|
1
|
Ferlay J, Shin HR, Bray F, Forman D,
Mathers C and Parkin DM: Estimates of worldwide burden of cancer in
2008: GLOBOCAN 2008. Int J Cancer. 127:2893–2917. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Jemal A, Bray F, Center MM, Ferlay J, Ward
E and Forman D: Global cancer statistics. CA Cancer J Clin.
61:69–90. 2011. View Article : Google Scholar
|
|
3
|
Ebert MP, Schandl L and Malfertheiner P:
Helicobacter pylori infection and molecular changes in
gastric carcinogenesis. J Gastroenterol. 37(Suppl 13): 45–49. 2002.
View Article : Google Scholar
|
|
4
|
Krejs GJ: Gastric cancer: epidemiology and
risk factors. Dig Dis. 28:600–603. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nagini S: Carcinoma of the stomach: A
review of epidemiology, pathogenesis, molecular genetics and
chemoprevention. World J Gastrointest Oncol. 4:156–169. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zheng L, Wang L, Ajani J and Xie K:
Molecular basis of gastric cancer development and progression.
Gastric Cancer. 7:61–77. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Remo A, Pancione M, Zanella C and
Vendraminelli R: Molecular pathology of colorectal carcinoma. A
systemic review centred on the new role of the pathologist.
Pathologica. 104:432–441. 2012.PubMed/NCBI
|
|
8
|
Zayakin P, Ancans G, Silina K, et al:
Tumor-associated autoantibody signature for the early detection of
gastric cancer. Int J Cancer. 132:137–147. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Lu H, Goodell V and Disis ML: Humoral
immunity directed against tumor-associated antigens as potential
biomarkers for the early diagnosis of cancer. J Proteome Res.
7:1388–1394. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Grotowski M: Antigens (CEA and CA 19-9) in
diagnosis and prognosis colorectal cancer. Pol Merkur Lekarski.
12:77–80. 2002.(In Polish).
|
|
11
|
Takahashi Y: Gastrointestinal cancer. Gan
To Kagaku Ryoho. 31:1275–1279. 2004.(In Japanese).
|
|
12
|
Park IJ, Choi GS and Jun SH: Prognostic
value of serum tumor antigen CA19-9 after curative resection of
colorectal cancer. Anticancer Res. 29:4303–4308. 2009.PubMed/NCBI
|
|
13
|
Fernandes LL, Martins LC, Nagashima CA,
Nagae AC, Waisberg DR and Waisberg J: CA72-4 antigen levels in
serum and peritoneal washing in gastric cancer. Correlation with
morphological aspects of neoplasia. Arq Gastroenterol. 44:235–239.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Carpelan-Holmstrom M, Louhimo J, Stenman
UH, Alfthan H and Haglund C: CEA, CA 19-9 and CA 72-4 improve the
diagnostic accuracy in gastrointestinal cancers. Anticancer Res.
22:2311–2316. 2002.PubMed/NCBI
|
|
15
|
Chen XZ, Zhang WK, Yang K, et al:
Correlation between serum CA724 and gastric cancer: multiple
analyses based on Chinese population. Mol Biol Rep. 39:9031–9039.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Van Cutsem E, Kohne CH, Lang I, et al:
Cetuximab plus irinotecan, fluorouracil, and leucovorin as
first-line treatment for metastatic colorectal cancer: updated
analysis of overall survival according to tumor KRAS and BRAF
mutation status. J Clin Oncol. 29:2011–2019. 2011.
|
|
17
|
Joyce T, Oikonomou E, Kosmidou V, et al: A
molecular signature for oncogenic BRAF in human colon cancer cells
is revealed by microarray analysis. Curr Cancer Drug Targets.
12:873–898. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Lee J, Seo JW, Jun HJ, et al: Impact of
MET amplification on gastric cancer: Possible roles as a
novel prognostic marker and a potential therapeutic target. Oncol
Rep. 25:1517–1524. 2011.
|
|
19
|
Bayrak M, Olmez OF, Kurt E, et al:
Prognostic significance of c-erbB2 overexpression in patients with
metastatic gastric cancer. Clin Transl Oncol. 15:307–312. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhong J, Zhao M, Ma Y, et al: UCHL1 acts
as a colorectal cancer oncogene via activation of the β-catenin/TCF
pathway through its deubiquitinating activity. Int J Mol Med.
