aspects of myeloproliferative neoplasms. Int J Hematol. 91:165–173. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Beer PA, Delhommeau F, LeCouédic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM, et al: Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 115:2891–2900. 2010. View Article : Google Scholar : PubMed/NCBI

22 

Kilpivaara O and Levine RL: JAK2 and MPL mutations in myeloproliferative neoplasms: Discovery and science. Leukemia. 22:1813–1817. 2008. View Article : Google Scholar : PubMed/NCBI

23 

Björkholm M, Hultcrantz M and Derolf ÅR: Leukemic transformation in myeloproliferative neoplasms: Therapy-related or unrelated? Best Pract Res Clin Haematol. 27:141–153. 2014. View Article : Google Scholar : PubMed/NCBI

24 

Rueff J and Rodrigues AS: Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint. Methods Mol Biol. 1395:1–18. 2016. View Article : Google Scholar : PubMed/NCBI

25 

Rice KL, Lin X, Wolniak K, Ebert BL, Berkofsky-Fessler W, Buzzai M, Sun Y, Xi C, Elkin P, Levine R, et al: Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms. Blood Cancer J. 1:e402011. View Article : Google Scholar : PubMed/NCBI

26 

Campregher PV, Santos FP, Perini GF and Hamerschlak N: Molecular biology of Philadelphia-negative myeloproliferative neoplasms. Rev Bras Hematol Hemoter. 34:150–155. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Ebid GT, Ghareeb M, Salaheldin O and Kamel MM: Prevalence of the frequency of JAK2 (V617F) mutation in different myeloproliferative disorders in Egyptian patients. Int J Clin Exp Pathol. 8:11555–11559. 2015.PubMed/NCBI

28 

Jatiani SS, Baker SJ, Silverman LR and Reddy EP: Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: Approaches for targeted therapies. Genes Cancer. 1:979–993. 2010. View Article : Google Scholar : PubMed/NCBI

29 

Anand S, Stedham F, Beer P, Gudgin E, Ortmann CA, Bench A, Erber W, Green AR and Huntly BJ: Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood. 118:177–181. 2011. View Article : Google Scholar : PubMed/NCBI

30 

Reuther GW: Myeloproliferative Neoplasms: Molecular Drivers and Therapeutics. Prog Mol Biol Transl Sci. 144:437–484. 2016. View Article : Google Scholar : PubMed/NCBI

31 

Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL, DeWald GW and Kaufmann SH: JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia. 20:971–978. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Green DR and Llambi F: Cell Death Signaling. Cold Spring Harb Perspect Biol. 7:72015. View Article : Google Scholar

33 

Chen E and Mullally A: How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms? Hematology (Am Soc Hematol Educ Program). 2014:268–276. 2014.PubMed/NCBI

34 

Godfrey AL, Chen E, Massie CE, Silber Y, Pagano F, Bellosillo B, Guglielmelli P, Harrison CN, Reilly JT, Stegelmann F, et al: STAT1 activation in association with JAK2 exon 12 mutations. Haematologica. 101:e15–e19. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Passamonti F, Elena C, Schnittger S, Skoda RC, Green AR, Girodon F, Kiladjian JJ, McMullin MF, Ruggeri M, Besses C, et al: Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 117:2813–2816. 2011. View Article : Google Scholar : PubMed/NCBI

36 

Nielsen C, Bojesen SE, Nordestgaard BG, Kofoed KF and Birgens HS: JAK2V617F somatic mutation in the general population: Myeloproliferative neoplasm development and progression rate. Haematologica. 99:1448–1455. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Ha JS, Kim YK, Jung SI, Jung HR and Chung IS: Correlations between Janus kinase 2 V617F allele burdens and clinicohematologic parameters in myeloproliferative neoplasms. Ann Lab Med. 32:385–391. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Larsen TS, Pallisgaard N, Møller MB and Hasselbalch HC: The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis - impact on disease phenotype. Eur J Haematol. 79:508–515. 2007. View Article : Google Scholar : PubMed/NCBI

