Prevalence of the Janus kinase 2 V617F mutation in Philadelphia‑negative myeloproliferative neoplasms in a Portuguese population
- Authors:
- Ana Paula Azevedo
- Susana N. Silva
- Alice Reichert
- Fernando Lima
- Esmeraldina Júnior
- José Rueff
- Published online on: September 5, 2017 https://doi.org/10.3892/br.2017.977
- Pages: 370-376
Abstract
References
Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J and Vardiman JW: WHO Classification of Tumours of Haematopioetic and Lymphoid Tissues. World Health Organization; Lyon: 2008 | |
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M and Vardiman JW: The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 127:2391–2405. 2016. View Article : Google Scholar : PubMed/NCBI | |
Titmarsh GJ, Duncombe AS, McMullin MF, O'Rorke M, Mesa R, De Vocht F, Horan S, Fritschi L, Clarke M and Anderson LA: How common are myeloproliferative neoplasms? A systematic review and meta-analysis. Am J Hematol. 89:581–587. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moulard O, Mehta J, Fryzek J, Olivares R, Iqbal U and Mesa RA: Epidemiology of myelofibrosis, essential thrombocythemia, and polycythemia vera in the European Union. Eur J Haematol. 92:289–297. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cross NC: Genetic and epigenetic complexity in myeloproliferative neoplasms. Hematology (Am Soc Hematol Educ Program). 2011:208–214. 2011.PubMed/NCBI | |
Tefferi A and Pardanani A: Myeloproliferative Neoplasms: A Contemporary Review. JAMA Oncol. 1:97–105. 2015. View Article : Google Scholar : PubMed/NCBI | |
Duletić AN, Dekanić A, Hadzisejdić I, Kusen I, Matusan-Ilijas K, Grohovac D, Grahovac B and Jonjić N: JAK2-v617F mutation is associated with clinical and laboratory features of myeloproliferative neoplasms. Coll Antropol. 36:859–865. 2012.PubMed/NCBI | |
Tefferi A and Vardiman JW: Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 22:14–22. 2008. View Article : Google Scholar : PubMed/NCBI | |
James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, Garçon L, Raslova H, Berger R, Bennaceur-Griscelli A, et al: A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 434:1144–1148. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI | |
Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et al: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baxter EJ, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, Vassiliou GS, Bench AJ, Boyd EM and Curtin N: Cancer Genome Project: Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 365:1054–1061. 2005. View Article : Google Scholar : PubMed/NCBI | |
Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, Futreal PA, Erber WN, McMullin MF, Harrison CN, et al: JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 356:459–468. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, Avezov E, Li J, Kollmann K, Kent DG, et al: Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 369:2391–2405. 2013. View Article : Google Scholar : PubMed/NCBI | |
Levine RL: Mechanisms of mutations in myeloproliferative neoplasms. Best Pract Res Clin Haematol. 22:489–494. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, Mountain JL, Francke U, Tung JY, Nguyen HM, et al: Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 128:1121–1128. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cazzola M and Kralovics R: From Janus kinase 2 to calreticulin: The clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 123:3714–3719. 2014. View Article : Google Scholar : PubMed/NCBI | |
Oh ST and Gotlib J: JAK2 V617F and beyond: Role of genetics and aberrant signaling in the pathogenesis of myeloproliferative neoplasms. Expert Rev Hematol. 3:323–337. 2010. View Article : Google Scholar : PubMed/NCBI | |
