Open Access

lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia

  • Authors:
    • Jia-Qi Pan
    • Yan-Qing Zhang
    • Jing-Hua Wang
    • Ping Xu
    • Wei Wang
  • View Affiliations

  • Published online on: February 13, 2017     https://doi.org/10.3892/ijmm.2017.2888
  • Pages: 663-671
  • Copyright: © Pan et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: HTML 0 views | PDF 0 views     Cited By (CrossRef): 0 citations

Abstract

Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy with great variability of prognostic behaviors. Previous studies have reported that long non-coding RNAs (lncRNAs) play an important role in AML and may thus be used as potential prognostic biomarkers. However, thus use of lncRNAs as prognostic biomarkers in AML and their detailed mechanisms of action in this disease have not yet been well characterized. For this purpose, in the present study, the expression levels of lncRNAs and mRNAs were calculated using the RNA-seq V2 data for AML, following which a lncRNA‑lncRNA co-expression network (LLCN) was constructed. This revealed a total of 8 AML prognosis‑related lncRNA modules were identified, which displayed a significant correlation with patient survival (p≤0.05). Subsequently, a prognosis-related lncRNA module pathway network was constructed to interpret the functional mechanism of the prognostic modules in AML. The results indicated that these prognostic modules were involved in the AML pathway, chemokine signaling pathway and WNT signaling pathway, all of which play important roles in AML. Furthermore, the investigation of lncRNAs in these prognostic modules suggested that an lncRNA (ZNF571-AS1) may be involved in AML via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway by regulating KIT and STAT5. The results of the present study not only provide potential lncRNA modules as prognostic biomarkers, but also provide further insight into the molecular mechanisms of action of lncRNAs.

References

1 

Döhner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, Dombret H, Fenaux P, Grimwade D, Larson RA, et al: European LeukemiaNet: Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood. 115:453–474. 2010. View Article : Google Scholar

2 

Schlenk RF, Döhner K, Krauter J, Fröhling S, Corbacioglu A, Bullinger L, Habdank M, Späth D, Morgan M, Benner A, et al: German-Austrian Acute Myeloid Leukemia Study Group: Mutations and treatment outcome in cytogenetically normal acute myeloid leukemia. N Engl J Med. 358:1909–1918. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Marcucci G, Maharry KS, Metzeler KH, Volinia S, Wu YZ, Mrózek K, Nicolet D, Kohlschmidt J, Whitman SP, Mendler JH, et al: Clinical role of microRNAs in cytogenetically normal acute myeloid leukemia: miR-155 upregulation independently identifies high-risk patients. J Clin Oncol. 31:2086–2093. 2013. View Article : Google Scholar : PubMed/NCBI

4 

Díaz-Beyá M, Navarro A, Ferrer G, Díaz T, Gel B, Camós M, Pratcorona M, Torrebadell M, Rozman M, Colomer D, et al: Acute myeloid leukemia with translocation (8;16)(p11;p13) and MYST3-CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene. Leukemia. 27:595–603. 2013. View Article : Google Scholar

5 

Díaz-Beyá M, Brunet S, Nomdedéu J, Tejero R, Díaz T, Pratcorona M, Tormo M, Ribera JM, Escoda L, Duarte R, et al: Cooperative AML group CETLAM (Grupo Cooperativo Para el Estudio y Tratamiento de las Leucemias Agudas y Mielodisplasias): MicroRNA expression at diagnosis adds relevant prognostic information to molecular categorization in patients with intermediate-risk cytogenetic acute myeloid leukemia. Leukemia. 28:804–812. 2014. View Article : Google Scholar

6 

Schwind S, Maharry K, Radmacher MD, Mrózek K, Holland KB, Margeson D, Whitman SP, Hickey C, Becker H, Metzeler KH, et al: Prognostic significance of expression of a single microRNA, miR-181a, in cytogenetically normal acute myeloid leukemia: A Cancer and Leukemia Group B study. J Clin Oncol. 28:5257–5264. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermüller J, Hofacker IL, et al: RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 316:1484–1488. 2007. View Article : Google Scholar : PubMed/NCBI

