Open Access

Cell cycle checkpoint control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad‑spectrum cancer gene therapy - A review of molecular mechanisms for oncologists

  • Authors:
    • Erlinda M. Gordon
    • Joshua R. Ravicz
    • Seiya Liu
    • Sant P. Chawla
    • Frederick L. Hall
  • View Affiliations

  • Published online on: June 14, 2018     https://doi.org/10.3892/mco.2018.1657
  • Pages: 115-134
  • Copyright: © Gordon et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Basic research in genetics, biochemistry and cell biology has identified the executive enzymes and protein kinase activities that regulate the cell division cycle of all eukaryotic organisms, thereby elucidating the importance of site‑specific protein phosphorylation events that govern cell cycle progression. Research in cancer genomics and virology has provided meaningful links to mammalian checkpoint control elements with the characterization of growth‑promoting proto‑oncogenes encoding c‑Myc, Mdm2, cyclins A, D1 and G1, and opposing tumor suppressor proteins, such as p53, pRb, p16INK4A and p21WAF1, which are commonly dysregulated in cancer. While progress has been made in identifying numerous enzymes and molecular interactions associated with cell cycle checkpoint control, the marked complexity, particularly the functional redundancy, of these cell cycle control enzymes in mammalian systems, presents a major challenge in discerning an optimal locus for therapeutic intervention in the clinical management of cancer. Recent advances in genetic engineering, functional genomics and clinical oncology converged in identifying cyclin G1 (CCNG1 gene) as a pivotal component of a commanding cyclin G1/Mdm2/p53 axis and a strategic locus for re‑establishing cell cycle control by means of therapeutic gene transfer. The purpose of the present study is to provide a focused review of cycle checkpoint control as a practicum for clinical oncologists with an interest in applied molecular medicine. The aim is to present a unifying model that: i) clarifies the function of cyclin G1 in establishing proliferative competence, overriding p53 checkpoints and advancing cell cycle progression; ii) is supported by studies of inhibitory microRNAs linking CCNG1 expression to the mechanisms of carcinogenesis and viral subversion; and iii) provides a mechanistic basis for understanding the broad‑spectrum anticancer activity and single‑agent efficacy observed with dominant‑negative cyclin G1, whose cytocidal mechanism of action triggers programmed cell death. Clinically, the utility of companion diagnostics for cyclin G1 pathways is anticipated in the staging, prognosis and treatment of cancers, including the potential for rational combinatorial therapies.

References

1 

Goel G, Makkar HP, Francis G and Becker K: Phorbol esters: Structure, biological activity, and toxicity in animals. Int J Toxicol. 26:279–288. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Weinstein IB: The origins of human cancer: Molecular mechanisms of carcinogenesis and their implications for cancer prevention and treatment-twenty-seventh G.H.A. Clowes memorial award lecture. Cancer Res. 48:4135–4143. 1988.PubMed/NCBI

3 

Kikkawa U, Takai Y, Tanaka Y, Miyake R and Nishizuka Y: Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 258:11442–11445. 1983.PubMed/NCBI

4 

Cooke M, Magimaidas A, Casado-Medrano V and Kazanietz MG: Protein kinase C in cancer: The top five unanswered questions. Mol Carcinog. 56:1531–1542. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Reid BJ, Culotti JG, Nash RS and Pringle JR: Forty-five years of cell-cycle genetics. Mol Biol Cell. 26:4307–4312. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Yasutis KM and Kozminski KG: Cell cycle checkpoint regulators reach a zillion. Cell Cycle. 12:1501–1509. 2013. View Article : Google Scholar : PubMed/NCBI

7 

Jackson PK: The hunt for cyclin. Cell. 134:199–202. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Reed SI: G1 specific cyclins: In search for an S-phase promoting factor. Trends Genet. 7:95–99. 1991. View Article : Google Scholar : PubMed/NCBI

9 

Pines J and Hunter T: Cyclin-dependent kinases: A new cell cycle motif? Trends Cell Biol. 1:117–121. 1991. View Article : Google Scholar : PubMed/NCBI

10 

Kishimoto T: Entry into mitosis: A solution to the decades-long enigma of MPF. Chromosoma. 124:417–428. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Nasmyth K: Viewpoint: Putting the cell cycle in order. Science. 274:1643–1645. 1996. View Article : Google Scholar : PubMed/NCBI

12 

Strausfeld UP, Howell M, Descombes P, Chevalier S, Rempel RE, Adamczewski J, Maller JL, Hunt T and Blow JJ: Both cyclin A and cyclin E have S-phase promoting (SPF) activity in Xenopus egg extracts. J Cell Sci. 109:1555–1563. 1996.PubMed/NCBI

13 

Vulliet PR, Hall FL, Mitchell JP and Hardie DG: Identification of a novel proline-directed serine/threonine protein kinase in rat pheochromocytoma. J Biol Chem. 264:16292–16298. 1989.PubMed/NCBI