Bolufer P, Barragan E, Collado M, Cervera J, López JA and Sanz MA: Influence of genetic polymorphisms on the risk of developing leukemia and on disease progression. Leuk Res. 30:1471–1491. 2006. View Article : Google Scholar : PubMed/NCBI | |
Delhommeau F, Jeziorowska D, Marzac C and Casadevall N: Molecular aspects of myeloproliferative neoplasms. Int J Hematol. 91:165–173. 2010. View Article : Google Scholar : PubMed/NCBI | |
Beer PA, Delhommeau F, LeCouédic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM, et al: Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 115:2891–2900. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kilpivaara O and Levine RL: JAK2 and MPL mutations in myeloproliferative neoplasms: Discovery and science. Leukemia. 22:1813–1817. 2008. View Article : Google Scholar : PubMed/NCBI | |
Björkholm M, Hultcrantz M and Derolf ÅR: Leukemic transformation in myeloproliferative neoplasms: Therapy-related or unrelated? Best Pract Res Clin Haematol. 27:141–153. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rueff J and Rodrigues AS: Cancer Drug Resistance: A Brief Overview from a Genetic Viewpoint. Methods Mol Biol. 1395:1–18. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rice KL, Lin X, Wolniak K, Ebert BL, Berkofsky-Fessler W, Buzzai M, Sun Y, Xi C, Elkin P, Levine R, et al: Analysis of genomic aberrations and gene expression profiling identifies novel lesions and pathways in myeloproliferative neoplasms. Blood Cancer J. 1:e402011. View Article : Google Scholar : PubMed/NCBI | |
Campregher PV, Santos FP, Perini GF and Hamerschlak N: Molecular biology of Philadelphia-negative myeloproliferative neoplasms. Rev Bras Hematol Hemoter. 34:150–155. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ebid GT, Ghareeb M, Salaheldin O and Kamel MM: Prevalence of the frequency of JAK2 (V617F) mutation in different myeloproliferative disorders in Egyptian patients. Int J Clin Exp Pathol. 8:11555–11559. 2015.PubMed/NCBI | |
Jatiani SS, Baker SJ, Silverman LR and Reddy EP: Jak/STAT pathways in cytokine signaling and myeloproliferative disorders: Approaches for targeted therapies. Genes Cancer. 1:979–993. 2010. View Article : Google Scholar : PubMed/NCBI | |
Anand S, Stedham F, Beer P, Gudgin E, Ortmann CA, Bench A, Erber W, Green AR and Huntly BJ: Effects of the JAK2 mutation on the hematopoietic stem and progenitor compartment in human myeloproliferative neoplasms. Blood. 118:177–181. 2011. View Article : Google Scholar : PubMed/NCBI | |
Reuther GW: Myeloproliferative Neoplasms: Molecular Drivers and Therapeutics. Prog Mol Biol Transl Sci. 144:437–484. 2016. View Article : Google Scholar : PubMed/NCBI | |
Steensma DP, McClure RF, Karp JE, Tefferi A, Lasho TL, Powell HL, DeWald GW and Kaufmann SH: JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia. 20:971–978. 2006. View Article : Google Scholar : PubMed/NCBI | |
Green DR and Llambi F: Cell Death Signaling. Cold Spring Harb Perspect Biol. 7:72015. View Article : Google Scholar | |
Chen E and Mullally A: How does JAK2V617F contribute to the pathogenesis of myeloproliferative neoplasms? Hematology (Am Soc Hematol Educ Program). 2014:268–276. 2014.PubMed/NCBI | |
Godfrey AL, Chen E, Massie CE, Silber Y, Pagano F, Bellosillo B, Guglielmelli P, Harrison CN, Reilly JT, Stegelmann F, et al: STAT1 activation in association with JAK2 exon 12 mutations. Haematologica. 101:e15–e19. 2016. View Article : Google Scholar : PubMed/NCBI | |
Passamonti F, Elena C, Schnittger S, Skoda RC, Green AR, Girodon F, Kiladjian JJ, McMullin MF, Ruggeri M, Besses C, et al: Molecular and clinical features of the myeloproliferative neoplasm associated with JAK2 exon 12 mutations. Blood. 117:2813–2816. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nielsen C, Bojesen SE, Nordestgaard BG, Kofoed KF and Birgens HS: JAK2V617F somatic mutation in the general population: Myeloproliferative neoplasm development and progression rate. Haematologica. 99:1448–1455. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ha JS, Kim YK, Jung SI, Jung HR and Chung IS: Correlations between Janus kinase 2 V617F allele burdens and clinicohematologic parameters in myeloproliferative neoplasms. Ann Lab Med. 32:385–391. 2012. View Article : Google Scholar : PubMed/NCBI | |
