Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis

  • Authors:
    • Hanghui Wang
    • Yixin Song
    • Dingjun Hao
    • Min Bai
    • Lifang Jin
    • Jiying Gu
    • Yijin Su
    • Long Liu
    • Chao Jia
    • Lianfang Du
  • View Affiliations

  • Published online on: April 14, 2014     https://doi.org/10.3892/ijo.2014.2388
  • Pages: 157-164
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The specific and efficient delivery of small interfering RNA (siRNA) into cancer cells in vivo remains a major obstacle. In this study, we investigated whether ultrasound-targeted microbubble destruction (UTMD) combined with dual targeting of HSP72 and HSC70 in prostate cancer cell lines improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis. VCaP cells were transfected with siRNA oligonucleotides. Cell viability assays were used to evaluate the safety of UTMD. The expression of HSP70, HSP90, caspase-8, caspase-3, PARP-1 and cleaved caspase-3 were determined by quantitative PCR and western blotting. Apoptosis and transfection efficiency were detected by flow cytometry. We found that HSP72, HSC70 and HSP90 expression was absent or weak in normal prostate epithelial cells (RWPE-1), and became uniformly and strongly expressed in prostate cancer cells (VCaP). VCaP and RWPE-1 cells expressed very low levels of caspase-8, caspase-3, PARP-1 and cleaved caspase-3. UTMD combined with dual targeting of HSP72 and HSC70 siRNA impoved the efficiency of transfection, cell uptake of siRNA, downregulated HSP70 and HSP90 expression in VCaP cells on the mRNA and protein levels, and upregulated major apoptotic markers (PARP-1, caspase-8, caspase-3 and cleaved caspase-3), thus, inducing extensive tumor-specific apoptosis. The Cell Counting Kit-8 assay showed decreased cellular viability in the HSP72/HSC70-siRNA silenced group. These results suggest that the combination of UTMD with dual targeting of HSP72 and HSC70 may improve the specific and efficient cell uptake of siRNA, inhibit HSP90 function and induce extensive tumor-specific apoptosis, indicating a novel, potential means for targeting therapeutic strategy to prostate cancer cells.
View Figures
View References

Related Articles

Journal Cover

July-2014
Volume 45 Issue 1

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, Song Y, Hao D, Bai M, Jin L, Gu J, Su Y, Liu L, Jia C, Du L, Du L, et al: Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis. Int J Oncol 45: 157-164, 2014
APA
Wang, H., Song, Y., Hao, D., Bai, M., Jin, L., Gu, J. ... Du, L. (2014). Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis. International Journal of Oncology, 45, 157-164. https://doi.org/10.3892/ijo.2014.2388
MLA
Wang, H., Song, Y., Hao, D., Bai, M., Jin, L., Gu, J., Su, Y., Liu, L., Jia, C., Du, L."Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis". International Journal of Oncology 45.1 (2014): 157-164.
Chicago
Wang, H., Song, Y., Hao, D., Bai, M., Jin, L., Gu, J., Su, Y., Liu, L., Jia, C., Du, L."Ultrasound-targeted microbubble destruction combined with dual targeting of HSP72 and HSC70 inhibits HSP90 function and induces extensive tumor-specific apoptosis". International Journal of Oncology 45, no. 1 (2014): 157-164. https://doi.org/10.3892/ijo.2014.2388