Open Access

Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β‑catenin signaling pathway

  • Authors:
    • Qinqin Zhou
    • Zhang Zhang
    • Liyan Song
    • Chunhua Huang
    • Qi Cheng
    • Sixue Bi
    • Xianjing Hu
    • Rongmin Yu
  • View Affiliations

  • Published online on: September 27, 2018     https://doi.org/10.3892/ol.2018.9518
  • Pages: 6930-6939
  • Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Cordyceps militaris is widely used as a traditional Chinese medicine health supplement, and is also used in the development of anticancer agents. In our previous studies, it was revealed that C. militaris fraction (CMF) possessed an antitumor effect against K562 cells in vitro, induced apoptosis and caused cell cycle arrest in the S phase. The published results also demonstrated that CMF‑induced apoptosis was involved in mitochondrial dysfunction. The aim of the present study was to investigate the anti‑invasion and anti‑metastasis effects of CMF in NCI‑H1299 and Lewis lung cancer (LLC) cell lines, which have high metastatic potential. MTT and clone formation assays were initially used to investigate the inhibitory effect of CMF on the viability of NCI‑H1299 and LLC cells. The results of cell adhesion, wound healing, migration and Matrigel invasion assays in vitro indicated that NCI‑H1299 cells (treated with 1, 3, 10 or 30 µg/ml CMF) and LLC cells (treated with 0.1, 0.3, 1 or 3 µg/ml CMF) demonstrated a concentration‑dependent reduction in cell migration and invasion compared with the control. In vivo experiments demonstrated that the oral administration of CMF (65, 130 or 260 mg/kg) decreased the tumor growth and decreased the lung and liver metastasis in an LLC xenograft model, compared with untreated mice. Furthermore, western blot analysis was used to investigate the mechanism of the effect of CMF on the migration of NCI‑H1299 cells and metastasis in the xenograft model. The results revealed that CMF may promote glycogen synthase kinase 3β (GSK‑3β)‑mediated degradation of β‑catenin inhibited the phosphorylation of upstream protein kinase B (Akt), which resulted in the attenuation of the expression of matrix metalloproteinase (MMP)‑2 and MMP‑9. These results suggested that CMF may possess potential for the treatment of lung cancer metastasis via the Akt/GSK‑3β/β‑catenin pathway.

References

1 

Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI

2 

Youlden DR, Cramb SM and Baade PD: The international epidemiology of lung cancer: Geographical distribution and secular trends. J Thorac Oncol. 3:819–831. 2008. View Article : Google Scholar : PubMed/NCBI

3 

Riihimaki M, Hemminki A, Fallah M, Thomsen H, Sundquist K, Sundquist J and Hemminki K: Metastatic sites and survival in lung cancer. Lung Cancer. 86:78–84. 2014. View Article : Google Scholar : PubMed/NCBI

4 

Rosell R and Karachaliou N: Relationship between gene mutation and lung cancer metastasis. Cancer Metastasis Rev. 34:243–248. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Chen QY, Jiao DM, Yan L, Wu YQ, Hu HZ, Song J, Yan J, Wu LJ, Xu LQ and Shi JG: Comprehensive gene and microRNA expression profiling reveals miR-206 inhibits MET in lung cancer metastasis. Mol Biosyst. 11:2290–2302. 2015. View Article : Google Scholar : PubMed/NCBI

6 

Wang X and Adjei AA: Lung cancer and metastasis: New opportunities and challenges. Cancer Metastasis Rev. 34:169–171. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Novaes FT, Cataneo DC, Junior Ruiz RL, Defaveri J, Michelin OC and Cataneo AJ: Lung cancer: Histology, staging, treatment and survival. J Bras Pneumol. 34:595–600. 2008.(In English, Portuguese). View Article : Google Scholar : PubMed/NCBI

8 

Weigelt B, Peterse JL and van't Veer LJ: Breast cancer metastasis: Markers and models. Nat Rev Cancer. 5:591–602. 2005. View Article : Google Scholar : PubMed/NCBI

9 

Kessenbrock K, Plaks V and Werb Z: Matrix metalloproteinases: Regulators of the tumor microenvironment. Cell. 141:52–67. 2010. View Article : Google Scholar : PubMed/NCBI

10 

Wieczorek E, Jablonska E, Wasowicz W and Reszka E: Matrix metalloproteinases and genetic mouse models in cancer research: A mini-review. Tumour Biol. 36:163–175. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Egeblad M and Werb Z: New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2:161–174. 2002. View Article : Google Scholar : PubMed/NCBI