8 

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G, Martin D, Merkel A, Knowles DG, et al: The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–1789. 2012. View Article : Google Scholar : PubMed/NCBI

9 

Hirano T, Yoshikawa R, Harada H, Harada Y, Ishida A and Yamazaki T: Long noncoding RNA, CCDC26, controls myeloid leukemia cell growth through regulation of KIT expression. Mol Cancer. 14:902015. View Article : Google Scholar : PubMed/NCBI

10 

Xu J, Li CX, Li YS, Lv JY, Ma Y, Shao TT, Xu LD, Wang YY, Du L, Zhang YP, et al: MiRNA-miRNA synergistic network: Construction via co-regulating functional modules and disease miRNA topological features. Nucleic Acids Res. 39:825–836. 2011. View Article : Google Scholar

11 

Yoshimura K, Okanoue T, Ebise H, Iwasaki T, Mizuno M, Shima T, Ichihara J and Yamazaki K: Identification of novel noninvasive markers for diagnosing nonalcoholic steatohepatitis and related fibrosis by data mining. Hepatology. 63:462–473. 2016. View Article : Google Scholar

12 

Langfelder P and Horvath S: WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics. 9:5592008. View Article : Google Scholar : PubMed/NCBI

13 

Ivliev AE, 't Hoen PA and Sergeeva MG: Coexpression network analysis identifies transcriptional modules related to proastrocytic differentiation and sprouty signaling in glioma. Cancer Res. 70:10060–10070. 2010. View Article : Google Scholar : PubMed/NCBI

14 

Clarke C, Madden SF, Doolan P, Aherne ST, Joyce H, O'Driscoll L, Gallagher WM, Hennessy BT, Moriarty M, Crown J, et al: Correlating transcriptional networks to breast cancer survival: A large-scale coexpression analysis. Carcinogenesis. 34:2300–2308. 2013. View Article : Google Scholar : PubMed/NCBI

15 

Li Y, Tang H, Sun Z, Bungum AO, Edell ES, Lingle WL, Stoddard SM, Zhang M, Jen J, Yang P and Wang L: Network-based approach identified cell cycle genes as predictor of overall survival in lung adenocarcinoma patients. Lung Cancer. 80:91–98. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Udyavar AR, Hoeksema MD, Clark JE, Zou Y, Tang Z, Li Z, Li M, Chen H, Statnikov A, Shyr Y, et al: Co-expression network analysis identifies Spleen Tyrosine Kinase (SYK) as a candidate oncogenic driver in a subset of small-cell lung cancer. BMC Syst Biol. 7(Suppl 5): S12013. View Article : Google Scholar

17 

Chou WC, Cheng AL, Brotto M and Chuang CY: Visual gene-network analysis reveals the cancer gene co-expression in human endometrial cancer. BMC Genomics. 15:3002014. View Article : Google Scholar : PubMed/NCBI

18 

Liu R, Cheng Y, Yu J, Lv QL and Zhou HH: Identification and validation of gene module associated with lung cancer through coexpression network analysis. Gene. 563:56–62. 2015. View Article : Google Scholar : PubMed/NCBI

19 

Liao Q, Liu C, Yuan X, Kang S, Miao R, Xiao H, Zhao G, Luo H, Bu D, Zhao H, et al: Large-scale prediction of long non-coding RNA functions in a coding-non-coding gene co-expression network. Nucleic Acids Res. 39:3864–3878. 2011. View Article : Google Scholar : PubMed/NCBI

20 

Yu J, Yu J, Cordero KE, Johnson MD, Ghosh D, Rae JM, Chinnaiyan AM and Lippman ME: A transcriptional fingerprint of estrogen in human breast cancer predicts patient survival. Neoplasia. 10:79–88. 2008. View Article : Google Scholar : PubMed/NCBI

21 

Huang W, Sherman BT and Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 4:44–57. 2009. View Article : Google Scholar