14 

Hall FL, Mitchell JP and Vulliet PR: Phosphorylation of synapsin I at a novel site by proline-directed protein kinase. J Biol Chem. 265:6944–6948. 1990.PubMed/NCBI

15 

Hall FL and Vulliet PR: Proline-directed protein phosphorylation and cell cycle regulation. Curr Opin Cell Biol. 3:176–184. 1991. View Article : Google Scholar : PubMed/NCBI

16 

Suzuki M: SPXX, a frequent sequence motif in gene regulatory proteins. J Mol Biol. 207:61–84. 1989. View Article : Google Scholar : PubMed/NCBI

17 

Hall FL, Braun RK, Mihara K, Fung YT, Berndt N, Carbonaro-Hall DA and Vulliet PR: Characterization of the cytoplasmic proline-directed protein kinase in proliferative cells and tissues as a heterodimer comprised of p34cdc2 and p58cyclin A. J Biol Chem. 266:17430–17440. 1991.PubMed/NCBI

18 

Elledge SJ, Richman R, Hall FL, Williams RT, Lodgson N and Harper JW: CDK2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before CDC2 in the cell cycle. Proc Natl Acad Sci USA. 89:2907–2911. 1992. View Article : Google Scholar : PubMed/NCBI

19 

Peeper DS, Parker LL, Ewen ME, Toebes M, Hall FL, Xu M, Zantema A, van der Eb AJ and Piwnica-Worms H: A- and B-type cyclins differentially modulate substrate specificity of cyclin-cdk complexes. EMBO J. 12:1947–1954. 1995.

20 

Giacinti C and Giordano A: RB and cell cycle progression. Oncogene. 25:5220–5227. 2006. View Article : Google Scholar : PubMed/NCBI

21 

Bertoli C, Skotheim JM and de Bruin RA: Control of cell cycle transcription during G1 and S phases. Nat Rev Mol Cell Biol. 14:518–528. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Foster DA, Yellen P, Xu L and Saqcena M: Regulation of G1 cell cycle progression: Distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer. 1:1124–1131. 2010. View Article : Google Scholar : PubMed/NCBI

23 

Csikász-Nagy A, Kapuy O, Tóth A, Pál C, Jensen LJ, Uhlmann F, Tyson JJ and Novák B: Cell cycle regulation by feed-forward loops coupling transcription and phosphorylation. Mol Syst Biol. 5:2362009. View Article : Google Scholar : PubMed/NCBI

24 

Weinberg RA: The biology of cancer, 2nd edition, Chapter 9: p53 and apoptosis: Master guardian and executioner. Garland Sci; New York: 2014

25 

Vermeulen K, Van Bockstaele DR and Berneman ZN: The cell cycle: A review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36:131–149. 2003. View Article : Google Scholar : PubMed/NCBI

26 

Deshpande A, Sicinski P and Hinds PW: Cyclins and cdks in development and cancer: A perspective. Oncogene. 24:2909–2915. 2005. View Article : Google Scholar : PubMed/NCBI

27 

Malumbres M: Cyclin-dependent kinases. Genome Biol. 15:1222014. View Article : Google Scholar : PubMed/NCBI

28 

Sherr CJ and McCormick F: The RB and p53 pathways in cancer. Cancer Cell. 2:103–112. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Giordano A, McCall C, Whyte P and Franza BR Jr: Human cyclin A and the retinoblastoma protein interact with similar but distinguishable sequences in the adenovirus E1A gene product. Oncogene. 6:481–485. 1991.PubMed/NCBI

30 

Wang J, Chenivesse X, Henglein B and Bréchot C: Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature. 343:555–557. 1990. View Article : Google Scholar : PubMed/NCBI

31 

Wang J, Zindy F, Chenivesse X, Lamas E, Henglein B and Bréchot C: Modification of cyclin A expression by hepatitis B virus DNA integration in a hepatocellular carcinoma. Oncogene. 7:1653–1656. 1992.PubMed/NCBI

32 

Bréchot C: Oncogenic activation of cyclin A. Curr Opin Genet Dev. 3:11–18. 1993. View Article : Google Scholar : PubMed/NCBI

33 

Bodey B, Williams RT, Carbonaro-Hall DA, Horvath A, Tolo VT, Luck JV Jr, Taylor CR and Hall FL: Immunocytochemical detection of cyclin A and cyclin D in formalin-fixed, paraffin-embedded tissues: Novel, pertinent markers of cell proliferation. Mod Pathol. 7:846–852. 1994.PubMed/NCBI

34 

Motokura T and Arnold A: Cyclin D and oncogenesis. Curr Opin Genet Dev. 3:5–10. 1993. View Article : Google Scholar : PubMed/NCBI

