The therapeutic effects of bee venom on some metabolic and antioxidant parameters associated with HFD‑induced non‑alcoholic fatty liver in rats

  • Authors:
    • Mervat Y. Hanafi
    • Eman L.M. Zaher
    • Soha E.M. El‑Adely
    • Ahmed Sakr
    • Ahmed H.M. Ghobashi
    • Madiha H. Hemly
    • Amani H. Kazem
    • Maher A. Kamel
  • View Affiliations

  • Published online on: April 3, 2018     https://doi.org/10.3892/etm.2018.6028
  • Pages: 5091-5099
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The present study was designed to investigate the therapeutic effects of bee venom (BV) on high‑fat diet (HFD)‑induced non‑alcoholic fatty liver (NAFL) in rats at different levels. Histological manifestations, hepatic lipid content, liver function tests, glucose homeostasis, lipid abnormalities, adipocytokines, lipid peroxidation, disturbed glutathione and antioxidant enzymes systems and dysregulation of Nrf2 transcription factor were assessed. In the present study, the NAFL rats were subcutaneously treated with BV with different doses (0.01, 0.05, 0.1 mg/kg). The results indicated that BV treatment completely normalized the lipid profile values of NAFL rats. Fasting blood sugar, insulin level and homeostatic model assessment of insulin resistance significantly decreased. BV treated rats showed a significantly lower level of all liver enzymes and bilirubin. Moreover, BV treatment significantly increased the levels of active nuclear erythroid factor 2 like 2, glutathione (GSH) (total and reduced), GSH/glutathione disulphide ratio and activities of glutathione reductase, glutathione‑S‑transferase and glutathione peroxidase (total and Se‑dependent). The level of tumor necrosis factor‑α was reduced. Treatment showed correction of adiponectin level, and significant downregulation of hepatic triglycerides and cholesterol. At the histological level, BV improved the architecture of liver cells showing normal sinusoids. It may be concluded that BV may represent an interesting therapeutic alternative for the treatment of NAFL disease.

References

1 

Neuschwander-Tetri BA and Caldwell SH: Nonalcoholic steatohepatitis: Summary of an AASLD single topic conference. Hepatology. 37:1202–1219. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Musso G, Cassader M, De Michieli F, Rosina F, Orlandi F and Gambino R: Nonalcoholic steatohepatitis versus steatosis: Adipose tissue insulin resistance and dysfunctional response to fat ingestion predict liver injury and altered glucose and lipoprotein metabolism. Hepatology. 56:933–942. 2012. View Article : Google Scholar : PubMed/NCBI

3 

Halbleib M, Skurk T, de Luca C, von Heimburg D and Hauner H: Tissue engineering of white adipose tissue using hyaluronic acid-based scaffolds. I: In vitro differentiation of human adipocyte precursor cells on scaffolds. Biomaterials. 24:3125–3132. 2003. View Article : Google Scholar : PubMed/NCBI

4 

Day CP and James OF: Steatohepatitis: A tale of two ‘hits’? Gastroenterology. 114:842–845. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, Ponti V, Pagano G, Ferrannini E and Rizzetto M: Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: Sites and mechanisms. Diabetologia. 48:634–642. 2005. View Article : Google Scholar : PubMed/NCBI

6 

Hui JM, Hodge A, Farrell GC, Kench JG, Kriketos A and George J: Beyond insulin resistance in NASH: TNF-alpha or adiponectin? Hepatology. 40:46–54. 2004. View Article : Google Scholar : PubMed/NCBI

7 

Houstis N, Rosen ED and Lander ES: Reactive oxygen species have a casual role in multiple forms of insulin resistance. Nature. 440:944–948. 2006. View Article : Google Scholar : PubMed/NCBI

8 

Franco R, Schoneveld OJ, Pappa A and Panayiotidis MI: The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem. 113:234–258. 2007. View Article : Google Scholar : PubMed/NCBI

9 

Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M and Kensler TW: Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem. 278:8135–8145. 2003. View Article : Google Scholar : PubMed/NCBI

10 

Yates MS, Tran QT, Dolan PM, Osburn WO, Shin S, McCulloch CC, Silkworth JB, Taguchi K, Yamamoto M, Williams CR, et al: Genetic versus chemoprotective activation of Nrf2 signaling: Overlapping yet distinct gene expression profiles between Keap1 knockout and triterpenoid-treated mice. Carcinogenesis. 30:1024–1031. 2009. View Article : Google Scholar : PubMed/NCBI

