|
1
|
Lai MC and Yang SN: Perinatal
hypoxic-ischemic encephalopathy. J Biomed Biotechnol.
2011:6098132011.PubMed/NCBI
|
|
2
|
Shankaran S: Neonatal encephalopathy:
treatment with hypothermia. J Neurotrauma. 26:437–443. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Fatemi A, Wilson MA and Johnston MV:
Hypoxic-ischemic encephalopathy in the term infant. Clin Perinatol.
36:835–858. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Martinez-Biarge M, Diez-Sebastian J,
Kapellou O, et al: Predicting motor outcome and death in term
hypoxic-ischemic encephalopathy. Neurology. 76:2055–2061. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Allen KA and Brandon DH: Hypoxic ischemic
encephalopathy: pathophysiology and experimental treatments.
Newborn Infant Nurs Rev. 11:125–133. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Thornton C, Rousset CI, Kichev A, et al:
Molecular mechanisms of neonatal brain injury. Neurol Res Int.
2012:5063202012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Kwon JM, Guillet R, Shankaran S, et al:
Clinical seizures in neonatal hypoxic-ischemic encephalopathy have
no independent impact on neurodevelopmental outcome: secondary
analyses of data from the neonatal research network hypothermia
trial. J Child Neurol. 26:322–328. 2011. View Article : Google Scholar
|
|
8
|
Douglas-Escobar M and Weiss MD: Biomarkers
of hypoxic-ischemic encephalopathy in newborns. Front Neurol.
3:1442012. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Adhami F, Liao G, Morozov YM, et al:
Cerebral ischemia-hypoxia induces intravascular coagulation and
autophagy. Am J Pathol. 169:566–583. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sameshima H and Ikenoue T:
Hypoxic-ischemic neonatal encephalopathy: animal experiments for
neuroprotective therapies. Stroke Res Treat.
2013:6593742013.PubMed/NCBI
|
|
11
|
Ghotbi N and Najibi B: Measurement of the
urinary lactate/creatinine ratio for early diagnosis of the
hypoxic-ischemic encephalopathy in newborns. Iran J Pediatr.
20:35–40. 2010.PubMed/NCBI
|
|
12
|
Jenkins DD, Rollins LG, Perkel JK, et al:
Serum cytokines in a clinical trial of hypothermia for neonatal
hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab.
32:1888–1896. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Shankaran S, Pappas A, McDonald SA, et al:
Childhood outcomes after hypothermia for neonatal encephalopathy. N
Engl J Med. 366:2085–2092. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Walsh BH, Broadhurst DI, Mandal R, et al:
The metabolomic profile of umbilical cord blood in neonatal hypoxic
ischaemic encephalopathy. PLoS One. 7:e505202012. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Liu X, Tooley J, Loberg EM, et al:
Immediate hypothermia reduces cardiac troponin I after
hypoxic-ischemic encephalopathy in newborn pigs. Pediatric Res.
70:352–356. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Liu SJ and Savtchouk I:
Ca2+permeable AMPA receptors switch allegiances:
mechanisms and consequences. J Physiol. 590:13–20. 2012.
|
|
17
|
Diamond JS: Calcium-permeable AMPA
receptors in the retina. Front Mol Neurosci. 4:272011. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Man HY: GluA2-lacking, calcium-permeable
AMPA receptors - inducers of plasticity? Curr Opin Neurobiol.
21:291–298. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rossi B, Maton G and Collin T:
Calcium-permeable presynaptic AMPA receptors in cerebellar
molecular layer interneurones. J Physiol. 586:5129–5145. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Deng W, Rosenberg PA, Volpe JJ, et al:
Calcium-permeable AMPA/kainate receptors mediate toxicity and
preconditioning by oxygen-glucose deprivation in oligodendrocyte
precursors. Proc Natl Acad Sci USA. 100:6801–6806. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Noh KM, Yokota H, Mashiko T, et al:
Blockade of calcium-permeable AMPA receptors protects hippocampal
neurons against global ischemia-induced death. Proc Natl Acad Sci
USA. 102:12230–12235. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yin HZ, Sensi SL, Ogoshi F and Weiss JH:
Blockade of Ca2+-permeable AMPA/kainate channels
decreases oxygen-glucose deprivation-induced
Zn2+accumulation and neuronal loss in hippocampal
pyramidal neurons. J Neurosci. 22:1273–1279. 2002.
|
|
23
|
Weiss JH: Ca permeable AMPA channels in
diseases of the nervous system. Front Mol Neurosci. 4:422011.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Gainey MA, Hurvitz-Wolff JR, Lambo ME, et
al: Synaptic scaling requires the GluR2 subunit of the AMPA
receptor. J Neurosci. 29:6479–6489. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gryder DS, Castaneda DC and Rogawski MA:
Evidence for low GluR2 AMPA receptor subunit expression at synapses
in the rat basolateral amygdala. J Neurochem. 94:1728–1738. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Li DP, Byan HS and Pan HL: Switch to
glutamate receptor 2-lacking AMPA receptors increases neuronal
excitability in hypothalamus and sympathetic drive in hypertension.