39 

Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, Rumi E, Ruggeri M, Rodeghiero F, Randi ML, et al: Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 5:e3692015. View Article : Google Scholar : PubMed/NCBI

40 

Vannucchi AM, Pieri L and Guglielmelli P: JAK2 Allele Burden in the Myeloproliferative Neoplasms: Effects on Phenotype, Prognosis and Change with Treatment. Ther Adv Hematol. 2:21–32. 2011. View Article : Google Scholar : PubMed/NCBI

41 

Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, Biamonte F, Pardanani A, Zoi K, Reiter A, et al: The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: An international study of 797 patients. Leukemia. 28:1804–1810. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Vainchenker W and Constantinescu SN: JAK/STAT signaling in hematological malignancies. Oncogene. 32:2601–2613. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Thomas SJ, Snowden JA, Zeidler MP and Danson SJ: The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer. 113:365–371. 2015. View Article : Google Scholar : PubMed/NCBI

44 

Nielsen C, Birgens HS, Nordestgaard BG, Kjaer L and Bojesen SE: The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica. 96:450–453. 2011. View Article : Google Scholar : PubMed/NCBI

45 

Mambet C, Matei L, Necula LG and Diaconu CC: A link between the driver mutations and dysregulated apoptosis in BCR-ABL1 negative myeloproliferative neoplasms. J Immunoassay Immunochem. 37:331–345. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Tefferi A and Barbui T: Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 92:94–108. 2017. View Article : Google Scholar : PubMed/NCBI

47 

Tefferi A: Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am J Hematol. 91:50–58. 2016. View Article : Google Scholar : PubMed/NCBI

48 

Hobbs GS, Rozelle S and Mullally A: The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. Hematol Oncol Clin North Am. 31:613–626. 2017. View Article : Google Scholar : PubMed/NCBI

49 

Vannucchi AM and Harrison CN: Emerging treatments for classical myeloproliferative neoplasms. Blood. 129:693–703. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Stahl M and Zeidan AM: Management of myelofibrosis: JAK inhibition and beyond. Expert Rev Hematol. 10:459–477. 2017. View Article : Google Scholar : PubMed/NCBI

51 

Silva SN, Moita R, Azevedo AP, Gouveia R, Manita I, Pina JE, Rueff J and Gaspar J: Menopausal age and XRCC1 gene polymorphisms: Role in breast cancer risk. Cancer Detect Prev. 31:303–309. 2007. View Article : Google Scholar : PubMed/NCBI

52 

Bastos HN, Antão MR, Silva SN, Azevedo AP, Manita I, Teixeira V, Pina JE, Gil OM, Ferreira TC, Limbert E, et al: Association of polymorphisms in genes of the homologous recombination DNA repair pathway and thyroid cancer risk. Thyroid. 19:1067–1075. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Conde J, Silva SN, Azevedo AP, Teixeira V, Pina JE, Rueff J and Gaspar JF: Association of common variants in mismatch repair genes and breast cancer susceptibility: A multigene study. BMC Cancer. 9:3442009. View Article : Google Scholar : PubMed/NCBI

54 

Gomes BC, Silva SN, Azevedo AP, Manita I, Gil OM, Ferreira TC, Limbert E, Rueff J and Gaspar JF: The role of common variants of non-homologous end-joining repair genes XRCC4, LIG4 and Ku80 in thyroid cancer risk. Oncol Rep. 24:1079–1085. 2010.PubMed/NCBI

55 

Silva SN, Azevedo AP, Teixeira V, Pina JE, Rueff J and Gaspar JF: The role of GSTA2 polymorphisms and haplotypes in breast cancer susceptibility: A case-control study in the Portuguese population. Oncol Rep. 22:593–598. 2009.PubMed/NCBI