11 

Sugimoto H, Okada K, Shoda J, Warabi E, Ishige K, Ueda T, Taguchi K, Yanagawa T, Nakahara A, Hyodo I, et al: Deletion of nuclear factor-E2-related factor-2 leads to rapid onset and progression of nutritional steatohepatitis in mice. Am J Physiol Gastrointest Liver Physiol. 298:G283–G294. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Zhang YK, Yeager RL, Tanaka Y and Klaassen CD: Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet. Toxicol Appl Pharmacol. 245:326–334. 2010. View Article : Google Scholar : PubMed/NCBI

13 

Jang MH, Shin MC, Lim S, Han SM, Park HJ, Shin I, Lee JS, Kim KA, Kim EH and Kim CJ: Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J Pharmacol Sci. 91:95–104. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Hong SJ, Rim GS, Yang HI, Yin CS, Koh HG, Jang MH, Kim CJ, Choe BK and Chung JH: Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon. 46:39–45. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Sene-Fiorese M, Duarte FO, Scarmagnani FR, Cheik NC, Manzoni MS, Nonaka KO, Rossi EA, de Oliveira Duarte AC and Dâmaso AR: Efficiency of intermittent exercise on adiposity and fatty liver in rats fed with high fat diet. Obesity (Silver Spring). 16:2217–2222. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Lopes-Virella MF, Stone PG and Colwell JA: Serum high density lipoprotein in diabetic patients. Diabetologia. 13:285–291. 1977. View Article : Google Scholar : PubMed/NCBI

17 

Friedewald WT, Levy RI and Fredrickson DS: Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 18:499–502. 1972.PubMed/NCBI

18 

Caumo A, Perseghin G, Brunani A and Luzi L: New insights on the simultaneous assessment of insulin sensitivity and beta-cell function with the HOMA2 method. Diabetes Care. 29:2733–2734. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Bligh EG and Dyer WJ: A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37:911–917. 1959. View Article : Google Scholar : PubMed/NCBI

20 

Muthusamy VR, Kannan S, Sadhaasivam K, Gounder SS, Davidson CJ, Boeheme C, Hoidal JR, Wang L and Rajasekaran NS: Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic Biol Med. 52:366–376. 2012. View Article : Google Scholar : PubMed/NCBI

21 

Draper HH and Hadley M: Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol. 186:421–431. 1990. View Article : Google Scholar : PubMed/NCBI

22 

Griffith OW: Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 106:207–212. 1980. View Article : Google Scholar : PubMed/NCBI

23 

Smith IK, Vierheller TL and Thorne CA: Assay of glutathione reductase in crude tissue homogenates using 5,5′-dithiobis(2-nitrobenzoic acid). Anal Biochem. 175:408–413. 1988. View Article : Google Scholar : PubMed/NCBI

24 

Habig WH, Pabst MJ and Jakoby WB: Glutathione S-transferase AA from rat liver. Arch Biochem Biophys. 175:710–716. 1976. View Article : Google Scholar : PubMed/NCBI

25 

Flohé L and Günzler WA: Assays of glutathione peroxidase. Methods Enzymol. 105:114–121. 1984. View Article : Google Scholar : PubMed/NCBI

26 

Tangvarasittichai S: Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World J Diabetes. 6:456–480. 2015. View Article : Google Scholar : PubMed/NCBI

27 

Di Chiara T, Argano C, Corrao S, Scaglione R and Licata G: Hypoadiponectinemia: A link between visceral obesity and metabolic syndrome. J Nutr Metab. 2012:1752452012. View Article : Google Scholar : PubMed/NCBI

28 

Tilg H and Moschen AR: Adipocytokines: Mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 6:772–783. 2006. View Article : Google Scholar : PubMed/NCBI

29 

Tilg H and Hotamisligil GS: Nonalcoholic fatty liver disease: Cytokine-adipokine interplay and regulation of insulin resistance. Gastroenterology. 131:934–945. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Kono H, Rusyn I, Yin M, Gäbele E, Yamashina S, Dikalova A, Kadiiska MB, Connor HD, Mason RP, Segal BH, et al: NADPH oxidase-derived free radicals are key oxidants in alcohol-induced liver disease. J Clin Invest. 106:867–872. 2000. View Article : Google Scholar : PubMed/NCBI