35 

Hunter T and Pines J: Cyclins and Cancer II: Cyclin D and CDK inhibitors come of age. Cell. 79:573–582. 1994. View Article : Google Scholar : PubMed/NCBI

36 

Santamaria D, Barrière C, Cerqueira A, Hunt S, Tardy C, Newton K, Cáceres JF, Dubus P, Malumbres M and Barbacid M: Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 448:811–815. 2007. View Article : Google Scholar : PubMed/NCBI

37 

Blagosklonny MV and Pardee AB: The restriction point of the cell cycle. Cell Cycle. 1:103–110. 2002. View Article : Google Scholar : PubMed/NCBI

38 

Hwang HC and Clurman BE: Cyclin E in normal and neoplastic cell cycles. Oncogene. 24:2776–2786. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Narasimha AM, Kaulich M, Shapiro GS, Choi YJ, Sicinski P and Dowdy SF: Cyclin D activates the Rb tumor suppressor by mono-phosphorylation. Elife. 3:2014.doi: 10.7554/eLife.02872. View Article : Google Scholar : PubMed/NCBI

40 

El-Deiry WS: p21(WAF1) mediates cell cycle inhibition, relevant to cancer suppression and therapy. Cancer Res. 76:5189–5191. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Roussel MF: The INK4 family of cell cycle inhibitors in cancer. Oncogene. 18:5311–5317. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D and DePinho RA: Role of the INK4a locus in tumor suppression and cell mortality. Cell. 85:27–37. 1996. View Article : Google Scholar : PubMed/NCBI

43 

Shapiro GI and Harper JW: Anticancer drug targets: Cell cycle and checkpoint control. J Clin Invest. 104:1645–1653. 1999. View Article : Google Scholar : PubMed/NCBI

44 

Casimiro MC, Velasco-Velázquez M, Aguirre-Alvarado C and Pestell RG: Overview of cyclins D1 function in cancer and the CDK inhibitor landscape: Past and present. Expert Opin Investig Drugs. 23:295–304. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Abbas T and Dutta A: p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer. 9:400–414. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Peyressatre M, Prével C, Pellerano M and Morris MC: Targeting cyclin-dependent kinases in human cancers: From small molecules to Peptide inhibitors. Cancers (Basel). 7:179–237. 2015. View Article : Google Scholar : PubMed/NCBI

47 

Asghar U, Witkiewicz AK, Turner NC and Knudsen ES: The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 14:130–146. 2015. View Article : Google Scholar : PubMed/NCBI

48 

Sherr CJ, Beach D and Shapiro GI: Targeting CDK4 and CDK6: From discovery to therapy. Cancer Discov. 6:353–367. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Horne MC, Goolsby GL, Donaldson KL, Tran D, Neubauer M and Wahl AF: Cyclin G1 and Cyclin G2 comprise a new family of cyclins with contrasting tissue-specific and cell cycle-regulated expression. J Biol Chem. 271:6050–6061. 1996. View Article : Google Scholar : PubMed/NCBI

50 

Wu L, Liu L, Yee A, Carbonarohall D, Tolo V and Hall F: Molecular-cloning of the human CYCG1 gene encoding a G-type cyclin-overexpression in human osteosarcoma cells. Oncol Rep. 1:705–711. 1994.PubMed/NCBI

51 

Okamoto K and Beach D: Cyclin G is a transcriptional target of the p53 tumor suppressor protein. EMBO J. 13:4816–4822. 1994.PubMed/NCBI

52 

Efeyan A and Serrano M: p53: Guardian of the genome and policeman of the oncogenes. Cell Cycle. 6:1006–1010. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Smith ML, Kontny HU, Bortnick R and Fornace AJ Jr: The p53-regulated cyclin G gene promotes cell growth: p53 downstream effectors cyclin G and Gadd45 exert different effects on cisplatin chemosensitivity. Exp Cell Res. 230:61–68. 1997. View Article : Google Scholar : PubMed/NCBI

54 

Skotzko M, Wu L, Anderson WF, Gordon EM and Hall FL: Retroviral vector-mediated gene transfer of antisense Cyclin G1 (CYCG1) inhibits proliferation of human osteogenic sarcoma cells. Cancer Res. 55:5493–5498. 1995.PubMed/NCBI

55 

Chen DS, Zhu NL, Hung G, Skotzko MJ, Hinton DR, Tolo V, Hall FL, Anderson WF and Gordon EM: Retroviral vector-mediated transfer of an antisense cyclin G1 construct inhibits osteosarcoma tumor growth in nude mice. Hum Gene Ther. 8:1667–1674. 1997. View Article : Google Scholar : PubMed/NCBI

56 

Hung G, Skotzko MJ, Chang M, Zhu NL, Parekh D, Hall FL, Gordon EM and Anderson WF: Intratumoral injection of an antisense cyclin G1 retroviral vector inhibits growth of undifferentiated carcinoma xenografts in nude mice. Pediatr Hematol Oncol. 4:317–325. 1997.