30:430–436. 2012.PubMed/NCBI
|
|
21
|
Bellini MF, Cadamuro AC, Succi M, Proenca
MA and Silva AE: Alterations of the TP53 gene in gastric and
esophageal carcinogenesis. J Biomed Biotechnol. 2012:8919612012.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Fang Z, Xiong Y, Li J, et al: APC gene
deletions in gastric adenocarcinomas in a Chinese population: a
correlation with tumour progression. Clin Transl Oncol. 14:60–65.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Hsu CP, Kao TY, Chang WL, Nieh S, Wang HL
and Chung YC: Clinical significance of tumor suppressor PTEN in
colorectal carcinoma. Eur J Surg Oncol. 37:140–147. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Tate G, Suzuki T, Nemoto H, Kishimoto K,
Hibi K and Mitsuya T: Allelic loss of the PTEN gene and mutation of
the TP53 gene in choriocarcinoma arising from gastric
adenocarcinoma: analysis of loss of heterozygosity in two male
patients with extragonadal choriocarcinoma. Cancer Genet Cytogenet.
193:104–108. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nicolson GL, Nawa A, Toh Y, Taniguchi S,
Nishimori K and Moustafa A: Tumor metastasis-associated human MTA1
gene and its MTA1 protein product: role in epithelial cancer cell
invasion, proliferation and nuclear regulation. Clin Exp
Metastasis. 20:19–24. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Toh Y, Oki E, Oda S, et al: Overexpression
of the MTA1 gene in gastrointestinal carcinomas: correlation with
invasion and metastasis. Int J Cancer. 74:459–463. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Du B, Yang ZY, Zhong XY, et al:
Metastasis-associated protein 1 induces VEGF-C and facilitates
lymphangiogenesis in colorectal cancer. World J Gastroenterol.
17:1219–1226. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Oliveira LA, Artigiani-Neto R, Waisberg
DR, Fernandes LC, de Lima FO and Waisberg J: NM23 protein
expression in colorectal carcinoma using TMA (tissue microarray):
association with metastases and survival. Arq Gastroenterol.
47:361–367. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tahara E, Kuniyasu H, Nakayama H, Yasui W
and Yokozaki H: Metastasis related genes and malignancy in human
esophageal, gastric and colorectal cancers. Gan To Kagaku Ryoho.
20:326–331. 1993.(In Japanese).
|
|
30
|
Li N, Wang HX, Zhang J, Ye YP and He GY:
KISS-1 inhibits the proliferation and invasion of gastric carcinoma
cells. World J Gastroenterol. 18:1827–1833. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zheng HC, Yu AM and Xin Y: Aberrant
expression of Kiss-1 and matrix metalloproteinase-9 are closely
linked to lymph node metastasis of gastric cancer. Chin Med Sci J.
23:63–64. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ilhan O, Celik SY, Han U and Onal B: Use
of KAI-1 as a prognostic factor in gastric carcinoma. Eur J
Gastroenterol Hepatol. 21:1369–1372. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Lombardi DP, Geradts J, Foley JF, Chiao C,
Lamb PW and Barrett JC: Loss of KAI1 expression in the progression
of colorectal cancer. Cancer Res. 59:5724–5731. 1999.PubMed/NCBI
|
|
34
|
Lee JH, Seo YW, Park SR, Kim YJ and Kim
KK: Expression of a splice variant of KAI1, a tumor metastasis
suppressor gene, influences tumor invasion and progression. Cancer
Res. 63:7247–7255. 2003.PubMed/NCBI
|
|
35
|
Hu H, Sun L, Guo C, et al: Tumor
cell-microenvironment interaction models coupled with clinical
validation reveal CCL2 and SNCG as two predictors of colorectal
cancer hepatic metastasis. Clin Cancer Res. 15:5485–5493. 2009.