31 

Weltman MD, Farrell GC, Hall P, Ingelman-Sundberg M and Liddle C: Hepatic cytochrome P450 2E1 is increased in patients with nonalcoholic steatohepatitis. Hepatology. 27:128–133. 1998. View Article : Google Scholar : PubMed/NCBI

32 

Shoelson SE, Herrero L and Naaz A: Obesity, inflammation, and insulin resistance. Gastroenterology. 132:2169–2180. 2007. View Article : Google Scholar : PubMed/NCBI

33 

Kensler TW, Wakabayashi N and Biswal S: Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol. 47:89–116. 2007. View Article : Google Scholar : PubMed/NCBI

34 

Lee JY, Kang SS, Kim JH, Bae CS and Choi SH: Inhibitory effect of whole bee venom in adjuvant-induced arthritis. In Vivo. 19:801–805. 2005.PubMed/NCBI

35 

Mousavi SM, Imani S, Haghighi S, Mousavi SE and Karimi A: Effect of Iranian honey bee (Apis mellifera) venom on blood glucose and insulin in diabetic rats. J Arthropod Borne Dis. 6:136–143. 2012.PubMed/NCBI

36 

Behroozi J, Divsalar A and Saboury AA: Honey bee venom decreases the complications of diabetes by preventing hemoglobin glycation. J Molec Liquids. 199:371–375. 2014. View Article : Google Scholar

37 

Yang EJ, Jiang JH, Lee SM, Yang SC, Hwang HS, Lee MS and Choi SM: Bee venom attenuates neuroinflammatory events and extends survival in amyotrophic lateral sclerosis models. J Neuroinflammation. 7:692010. View Article : Google Scholar : PubMed/NCBI

38 

Kwak MK, Wakabayashi N, Itoh K, Motohashi H, Yamamoto M and Kensler TW: Modulation of gene expression by cancer chemopreventive dithiolethiones through the Keap1-Nrf2 pathway. Identification of novel gene clusters for cell survival. J Biol Chem. 278:8135–8145. 2003. View Article : Google Scholar : PubMed/NCBI

39 

Mo C, Wang L, Zhang J, Numazawa S, Tang H, Tang X, Han X, Li J, Yang M, Wang Z, et al: The crosstalk between Nrf2 and AMPK signal pathways is important for the anti-inflammatory effect of berberine in LPS-stimulated macrophages and endotoxin-shocked mice. Antioxid Redox Signal. 20:574–588. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Joo MS, Kim WD, Lee KY, Kim JH, Koo JH and Kim SG: AMPK facilitates nuclear accumulation of Nrf2 by phosphorylating at serine 550. Mol Cell Biol. 36:1931–1942. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Hwang DS, Kim SK and Bae H: Therapeutic effects of bee venom on immunological and neurological diseases review. Toxins (Basel). 7:2413–2421. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Ram SKM, Jayapal N, Nanaiah P, Aswal GS, Ramnarayan BK and Taher SM: The therapeutic benefits of bee venom. Int J Curr Microbiol App Sci. 3:377–381. 2014.

Related Articles

Journal Cover

June 2018
Volume 15 Issue 6

Print ISSN: 1792-0981
Online ISSN:1792-1015

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Hanafi, M.Y., Zaher, E.L., El‑Adely, S.E., Sakr, A., Ghobashi, A.H., Hemly, M.H. ... Kamel, M.A. (2018). The therapeutic effects of bee venom on some metabolic and antioxidant parameters associated with HFD‑induced non‑alcoholic fatty liver in rats. Experimental and Therapeutic Medicine, 15, 5091-5099. https://doi.org/10.3892/etm.2018.6028
MLA
Hanafi, M. Y., Zaher, E. L., El‑Adely, S. E., Sakr, A., Ghobashi, A. H., Hemly, M. H., Kazem, A. H., Kamel, M. A."The therapeutic effects of bee venom on some metabolic and antioxidant parameters associated with HFD‑induced non‑alcoholic fatty liver in rats". Experimental and Therapeutic Medicine 15.6 (2018): 5091-5099.
Chicago
Hanafi, M. Y., Zaher, E. L., El‑Adely, S. E., Sakr, A., Ghobashi, A. H., Hemly, M. H., Kazem, A. H., Kamel, M. A."The therapeutic effects of bee venom on some metabolic and antioxidant parameters associated with HFD‑induced non‑alcoholic fatty liver in rats". Experimental and Therapeutic Medicine 15, no. 6 (2018): 5091-5099. https://doi.org/10.3892/etm.2018.6028