J Neurosci. 32:372–380. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Oguro K, Oguro N, Kojima T, et al:
Knockdown of AMPA receptor GluR2 expression causes delayed
neurodegeneration and increases damage by sublethal ischemia in
hippocampal CA1 and CA3 neurons. J Neurosci. 19:9218–9227.
1999.PubMed/NCBI
|
|
28
|
Van Damme P, Van Den Bosch L, Van Houtte
E, et al: GluR2-dependent properties of AMPA receptors determine
the selective vulnerability of motor neurons to excitotoxicity. J
Neurophysiol. 88:1279–1287. 2002.PubMed/NCBI
|
|
29
|
Midgett CR, Gill A and Madden DR: Domain
architecture of a calcium-permeable AMPA receptor in a ligand-free
conformation. Front Mol Neurosci. 4:562012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Wright A and Vissel B: The essential role
of AMPA receptor GluR2 subunit RNA editing in the normal and
diseased brain. Front Mol Neurosci. 5:342012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang Y, Wang XB and Zhou Q: Perisynaptic
GluR2-lacking AMPA receptors control the reversibility of synaptic
and spines modifications. Proc Natl Acad Sci USA. 107:11999–12004.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Isa T, Itazawa S, Iino M, Tsuzuki K and
Ozawa S: Distribution of neurones expressing inwardly rectifying
and Ca2+-permeable AMPA receptors in rat hippocampal
slices. J Physiol. 491(Pt 3): 719–733. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Colbourne F, Grooms SY, Zukin RS, et al:
Hypothermia rescues hippocampal CA1 neurons and attenuates
down-regulation of the AMPA receptor GluR2 subunit after forebrain
ischemia. Proc Natl Acad Sci USA. 100:2906–2910. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Grooms SY, Opitz T, Bennett MV, et al:
Status epilepticus decreases glutamate receptor 2 mRNA and protein
expression in hippocampal pyramidal cells before neuronal death.
Proc Natl Acad Sci USA. 97:3631–3636. 2000. View Article : Google Scholar
|
|
35
|
Rozov A, Sprengel R and Seeburg PH:
GluA2-lacking AMPA receptors in hippocampal CA1 cell synapses:
evidence from gene-targeted mice. Front Mol Neurosci. 5:222012.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zaitsev AV, Kim KK, Fedorova IM, et al:
Specific mechanism of use-dependent channel block of
calcium-permeable AMPA receptors provides activity-dependent
inhibition of glutamatergic neurotransmission. J Physiol.
589:1587–1601. 2011.
|
|
37
|
Talos DM, Follett PL, Folkerth RD, et al:
Developmental regulation of
α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor
subunit expression in forebrain and relationship to regional
susceptibility to hypoxic/ischemic injury. II. Human cerebral white
matter and cortex. J Comp Neurol. 497:61–77. 2006.
|
|
38
|
Spaethling JM, Klein DM, Singh P and
Meaney DF: Calcium-permeable AMPA receptors appear in cortical
neurons after traumatic mechanical injury and contribute to
neuronal fate. J Neurotrauma. 25:1207–1216. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Nguyen V and McQuillen PS: AMPA and
metabotropic excitoxicity explain subplate neuron vulnerability.
Neurobiol Dis. 37:195–207. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mahajan SS, Thai KH, Chen K, et al:
Exposure of neurons to excitotoxic levels of glutamate induces
cleavage of the RNA editing enzyme, adenosine deaminase acting on
RNA 2, and loss of GLUR2 editing. Neuroscience. 189:305–315. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mahajan SS and Ziff EB: Novel toxicity of
the unedited GluR2 AMPA receptor subunit dependent on surface
trafficking and increased Ca2+-permeability. Mol Cell
Neurosci. 35:470–481. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Sanderson JL, Gorski JA, Gibson ES, et al:
AKAP150-anchored calcineurin regulates synaptic plasticity by
limiting synaptic incorporation of Ca2+-permeable AMPA
receptors. J Neurosci. 32:15036–15052. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tanaka H, Calderone A, Jover T, et al:
Ischemic preconditioning acts upstream of GluR2 down-regulation to
afford neuroprotection in the hippocampal CA1. Proc Natl Acad Sci
USA. 99:2362–2367. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Zonouzi M, Renzi M, Farrant M and
Cull-Candy SG: Bidirectional plasticity of calcium-permeable AMPA
receptors in oligodendrocyte lineage cells. Nat Neurosci.