56 

Solé X, Guinó E, Valls J, Iniesta R and Moreno V: SNPStats: A web tool for the analysis of association studies. Bioinformatics. 22:1928–1929. 2006. View Article : Google Scholar : PubMed/NCBI

57 

Rumi E and Cazzola M: Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 129:680–692. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, Score J, Seear R, Chase AJ, Grand FH, et al: Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 106:2162–2168. 2005. View Article : Google Scholar : PubMed/NCBI

59 

Lundberg P, Takizawa H, Kubovcakova L, Guo G, Hao-Shen H, Dirnhofer S, Orkin SH, Manz MG and Skoda RC: Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F. J Exp Med. 211:2213–2230. 2014. View Article : Google Scholar : PubMed/NCBI

60 

Butcher CM, Hahn U, To LB, Gecz J, Wilkins EJ, Scott HS, Bardy PG and D'Andrea RJ: Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia. 22:870–873. 2008. View Article : Google Scholar : PubMed/NCBI

61 

Park CH, Lee KO, Jang JH, Jung CW, Kim JW, Kim SH and Kim HJ: High frequency of JAK2 exon 12 mutations in Korean patients with polycythaemia vera: Novel mutations and clinical significance. J Clin Pathol. 69:737–741. 2016. View Article : Google Scholar : PubMed/NCBI

62 

Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, Roncoroni E, Astori C, Merli M, Boggi S, et al: A prospective study of 338 patients with polycythemia vera: The impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 24:1574–1579. 2010. View Article : Google Scholar : PubMed/NCBI

63 

Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, Them NC, Berg T, Elena C, Casetti IC, et al: Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators: JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 123:1544–1551. 2014. View Article : Google Scholar : PubMed/NCBI

64 

Scott LM: The JAK2 exon 12 mutations: A comprehensive review. Am J Hematol. 86:668–676. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Scott LM, Beer PA, Bench AJ, Erber WN and Green AR: Prevalance of JAK2 V617F and exon 12 mutations in polycythaemia vera. Br J Haematol. 139:511–512. 2007. View Article : Google Scholar : PubMed/NCBI

66 

Pardanani A, Lasho TL, Finke C, Hanson CA and Tefferi A: Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia. 21:1960–1963. 2007. View Article : Google Scholar : PubMed/NCBI

67 

Azevedo AP, Silva SN, De Lima JP, Reichert A, Lima F, Júnior E and Rueff J: DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms. Oncol Lett. 13:4641–4650. 2017.PubMed/NCBI

68 

Lindholm Sørensen A and Hasselbalch HC: Smoking and philadelphia-negative chronic myeloproliferative neoplasms. Eur J Haematol. 97:63–69. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Hasselbalch HC: Smoking as a contributing factor for development of polycythemia vera and related neoplasms. Leuk Res. 15:30373–30378. 2015.

Related Articles

Journal Cover

October 2017
Volume 7 Issue 4

Print ISSN: 2049-9434
Online ISSN:2049-9442

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Azevedo, A., Silva, S.N., Reichert, A., Lima, F., Júnior, E., & Rueff, J. (2017). Prevalence of the Janus kinase 2 V617F mutation in Philadelphia‑negative myeloproliferative neoplasms in a Portuguese population. Biomedical Reports, 7, 370-376. https://doi.org/10.3892/br.2017.977
MLA
Azevedo, A., Silva, S. N., Reichert, A., Lima, F., Júnior, E., Rueff, J."Prevalence of the Janus kinase 2 V617F mutation in Philadelphia‑negative myeloproliferative neoplasms in a Portuguese population". Biomedical Reports 7.4 (2017): 370-376.
Chicago
Azevedo, A., Silva, S. N., Reichert, A., Lima, F., Júnior, E., Rueff, J."Prevalence of the Janus kinase 2 V617F mutation in Philadelphia‑negative myeloproliferative neoplasms in a Portuguese population". Biomedical Reports 7, no. 4 (2017): 370-376. https://doi.org/10.3892/br.2017.977