57 

Piette J, Neel H and Maréchal V: Mdm2: Keeping p53 under control. Oncogene. 15:1001–1010. 1997. View Article : Google Scholar : PubMed/NCBI

58 

Momand J, Jung D, Wilczynski S and Niland J: The MDM2 gene amplification database. Nucleic Acids Res. 26:3453–3459. 1998. View Article : Google Scholar : PubMed/NCBI

59 

Haupt S, Vijayakumaran R, Miranda PJ, Burgess A, Lim E and Haupt Y: The role of MDM2 and MDM4 in breast cancer development and prevention. J Mol Cell Biol. 9:53–61. 2017.PubMed/NCBI

60 

Momand J, Zambetti GP, Olson DC, George D and Levine AJ: The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 69:1237–1245. 1992. View Article : Google Scholar : PubMed/NCBI

61 

Iwakuma T and Lozano G: DM2, an introduction. Mol Cancer Res. 1:993–1000. 2003.PubMed/NCBI

62 

Shi D and Gu W: Dual roles of MDM2 in the regulation of p53: Ubiquitination dependent and ubiquitination independent mechanisms of MDM2 repression of p53 activity. Genes Cancer. 3:240–248. 2012. View Article : Google Scholar : PubMed/NCBI

63 

Shangary S and Wang S: Targeting the MDM2-p53 interaction for cancer therapy. Clin Cancer Res. 14:5318–5324. 2008. View Article : Google Scholar : PubMed/NCBI

64 

Tisato V, Voltan R, Gonelli A, Secchiero P and Zauli G: MDM2/X inhibitors under clinical evaluation: Perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol. 10:1332017. View Article : Google Scholar : PubMed/NCBI

65 

Estrada-Ortiza N, Neochoritisa CG and Dömlinga A: How to design a successful p53-MDM2/X interaction inhibitor: A thorough overview based on crystal structures. Chem Med Chem. 11:757–772. 2016. View Article : Google Scholar : PubMed/NCBI

66 

Meek DW and Knippschild U: Posttranslational modification of MDM2. Mol Cancer Res. 1:1017–1026. 2003.PubMed/NCBI

67 

Okamoto K, Kamibayashi C, Serrano M, Prives C, Mumby MC and Beach D: p53-dependent association between cyclin G and the B' subunit of protein phosphatase 2A. Mol Cell Biol. 16:6593–6602. 1996. View Article : Google Scholar : PubMed/NCBI

68 

Okamoto K, Li H, Jensen MR, Zhang T, Taya Y, Thorgeirsson SS and Prives C: Cyclin G recruits PP2A to dephosphorylate Mdm2. Mol Cell. 9:761–771. 2002. View Article : Google Scholar : PubMed/NCBI

69 

Westermarck J and Hahn WC: Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol Med. 14:152–160. 2008. View Article : Google Scholar : PubMed/NCBI

70 

Kimura SH and Nojima H: Cyclin G1 associates with MDM2 and regulates accumulation and degradation of p53 protein. Genes Cells. 7:869–880. 2002. View Article : Google Scholar : PubMed/NCBI

71 

Giono LE and Manfredi JJ: The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol. 209:13–20. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Chen X: Cyclin G: A regulator of the p53-Mdm2 network. Dev Cell. 2:518–519. 2002. View Article : Google Scholar : PubMed/NCBI

73 

Jensen MR, Factor VM, Fantozzi A, Helin K, Huh CG and Thorgeirsson SS: Reduced hepatic tumor incidence in cyclin G1-deficient mice. Hepatology. 37:862–870. 2003. View Article : Google Scholar : PubMed/NCBI

74 

Zhu NL, Wu L, Liu PX, Gordon EM, Anderson WF, Starnes VA and Hall FL: Down-regulation of cyclin G1 expression by retrovirus-mediated antisense gene transfer inhibits vascular smooth muscle cell proliferation and neointima formation. Circulation. 96:628–635. 1997. View Article : Google Scholar : PubMed/NCBI

75 

Kampmeier J, Behrens A, Wang Y, Yee A, Anderson WF, Hall FL, Gordon EM and McDonnell PJ: Inhibition of rabbit keratocyte and human fetal lens epithelial cell proliferation by retroviral-mediated transfer of antisense cyclin G1 and antisense MAT1 constructs. Hum Gene Ther. 11:1–8. 2000. View Article : Google Scholar : PubMed/NCBI

76 

Jensen MR, Factor VM and Thorgeirsson SS: Regulation of Cyclin G1 during murine hepatic regeneration following Dipin-induced DNA damage. Hepatology. 28:537–546. 1998. View Article : Google Scholar : PubMed/NCBI