Larsen TS, Pallisgaard N, Møller MB and Hasselbalch HC: The JAK2 V617F allele burden in essential thrombocythemia, polycythemia vera and primary myelofibrosis - impact on disease phenotype. Eur J Haematol. 79:508–515. 2007. View Article : Google Scholar : PubMed/NCBI | |
Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, Rumi E, Ruggeri M, Rodeghiero F, Randi ML, et al: Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 5:e3692015. View Article : Google Scholar : PubMed/NCBI | |
Vannucchi AM, Pieri L and Guglielmelli P: JAK2 Allele Burden in the Myeloproliferative Neoplasms: Effects on Phenotype, Prognosis and Change with Treatment. Ther Adv Hematol. 2:21–32. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guglielmelli P, Lasho TL, Rotunno G, Score J, Mannarelli C, Pancrazzi A, Biamonte F, Pardanani A, Zoi K, Reiter A, et al: The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: An international study of 797 patients. Leukemia. 28:1804–1810. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vainchenker W and Constantinescu SN: JAK/STAT signaling in hematological malignancies. Oncogene. 32:2601–2613. 2013. View Article : Google Scholar : PubMed/NCBI | |
Thomas SJ, Snowden JA, Zeidler MP and Danson SJ: The role of JAK/STAT signalling in the pathogenesis, prognosis and treatment of solid tumours. Br J Cancer. 113:365–371. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nielsen C, Birgens HS, Nordestgaard BG, Kjaer L and Bojesen SE: The JAK2 V617F somatic mutation, mortality and cancer risk in the general population. Haematologica. 96:450–453. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mambet C, Matei L, Necula LG and Diaconu CC: A link between the driver mutations and dysregulated apoptosis in BCR-ABL1 negative myeloproliferative neoplasms. J Immunoassay Immunochem. 37:331–345. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tefferi A and Barbui T: Polycythemia vera and essential thrombocythemia: 2017 update on diagnosis, risk-stratification, and management. Am J Hematol. 92:94–108. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tefferi A: Myeloproliferative neoplasms: A decade of discoveries and treatment advances. Am J Hematol. 91:50–58. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hobbs GS, Rozelle S and Mullally A: The Development and Use of Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. Hematol Oncol Clin North Am. 31:613–626. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vannucchi AM and Harrison CN: Emerging treatments for classical myeloproliferative neoplasms. Blood. 129:693–703. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stahl M and Zeidan AM: Management of myelofibrosis: JAK inhibition and beyond. Expert Rev Hematol. 10:459–477. 2017. View Article : Google Scholar : PubMed/NCBI | |
Silva SN, Moita R, Azevedo AP, Gouveia R, Manita I, Pina JE, Rueff J and Gaspar J: Menopausal age and XRCC1 gene polymorphisms: Role in breast cancer risk. Cancer Detect Prev. 31:303–309. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bastos HN, Antão MR, Silva SN, Azevedo AP, Manita I, Teixeira V, Pina JE, Gil OM, Ferreira TC, Limbert E, et al: Association of polymorphisms in genes of the homologous recombination DNA repair pathway and thyroid cancer risk. Thyroid. 19:1067–1075. 2009. View Article : Google Scholar : PubMed/NCBI | |
Conde J, Silva SN, Azevedo AP, Teixeira V, Pina JE, Rueff J and Gaspar JF: Association of common variants in mismatch repair genes and breast cancer susceptibility: A multigene study. BMC Cancer. 9:3442009. View Article : Google Scholar : PubMed/NCBI | |