22 

Kremer KN, Peterson KL, Schneider PA, Meng XW, Dai H, Hess AD, Smith BD, Rodriguez-Ramirez C, Karp JE, Kaufmann SH and Hedin KE: CXCR4 chemokine receptor signaling induces apoptosis in acute myeloid leukemia cells via regulation of the Bcl-2 family members Bcl-XL, Noxa, and Bak. J Biol Chem. 288:22899–22914. 2013. View Article : Google Scholar : PubMed/NCBI

23 

Gallay N, Anani L, Lopez A, Colombat P, Binet C, Domenech J, Weksler BB, Malavasi F and Herault O: The role of platelet/endothelial cell adhesion molecule 1 (CD31) and CD38 antigens in marrow microenvironmental retention of acute myelogenous leukemia cells. Cancer Res. 67:8624–8632. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Staal FJT, Famili F, Garcia Perez L and Pike-Overzet K: Aberrant Wnt signaling in leukemia. Cancers (Basel). 8:782016. View Article : Google Scholar

25 

Heidel FH, Arreba-Tutusaus P, Armstrong SA and Fischer T: Evolutionarily conserved signaling pathways: acting in the shadows of acute myelogenous leukemia's genetic diversity. Clin Cancer Res. 21:240–248. 2015. View Article : Google Scholar : PubMed/NCBI

26 

Li Y: Alterations in the expression pattern of TCR zeta chain in T cells from patients with hematological diseases. Hematology. 13:267–275. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Le Dieu R, Taussig DC, Ramsay AG, Mitter R, Miraki-Moud F, Fatah R, Lee AM, Lister TA and Gribben JG: Peripheral blood T cells in acute myeloid leukemia (AML) patients at diagnosis have abnormal phenotype and genotype and form defective immune synapses with AML blasts. Blood. 114:3909–3916. 2009. View Article : Google Scholar : PubMed/NCBI

28 

Shi L, Chen S, Lu Y, Wang X, Xu L, Zhang F, Yang L, Wu X, Li B and Li Y: Changes in the MALT1-A20-NF-κB expression pattern may be related to T cell dysfunction in AML. Cancer Cell Int. 13:372013. View Article : Google Scholar

29 

Fu Y, Zhu H, Wu W, Xu J, Chen T, Xu B, Qian S, Li J and Liu P: Clinical significance of lymphoid enhancer-binding factor 1 expression in acute myeloid leukemia. Leuk Lymphoma. 55:371–377. 2014. View Article : Google Scholar

30 

Metzeler KH, Heilmeier B, Edmaier KE, Rawat VP, Dufour A, Döhner K, Feuring-Buske M, Braess J, Spiekermann K, Büchner T, et al: High expression of lymphoid enhancer-binding factor-1 (LEF1) is a novel favorable prognostic factor in cytogenetically normal acute myeloid leukemia. Blood. 120:2118–2126. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Yohe S: Molecular genetic markers in acute myeloid leukemia. J Clin Med. 4:460–478. 2015. View Article : Google Scholar : PubMed/NCBI

32 

Garg S, Shanmukhaiah C, Marathe S, Mishra P, Babu Rao V, Ghosh K and Madkaikar M: Differential antigen expression and aberrant signaling via I3/AKT, MAP/ERK, JAK/STAT, and Wnt/beta catenin pathways in Lin-/CD38-/CD34 cells in acute myeloid leukemia. Eur J Haematol. 96:309–317. 2016. View Article : Google Scholar

Related Articles

Journal Cover

March 2017
Volume 39 Issue 3

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Pan, J., Zhang, Y., Wang, J., Xu, P., & Wang, W. (2017). lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia. International Journal of Molecular Medicine, 39, 663-671. https://doi.org/10.3892/ijmm.2017.2888
MLA
Pan, J., Zhang, Y., Wang, J., Xu, P., Wang, W."lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia". International Journal of Molecular Medicine 39.3 (2017): 663-671.
Chicago
Pan, J., Zhang, Y., Wang, J., Xu, P., Wang, W."lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia". International Journal of Molecular Medicine 39, no. 3 (2017): 663-671. https://doi.org/10.3892/ijmm.2017.2888