14:1430–1438. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Robertson SJ, Burnashev N and Edwards FA:
Ca2+permeability and kinetics of glutamate receptors in
rat medial habenula neurones: implications for purinergic
transmission in this nucleus. J Physiol. 518:539–549. 1999.
|
|
46
|
Johnson FO, Yuan Y, Hajela RK, et al:
Exposure to an environmental neurotoxicant hastens the onset of
amyotrophic lateral sclerosis-like phenotype in human
Cu2+/Zn2+superoxide dismutase 1 G93A mice:
glutamate-mediated excitotoxicity. J Pharmacol Exp Ther.
338:518–527. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Oren I, Nissen W, Kullmann DM, et al: Role
of ionotropic glutamate receptors in long-term potentiation in rat
hippocampal CA1 oriens-lacunosum moleculare interneurons. J
Neurosci. 29:939–950. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Vieira M, Fernandes J, Burgeiro A, et al:
Excitotoxicity through Ca2+-permeable AMPA receptors
requires Ca2+-dependent JNK activation. Neurobiol Dis.
40:645–655. 2010.
|
|
49
|
Oh MC, Kim JM, Safaee M, et al:
Overexpression of calcium-permeable glutamate receptors in
glioblastoma derived brain tumor initiating cells. PLoS One.
7:e478462012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Xu TL, Li JS, Jin YH, et al: Modulation of
the glycine response by Ca2+-permeable AMPA receptors in
rat spinal neurones. J Physiol. 514:701–711. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Carter RE, Weiss JH and Shuttleworth CW:
Zn2+chelation improves recovery by delaying spreading
depression-like events. Neuroreport. 21:1060–1064. 2010.
|
|
52
|
Watt NT, Taylor DR, Kerrigan TL, et al:
Prion protein facilitates uptake of zinc into neuronal cells. Nat
Commun. 3:11342012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ma J and Lowe G: Calcium permeable AMPA
receptors and autoreceptors in external tufted cells of rat
olfactory bulb. Neuroscience. 144:1094–1108. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Deshpande LS, Limbrick DD, Sombati S, et
al: Activation of a novel injury-induced calcium-permeable channel
that plays a key role in causing extended neuronal depolarization
and initiating neuronal death in excitotoxic neuronal injury. J
Pharmacol Exp Ther. 322:443–452. 2007. View Article : Google Scholar
|
|
55
|
Li MH, Inoue K, Si HF and Xiong ZG:
Calcium-permeable ion channels involved in glutamate
receptor-independent ischemic brain injury. Acta Pharmacol Sin.
32:734–740. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jia Y, Jeng JM, Sensi SL, et al:
Zn2+currents are mediated by calcium-permeable
AMPA/kainate channels in cultured murine hippocampal neurones. J
Physiol. 543:35–48. 2002.PubMed/NCBI
|
|
57
|
Deniro M and Al-Mohanna FA: Zinc
transporter 8 (ZnT8) expression is reduced by ischemic insults: a
potential therapeutic target to prevent ischemic retinopathy. PLoS
One. 7:e503602012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Takeda A, Takada S, Nakamura M, et al:
Transient increase in Zn2+ in hippocampal CA1 pyramidal
neurons causes reversible memory deficit. PLoS One.
6:e286152011.PubMed/NCBI
|
|
59
|
Waters DJ and Allen TG:
Ca2+-permeable non-NMDA glutamate receptors in rat
magnocellular basal forebrain neurones. J Physiol. 508:453–469.
1998.
|
|
60
|
Evstratova A and Toth K: Synaptically
evoked Ca2+release from intracellular stores is not
influenced by vesicular zinc in CA3 hippocampal pyramidal neurones.
J Physiol. 589:5677–5689. 2011.
|
|
61
|
Cho IH, Im JY, Kim D, et al: Protective
effects of extracellular glutathione against
Zn2+-induced cell death in vitro and in vivo. J Neurosci
Res. 74:736–743. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Medvedeva YV, Lin B, Shuttleworth CW and
Weiss JH: Intracellular Zn2+accumulation contributes to
synaptic failure, mitochondrial depolarization, and cell death in
an acute slice oxygen-glucose deprivation model of ischemia. J
Neurosci. 29:1105–1114. 2009.PubMed/NCBI
|
|
63
|
Kwak S and Weiss JH: Calcium-permeable
AMPA channels in neurodegenerative disease and ischemia. Curr Opin
Neurobiol. 16:281–287. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Clem RL and Huganir RL: Calcium-permeable
AMPA receptor dynamics mediate fear memory erasure. Science.
330:1108–1112. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wiltgen BJ, Royle GA, Gray EE, et al: A
role for calcium-permeable AMPA receptors in synaptic plasticity
and learning. PLoS One. 5:e128182010. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Shepherd JD: Memory, plasticity and sleep
- a role for calcium permeable AMPA receptors? Front Mol Neurosci.
5:492012. View Article : Google Scholar : PubMed/NCBI
|