12 

Garbisa S, Scagliotti G, Masiero L, Di Francesco C, Caenazzo C, Onisto M, Micela M, Stetler-Stevenson WG and Liotta LA: Correlation of serum metalloproteinase levels with lung cancer metastasis and response to therapy. Cancer Res. 52:4548–4549. 1992.PubMed/NCBI

13 

Hrabec E, Strek M, Nowak D and Hrabec Z: Elevated level of circulating matrix metalloproteinase-9 in patients with lung cancer. Respir Med. 95:1–4. 2001. View Article : Google Scholar : PubMed/NCBI

14 

Vidal SJ, Rodriguez-Bravo V, Galsky M, Cordon-Cardo C and Domingo-Domenech J: Targeting cancer stem cells to suppress acquired chemotherapy resistance. Oncogene. 33:4451–4463. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Gai JQ, Sheng X, Qin JM, Sun K, Zhao W and Ni L: The effect and mechanism of bufalin on regulating hepatocellular carcinoma cell invasion and metastasis via Wnt/β-catenin signaling pathway. Int J Oncol. 48:338–348. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Lin J and Beer DG: Molecular predictors of prognosis in lung cancer. Ann Surg Oncol. 19:669–676. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Uematsu K, He B, You L, Xu Z, McCormick F and Jablons DM: Activation of the Wnt pathway in non small cell lung cancer: Evidence of dishevelled overexpression. Oncogene. 22:7218–7221. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Brognard J, Clark AS, Ni Y and Dennis PA: Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res. 61:3986–3997. 2001.PubMed/NCBI

19 

Cui JD: Biotechnological production and applications of Cordyceps militaris, a valued traditional Chinese medicine. Crit Rev Biotechnol. 35:475–484. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Kang HJ, Baik HW, Kim SJ, Lee SG, Ahn HY, Park JS, Park SJ, Jang EJ, Park SW, Choi JY, et al: Cordyceps militaris enhances cell-mediated immunity in healthy korean men. J Med Food. 18:1164–1172. 2015. View Article : Google Scholar : PubMed/NCBI

21 

Yue K, Ye M, Zhou Z, Sun W and Lin X: The genus Cordyceps: A chemical and pharmacological review. J Pharm Pharmacol. 65:474–493. 2013. View Article : Google Scholar : PubMed/NCBI

22 

Liu JY, Feng CP, Li X, Chang MC, Meng JL and Xu LJ: Immunomodulatory and antioxidative activity of Cordyceps militaris polysaccharides in mice. Int J Biol Macromol. 86:594–598. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Chiu CP, Liu SC, Tang CH, Chan Y, El-Shazly M, Lee CL, Du YC, Wu TY, Chang FR and Wu YC: Anti-inflammatory Cerebrosides from Cultivated Cordyceps militaris. J Agric Food Chem. 64:1540–1548. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Liao Y, Ling J, Zhang G, Liu F, Tao S, Han Z, Chen S, Chen Z and Le H: Cordycepin induces cell cycle arrest and apoptosis by inducing DNA damage and up-regulation of p53 in Leukemia cells. Cell Cycle. 14:761–771. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Jeong JW, Jin CY, Park C, Han MH, Kim GY, Moon SK, Kim CG, Jeong YK, Kim WJ, Lee JD and Choi YH: Inhibition of migration and invasion of LNCaP human prostate carcinoma cells by cordycepin through inactivation of Akt. Int J Oncol. 40:1697–1704. 2012.PubMed/NCBI

26 

Tian T, Song L, Zheng Q, Hu X and Yu R: Induction of apoptosis by Cordyceps militaris fraction in human chronic myeloid leukemia K562 cells involved with mitochondrial dysfunction. Pharmacogn Mag. 10:325–331. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Guo Q, Shen S, Liao M, Lian P and Wang X: NGX6 inhibits cell invasion and adhesion through suppression of Wnt/beta-catenin signal pathway in colon cancer. Acta Biochim Biophys Sin (Shanghai). 42:450–456. 2010. View Article : Google Scholar : PubMed/NCBI

28 

Yamaguchi H, Wyckoff J and Condeelis J: Cell migration in tumors. Curr Opin Cell Biol. 17:559–564. 2005. View Article : Google Scholar : PubMed/NCBI

29 

Friedl P and Wolf K: Tumour-cell invasion and migration: Diversity and escape mechanisms. Nat Rev Cancer. 3:362–374. 2003. View Article : Google Scholar : PubMed/NCBI