Gomes BC, Silva SN, Azevedo AP, Manita I, Gil OM, Ferreira TC, Limbert E, Rueff J and Gaspar JF: The role of common variants of non-homologous end-joining repair genes XRCC4, LIG4 and Ku80 in thyroid cancer risk. Oncol Rep. 24:1079–1085. 2010.PubMed/NCBI | |
Silva SN, Azevedo AP, Teixeira V, Pina JE, Rueff J and Gaspar JF: The role of GSTA2 polymorphisms and haplotypes in breast cancer susceptibility: A case-control study in the Portuguese population. Oncol Rep. 22:593–598. 2009.PubMed/NCBI | |
Solé X, Guinó E, Valls J, Iniesta R and Moreno V: SNPStats: A web tool for the analysis of association studies. Bioinformatics. 22:1928–1929. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rumi E and Cazzola M: Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 129:680–692. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jones AV, Kreil S, Zoi K, Waghorn K, Curtis C, Zhang L, Score J, Seear R, Chase AJ, Grand FH, et al: Widespread occurrence of the JAK2 V617F mutation in chronic myeloproliferative disorders. Blood. 106:2162–2168. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lundberg P, Takizawa H, Kubovcakova L, Guo G, Hao-Shen H, Dirnhofer S, Orkin SH, Manz MG and Skoda RC: Myeloproliferative neoplasms can be initiated from a single hematopoietic stem cell expressing JAK2-V617F. J Exp Med. 211:2213–2230. 2014. View Article : Google Scholar : PubMed/NCBI | |
Butcher CM, Hahn U, To LB, Gecz J, Wilkins EJ, Scott HS, Bardy PG and D'Andrea RJ: Two novel JAK2 exon 12 mutations in JAK2V617F-negative polycythaemia vera patients. Leukemia. 22:870–873. 2008. View Article : Google Scholar : PubMed/NCBI | |
Park CH, Lee KO, Jang JH, Jung CW, Kim JW, Kim SH and Kim HJ: High frequency of JAK2 exon 12 mutations in Korean patients with polycythaemia vera: Novel mutations and clinical significance. J Clin Pathol. 69:737–741. 2016. View Article : Google Scholar : PubMed/NCBI | |
Passamonti F, Rumi E, Pietra D, Elena C, Boveri E, Arcaini L, Roncoroni E, Astori C, Merli M, Boggi S, et al: A prospective study of 338 patients with polycythemia vera: The impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia. 24:1574–1579. 2010. View Article : Google Scholar : PubMed/NCBI | |
Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, Them NC, Berg T, Elena C, Casetti IC, et al: Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators: JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 123:1544–1551. 2014. View Article : Google Scholar : PubMed/NCBI | |
Scott LM: The JAK2 exon 12 mutations: A comprehensive review. Am J Hematol. 86:668–676. 2011. View Article : Google Scholar : PubMed/NCBI | |
Scott LM, Beer PA, Bench AJ, Erber WN and Green AR: Prevalance of JAK2 V617F and exon 12 mutations in polycythaemia vera. Br J Haematol. 139:511–512. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pardanani A, Lasho TL, Finke C, Hanson CA and Tefferi A: Prevalence and clinicopathologic correlates of JAK2 exon 12 mutations in JAK2V617F-negative polycythemia vera. Leukemia. 21:1960–1963. 2007. View Article : Google Scholar : PubMed/NCBI | |
Azevedo AP, Silva SN, De Lima JP, Reichert A, Lima F, Júnior E and Rueff J: DNA repair genes polymorphisms and genetic susceptibility to Philadelphia-negative myeloproliferative neoplasms in a Portuguese population: The role of base excision repair genes polymorphisms. Oncol Lett. 13:4641–4650. 2017.PubMed/NCBI | |
Lindholm Sørensen A and Hasselbalch HC: Smoking and philadelphia-negative chronic myeloproliferative neoplasms. Eur J Haematol. 97:63–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hasselbalch HC: Smoking as a contributing factor for development of polycythemia vera and related neoplasms. Leuk Res. 15:30373–30378. 2015. |