77 

Xu F, Prescott MF, Liu PX, Chen ZH, Liau G, Gordon EM and Hall FL: Long term inhibition of neointima formation in balloon-injured rat arteries by intraluminal instillation of a matrix-targeted retroviral vector bearing an improved cytocidal Cyclin G1 construct. Int J Mol Med. 8:19–30. 2001.PubMed/NCBI

78 

Waehler R, Russell SJ and Curiel DT: Engineering targeted viral vectors for gene therapy. Nature Rev Genet. 8:573–587. 2007. View Article : Google Scholar : PubMed/NCBI

79 

Hall FL, Gordon EM, Wu L, Zhu NL, Skotzko MJ, Starnes VA and Anderson WF: Targeting retroviral vectors to vascular lesions by genetic engineering of the MoMLV gp70 envelope protein. Hum Gene Ther. 8:2183–2192. 1997. View Article : Google Scholar : PubMed/NCBI

80 

Weimin Wu B, Cannon PM, Gordon EM, Hall FL and Anderson WF: Characterization of the proline-rich region of murine leukemia virus envelope protein. J Virol. 72:5383–5391. 1998.PubMed/NCBI

81 

Hall FL, Liu L, Zhu NL, Stapfer M, Anderson WF, Beart RW and Gordon EM: Molecular engineering of matrix-targeted retroviral vectors incorporating a surveillance function inherent in von Willebrand factor. Hum Gene Ther. 11:983–993. 2000. View Article : Google Scholar : PubMed/NCBI

82 

Zhu NL, Gordon EM, Liu L, Terramani T, Anderson WF and Hall FL: Collagen-targeted retroviral vectors displaying domain D2 of von Willebrand factor (vWF-D2) enhance gene transfer to human tissue explants. Int J Pediatr Hematol Oncol. 7:325–335. 2001.

83 

Gordon EM, Zhu NL, Forney Prescott M, Chen ZH, Anderson WF and Hall FL: Lesion-targeted injectable vectors for vascular restenosis. Hum Gene Ther. 12:1277–1287. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Behrens A, Gordon EM, Li L, Liu PX, Chen Z, Peng H, La Bree L, Anderson WF, Hall FL and McDonnell PJ: Retroviral gene therapy vectors for prevention of excimer laser-induced corneal haze. Invest Ophthalmol Vis Sci. 43:968–977. 2002.PubMed/NCBI

85 

Song JC, McDonnell PJ, Gordon EM, Hall FL and Anderson WF: Phase I/II evaluation of safety and efficacy and a matrix-targeted retroviral vector bearing a dominant negative cyclin G1 construct (Mx-dnG1) as adjunctive intervention for superficial corneal opacity/corneal scarring. Hum Gene Ther. 14:306–309. 2003.PubMed/NCBI

86 

Gordon EM, Liu PX, Chen ZH, Liu L, Whitley MD, Gee C, Groshen S, Hinton DR, Beart RW and Hall FL: Inhibition of metastatic tumor growth in nude mice by portal vein infusions of matrix-targeted retroviral vectors bearing a cytocidal cyclin G1 construct. Cancer Res. 60:3343–3347. 2000.PubMed/NCBI

87 

Gordon EM, Liu PX, Chen ZH, Liu L, Whitley M, Liu L, Wei D, Groshen S, Hinton DR, Anderson WF, Beart RW Jr and Hall FL: Systemic administration of a matrix-targeted retroviral vector is efficacious for cancer gene therapy in mice. Hum Gene Ther. 12:193–204. 2001. View Article : Google Scholar : PubMed/NCBI

88 

Lenz HJ, Anderson WF, Hall FL and Gordon EM: Tumor site specific phase I evaluation of safety and efficacy of hepatic arterial infusion of a matrix-targeted retroviral vector bearing a dominant negative Cyclin G1 construct as treatment for colorectal carcinoma metastatic to liver. Hum Gene Ther. 13:1515–1537. 2002. View Article : Google Scholar : PubMed/NCBI

89 

Le Tourneau C, Lee JJ and Siu LL: Dose escalation methods in phase I cancer clinical trials. J Natl Cancer Inst. 101:708–720. 2009. View Article : Google Scholar : PubMed/NCBI

90 

Gordon EM, Cornelio GH, Lorenzo CC III, Levy JP, Reed RA, Liu L and Hall FL: First clinical experience using a ‘pathotropic’ injectable retroviral vector (Rexin-G) as intervention for stage IV pancreatic cancer. Int J Oncol. 24:177–185. 2004.PubMed/NCBI

91 

Gordon EM, Lopez FF, Cornelio GH, Lorenzo CC III, Levy JP, Reed RA, Liu L, Bruckner HW and Hall FL: Pathotropic nanoparticles for cancer gene therapy Rexin-G IV: Three-year clinical experience. Int J Oncol. 29:1053–1064. 2006.PubMed/NCBI