30 

Gu S, Honisch S, Kounenidakis M, Alkahtani S, Alarifi S, Alevizopoulos K, Stournaras C and Lang F: Membrane androgen receptor down-regulates c-src-activity and beta-catenin transcription and triggers GSK-3beta-phosphorylation in colon tumor cells. Cell Physiol Biochem. 34:1402–1412. 2014. View Article : Google Scholar : PubMed/NCBI

31 

Wei Q, Zhao Y, Yang ZQ, Dong QZ, Dong XJ, Han Y, Zhao C and Wang EH: Dishevelled family proteins are expressed in non-small cell lung cancer and function differentially on tumor progression. Lung Cancer. 62:181–192. 2008. View Article : Google Scholar : PubMed/NCBI

32 

Shay G, Lynch CC and Fingleton B: Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol. 44–46:1–206. 2015.

33 

Leinonen T, Pirinen R, Böhm J, Johansson R and Kosma VM: Increased expression of matrix metalloproteinase-2 (MMP-2) predicts tumour recurrence and unfavourable outcome in non-small cell lung cancer. Histol Histopathol. 23:693–700. 2008.PubMed/NCBI

34 

Maru Y: The lung metastatic niche. J Mol Med (Berl). 93:1185–1192. 2015. View Article : Google Scholar : PubMed/NCBI

35 

Kruger A: Premetastatic niche formation in the liver: Emerging mechanisms and mouse models. J Mol Med (Berl). 93:1193–1201. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Reck M, Popat S, Reinmuth N, De Ruysscher D, Kerr KM and Peters S; and ESMO Guidelines Working Group, : Metastatic non-small-cell lung cancer (NSCLC): ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 25 Suppl 3:iii27–39. 2014. View Article : Google Scholar : PubMed/NCBI

37 

Ye L, Jia Y, Ji KE, Sanders AJ, Xue K, Ji J, Mason MD and Jiang WG: Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis. Oncol Lett. 10:1240–1250. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Mehlen P and Puisieux A: Metastasis: A question of life or death. Nat Rev Cancer. 6:449–458. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Duffy MJ, McGowan PM and Gallagher WM: Cancer invasion and metastasis: Changing views. J Pathol. 214:283–293. 2008. View Article : Google Scholar : PubMed/NCBI

40 

Luu HH, Zhang R, Haydon RC, Rayburn E, Kang Q, Si W, Park JK, Wang H, Peng Y, Jiang W and He TC: Wnt/beta-catenin signaling pathway as novel cancer drug targets. Curr Cancer Drug Targets. 4:653–671. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Yuan H, Meng X, Guo W, Cai P, Li W, Li Q, Wang W, Sun Y, Xu Q and Gu Y: Transmembrane-bound IL-15-promoted epithelial-mesenchymal transition in renal cancer cells requires the Src-dependent Akt/GSK-3β/β-catenin pathway. Neoplasia. 17:410–420. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Song X, Wang S and Li L: New insights into the regulation of Axin function in canonical Wnt signaling pathway. Protein Cell. 5:186–193. 2014. View Article : Google Scholar : PubMed/NCBI

43 

Rayasam GV, Tulasi VK, Sodhi R, Davis JA and Ray A: Glycogen synthase kinase 3: More than a namesake. Br J Pharmacol. 156:885–898. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

Journal Cover

December 2018
Volume 16 Issue 6

Print ISSN: 1792-1074
Online ISSN:1792-1082

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Zhou, Q., Zhang, Z., Song, L., Huang, C., Cheng, Q., Bi, S. ... Yu, R. (2018). Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β‑catenin signaling pathway. Oncology Letters, 16, 6930-6939. https://doi.org/10.3892/ol.2018.9518
MLA
Zhou, Q., Zhang, Z., Song, L., Huang, C., Cheng, Q., Bi, S., Hu, X., Yu, R."Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β‑catenin signaling pathway". Oncology Letters 16.6 (2018): 6930-6939.
Chicago
Zhou, Q., Zhang, Z., Song, L., Huang, C., Cheng, Q., Bi, S., Hu, X., Yu, R."Cordyceps militaris fraction inhibits the invasion and metastasis of lung cancer cells through the protein kinase B/glycogen synthase kinase 3β/β‑catenin signaling pathway". Oncology Letters 16, no. 6 (2018): 6930-6939. https://doi.org/10.3892/ol.2018.9518