92 

Galanis E, Carlso SK, Foster NR, Lowe V, Quevedo F, McWilliams RR, Grothey A, Jatoi A, Alberts SR and Rubin J: Phase I trial of a pathotropic retroviral vector expressing a cytocidal cyclin G1 construct (Rexin-G) in patients with advanced pancreatic cancer. Mol Ther. 16:979–984. 2008. View Article : Google Scholar : PubMed/NCBI

93 

Chawla SP, Chua VS, Mohan V, Alzwahereh K, Kalra A, Quon D, Gordon EM and Hall FL: Phase I/II study of targeted gene delivery in vivo-intravenous infusions of Rexin-G demonstrate significant biologic activity by FDG PET-CT without toxicity in patients with progressive chemo-resistant sarcoma, breast cancer and pancreatic cancer. J Clin Oncol. 26 15-Suppl:S14509. 2008. View Article : Google Scholar

94 

Chawla SP, Chua VS, Fernandez L, Quon D, Saralou A, Blackwelder WC, Hall FL and Gordon EM: Evaluation of the safety and efficacy of ‘pathotropic’ nanoparticles bearing a dominant-negative Cyclin G1 construct (Rexin-G) as monotherapy for chemo-resistant osteosarcoma and other sarcomas-phase I/II and phase II studies. J Clin Oncol. 27:10513. 2009.

95 

Chawla SP, Chua VS, Fernandez L, Quon D, Saralou A, Blackwelder WC, Hall FL and Gordon EM: Phase I/II and phase II studies of targeted gene delivery in vivo: intravenous Rexin-G for chemotherapy-resistant sarcoma and osteosarcoma. Mol Ther. 17:1651–1657. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Chawla SP, Chawla NS, Quon D, Chua-Alcala V, Blackwelder WC, Hall FL and Gordon EM: An advanced phase 1/2 study using an XC-targeted gene therapy vector for chemotherapy resistant sarcoma. Sarcoma Res Int. 3:1024–1031. 2016.

97 

Chawla SP, Chua VS, Fernandez L, Quon D, Blackwelder WC, Gordon EM and Hall FL: Advanced phase I/II studies of targeted gene delivery in vivo: Intravenous Rexin-G for gemcitabine-resistant metastatic pancreatic cancer. Mol Ther. 18:435–441. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Gordon EM and Hall FL: Rexin-G, a targeted genetic medicine for cancer. Expert Opin Biol Ther. 10:819–832. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Gordon EM, Chan MT, Geraldino N, Lopez FF, Cornelio GH, Lorenzo CC III, Levy JP, Reed RA, Liu L and Hall FL: Le morte du tumour: Histological features of tumor destruction in chemo-resistant cancers following intravenous infusions of pathotropic nanoparticles bearing therapeutic genes. Int J Oncol. 30:1297–1307. 2007.PubMed/NCBI

100 

Gordon EM and Hall FL: A primer on pathotropic medicine. In ‘one hundred years of the FDA and the future of global health. Brooklands New Media Ltd; Shopshire UK: pp. 842007

101 

Kim S, Federman N, Gordon EM, Hall FL and Chawla SP: Rexin-G®, a tumor-targeted retrovector for malignant peripheral nerve sheath tumor: A case report. Mol Clin Oncol. 6:861–865. 2017. View Article : Google Scholar : PubMed/NCBI

102 

Feng Z, Zhang C, Wu R and Hu W: Tumor suppressor p53 meets microRNAs. J Mol Cell Biol. 3:44–50. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Huang S and He X: The role of microRNAs in liver cancer progression. Br J Cancer. 104:235–240. 2011. View Article : Google Scholar : PubMed/NCBI

104 

Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi LG, et al: Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res. 67:6092–6099. 2007. View Article : Google Scholar : PubMed/NCBI

105 

Coulouarn C, Factor VM, Andersen JB, Durkin ME and Thorgeirsson SS: Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene. 28:3526–3536. 2009. View Article : Google Scholar : PubMed/NCBI

106 

Fornari F, Gramantieri L, Giovannini C, Veronese A, Ferracin M, Sabbioni S, Calin GA, Grazi GL, Croce CM, Tavolari S, et al: MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 69:5761–5767. 2009. View Article : Google Scholar : PubMed/NCBI

107 

Wu X, Wu S, Tong L, Luan T, Lin L, Lu S, Zhao W, Ma Q, Liu H and Zhong Z: miR-122 affects the viability and apoptosis of hepatocellular carcinoma cells. Scand J Gastroenternol. 44:1332–1339. 2009. View Article : Google Scholar

108 

Ma L, Liu J, Shen J, Liu L, Wu J, Li W, Luo J, Chen Q and Qian C: Expression of miR-122 mediated by adenoviral vector induces apoptosis and cell cycle arrest of cancer cells. Cancer Biol Ther. 9:554–561. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, Yu L, Bai S, La Perle K, Chivukula RR, et al: Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest. 122:2871–2883. 2012. View Article : Google Scholar : PubMed/NCBI

110 

Bandopadhyay M, Sarkar N, Datta S, Das D, Pal A, Panigrahi1 R, Banerjee A, Panda CK, Das C, Chakrabarti S and Chakravarty R: Hepatitis B virus X protein mediated suppression of miRNA-122 expression enhances hepatoblastoma cell proliferation through cyclin G1-p53 axis. Infect Agent Cancer. 11:402016. View Article : Google Scholar : PubMed/NCBI

111 

Reimer CL, Borras AM, Kurdistani SK, Garreau JR, Chung M, Aaronson SA and Lee SW: Altered regulation of Cyclin G in human breast cancer and its specific localization at replication foci in response to DNA damage in p53+/+ cells. J Biol Chem. 274:11022–11029. 1999. View Article : Google Scholar : PubMed/NCBI

112 

Perez R, Wu N, Klipfel AA and Beart RW Jr: A better cell cycle target for gene therapy of colorectal cancer: Cyclin G. J Gastrointest Surg. 7:884–889. 2003. View Article : Google Scholar : PubMed/NCBI

113 

Wen W, Ding J, Sun W, Fu J, Chen Y, Wu K, Ning B, Han T, Huang L, Chen C, et al: Cyclin G1-mediated epithelial-mesenchymal transition via phosphoinositide 3-kinase/Akt signaling facilitates liver cancer progression. Hepatology. 55:1787–1798. 2012. View Article : Google Scholar : PubMed/NCBI

114 

Weinstein B and Joe A: Oncogene addiction. Cancer Res. 68:3077–3080. 2008. View Article : Google Scholar : PubMed/NCBI

115 

Li H, Okamoto K, Peart MJ and Prives C: Lysine-independent turnover of Cyclin G1 can be stabilized by B'alpha subunits of protein phosphatase 2A. Mol Cell Biol. 29:919–928. 2009. View Article : Google Scholar : PubMed/NCBI

116 

Piscopo DM and Hinds PW: A role for the cyclin box in the ubiquitin-mediated degradation of cyclin G1. Cancer Res. 68:5581–5590. 2008. View Article : Google Scholar : PubMed/NCBI

117 

Seo HR, Kim J, Bae S, Soh JW and Lee YS: Cdk5-mediated phosphorylation of c-Myc on Ser-62 is essential in transcriptional activation of cyclin B1 by Cyclin G1. J Biol Chem. 283:15601–15610. 2008. View Article : Google Scholar : PubMed/NCBI

118 

Menssen A and Hermeking H: Characterization of the c-MYC-regulated transcriptome by SAGE: Identification and analysis of c-MYC target genes. Proc Natl Acad Sci USA. 99:6274–6279. 2002. View Article : Google Scholar : PubMed/NCBI

119 

Morita N, Kiryu S and Kiyama H: p53-independent Cyclin G expression in a group of mature neurons and its enhanced expression during nerve regeneration. J Neurosci. 16:5961–5966. 1996. View Article : Google Scholar : PubMed/NCBI

120 

Sultana R and Butterfield DA: Regional expression of key cell cycle proteins in brain from subjects with amnestic mild cognitive impairment. Neurochem Res. 32:655–662. 2007. View Article : Google Scholar : PubMed/NCBI

121 

Yang Y, Mufson EJ and Herrup K: Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci. 23:2557–2563. 2003. View Article : Google Scholar : PubMed/NCBI

122 

Lee MS, Kwon YT, Li M, Peng J, Friedlander RM and Tsai LH: Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature. 405:360–364. 2000. View Article : Google Scholar : PubMed/NCBI

123 

Ko J, Humbert S, Bronson RT, Takahashi S, Kulkarni AB, Li E and Tsai L: p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci. 21:6758–6771. 2001. View Article : Google Scholar : PubMed/NCBI

124 

Cheung ZH, Gong K and Ip NY: Cyclin-dependent kinase 5 supports neuronal survival through phosphorylation of Bcl-2. J Neurosci. 28:4872–4877. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Cruz JC, Tseng HC, Goldman JA, Shih H and Tsai LH: Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron. 40:471–483. 2003. View Article : Google Scholar : PubMed/NCBI

126 

Tansey WP: Mammalian MYC proteins and cancer. New J Sci. 2014:Article ID 757534. 2014. View Article : Google Scholar

127 

Dang CV, Reddy EP, Shokat KM and Soucek L: Drugging the ‘undruggable’ cancer targets. Nat Rev Cancer. 17:502–508. 2017. View Article : Google Scholar : PubMed/NCBI

128 

Zhang W, Xu J, Ji D, Li Z, He W, Yang F, Lan H, Wang Y, Wu Z, Liu X, et al: Cyclin G1 amplification enhances aurora kinase inhibitor-induced polyploid resistance and inhibition of Bcl-2 pathway reverses the resistance. Cell Physiol Biochem. 43:94–107. 2017. View Article : Google Scholar : PubMed/NCBI

129 

Russell P, Hennessy BT, Li J, Carey MS, Bast RC, Freeman T and Venkitaraman AR: Cyclin G1 regulates the outcome of taxane-induced mitotic checkpoint arrest. Oncogene. 31:2450–2460. 2012. View Article : Google Scholar : PubMed/NCBI

130 

Shang Y, Feng B, Zhou L, Ren G, Zhang Z, Fan X, Sun Y, Luo G, Liang J, Wu K, et al: The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer. Oncotarget. 7:538–549. 2015.

131 

Zhang H, Hao Y, Yang J, Zhou Y, Li J, Yin S, Sun C, Ma M, Huang Y and Xi JJ: Genome-wide functional screening of miR-23b as a pleiotropic modulator suppressing cancer metastasis. Nat Commun. 2:5542011. View Article : Google Scholar : PubMed/NCBI

132 

Yan J, Jiang JY, Meng XN, Xiu YL and Zong ZH: MiR-23b targets cyclin G1 and suppresses ovarian cancer tumorigenesis and progression. J Exp Clin Cancer Res. 35:312016. View Article : Google Scholar : PubMed/NCBI

133 

Uchihashi T, Ota K, Yabuno Y, Ohno S, Fukushima K, Naito Y, Kogo M, Yabuta N and Nojima H: ELAS1 induces apoptotic death in adenocarcinoma DU145 and squamous-cell carcinoma SAS cancer cells, but not in normal KD cells. Oncotarget. 8:85868–85882. 2017. View Article : Google Scholar : PubMed/NCBI

134 

Brown NR, Noble ME, Endicott JA, Garman EF, Wakatsuki S, Mitchell E, Rasmussen B, Hunt T and Johnson LN: The crystal structure of Cyclin A. Structure. 3:1235–1247. 1995. View Article : Google Scholar : PubMed/NCBI

135 

Ferro ES, Hyslop S and Camargo AC: Intracellullar peptides as putative natural regulators of protein interactions. J Neurochem. 91:769–777. 2004. View Article : Google Scholar : PubMed/NCBI

136 

de Araujo CB, Russo LC, Castro LM, Forti FL, do Monte ER, Rioli V, Gozzo FC, Colquhoun A and Ferro ES: A Novel intracellular peptide derived from g1/s cyclin d2 induces cell death. J Biol Chem. 289:16711–16726. 2014. View Article : Google Scholar : PubMed/NCBI

137 

Russo LC, Araujo CB, Iwai LK, Ferro ES and Forti FL: A cyclin D2-derived peptide acts on specific cell cycle phases by activating ERK1/2 to cause the death of breast cancer cells. J Proteomics. 151:24–32. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Gondeau C, Gerbal-Chaloin S, Bello P, Aldrian-Herrada G, Morris MC and Divita G: Design of a novel class of peptide inhibitors of cyclin-dependent kinase/cyclin activation. J Biol Chem. 280:13793–13800. 2005. View Article : Google Scholar : PubMed/NCBI

139 

Ahuja D, Sáenz-Robles MT and Pipas JM: SV40 large T antigen targets multiple cellular pathways to elicit cellular transformation. Oncogene. 24:7729–7745. 2005. View Article : Google Scholar : PubMed/NCBI

140 

Ohno S, Naito Y, Mukai S, Yabuta N and Nojima H: ELAS1-mediated inhibition of the cyclin G1-B’γ interaction promotes cancer cell apoptosis via stabilization and activation of p53. Oncogene. 34:5983–5996. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

August 2018
Volume 9 Issue 2

Print ISSN: 2049-9450
Online ISSN:2049-9469

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Gordon, E.M., Ravicz, J.R., Liu, S., Chawla, S.P., & Hall, F.L. (2018). Cell cycle checkpoint control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad‑spectrum cancer gene therapy - A review of molecular mechanisms for oncologists. Molecular and Clinical Oncology, 9, 115-134. https://doi.org/10.3892/mco.2018.1657
MLA
Gordon, E. M., Ravicz, J. R., Liu, S., Chawla, S. P., Hall, F. L."Cell cycle checkpoint control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad‑spectrum cancer gene therapy - A review of molecular mechanisms for oncologists". Molecular and Clinical Oncology 9.2 (2018): 115-134.
Chicago
Gordon, E. M., Ravicz, J. R., Liu, S., Chawla, S. P., Hall, F. L."Cell cycle checkpoint control: The cyclin G1/Mdm2/p53 axis emerges as a strategic target for broad‑spectrum cancer gene therapy - A review of molecular mechanisms for oncologists". Molecular and Clinical Oncology 9, no. 2 (2018): 115-134. https://doi.org/10.3892/mco.2018.1657