View Article : Google Scholar
|
|
36
|
Liu C, Xue H, Lu Y and Chi B: Stem cell
gene Girdin: a potential early liver metastasis predictor of
colorectal cancer. Mol Biol Rep. 39:8717–8722. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Chang W, Ma L, Lin L, et al:
Identification of novel hub genes associated with liver metastasis
of gastric cancer. Int J Cancer. 125:2844–2853. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bai FH, Wang NJ, Wang J, et al: Screening
and identification of peritoneal metastasis-related genes of
gastric adenocarcinoma using a cDNA microarray. Genet Mol Res.
11:1682–1689. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liang B, Wang S, Yang X, Ye Y, Yu Y and
Cui Z: Expressions of cyclin E, cyclin dependent kinase 2 and
p57(KIP2) in human gastric cancer. Chin Med J (Engl). 116:20–23.
2003.PubMed/NCBI
|
|
40
|
Choi MG, Noh JH, An JY, et al: Expression
levels of cyclin G2, but not cyclin E, correlate with gastric
cancer progression. J Surg Res. 157:168–174. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Kouraklis G, Katsoulis IE, Theocharis S,
et al: Does the expression of cyclin E, pRb, and p21 correlate with
prognosis in gastric adenocarcinoma? Dig Dis Sci. 54:1015–1020.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ogino S, Nosho K, Irahara N, et al: A
cohort study of cyclin D1 expression and prognosis in 602 colon
cancer cases. Clin Cancer Res. 15:4431–4438. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Tsai HL, Yeh YS, Chang YT, et al:
Co-existence of cyclin D1 and vascular endothelial growth factor
protein expression is a poor prognostic factor for UICC stage I–III
colorectal cancer patients after curative resection. J Surg Oncol.
107:148–154. 2013.PubMed/NCBI
|
|
44
|
Wangefjord S, Manjer J, Gaber A, Nodin B,
Eberhard J and Jirstrom K: Cyclin D1 expression in colorectal
cancer is a favorable prognostic factor in men but not in women in
a prospective, population-based cohort study. Biol Sex Differ.
2:102011. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Geng M, Wang L, Cao YC, Li H and Liu XH:
Relationship of the expression of cyclin D1 and P21WAF1 with the
sensitivity to chemotherapeutic drugs on gastric cancers. Chin J
Gastroenterol Surg. 12:615–617. 2009.(In Chinese).
|
|
46
|
Li HL, Huang DZ, Deng T, et al:
Overexpression of cyclin L2 inhibits growth and enhances
chemosensitivity in human gastric cancer cells. Asian Pac J Cancer
Prev. 13:1425–1430. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Firestein R, Shima K, Nosho K, et al: CDK8
expression in 470 colorectal cancers in relation to β-catenin
activation, other molecular alterations and patient survival. Int J
Cancer. 126:2863–2873. 2010.PubMed/NCBI
|
|
48
|
Miladi-Abdennadher I, Abdelmaksoud-Damak
R, Ayadi L, et al: Expression of p16INK4a, alone or combined with
p53, is predictive of better prognosis in colorectal adenocarcinoma
in Tunisian patients. Appl Immunohistochem Mol Morphol. 19:562–568.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang F, Yang YZ, Shi CZ, et al: UHRF1
promotes cell growth and metastasis through repression of
p16ink4ain colorectal cancer. Ann Surg Oncol.
19:2753–2762. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Nakayama G, Kodera Y, Ohashi N, Koike M,
Fujiwara M and Nakao A: p16INK4amethylation in serum as
a follow-up marker for recurrence of colorectal cancer. Anticancer
Res. 31:1643–1646. 2011.
|
|
51
|
Al-Maghrabi J, Al-Ahwal M, Buhmeida A, et
al: Expression of cell cycle regulators p21 and p27 as predictors
of disease outcome in colorectal carcinoma. J Gastrointest Cancer.
43:279–287. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kim MY, Han SI and Lim SC: Roles of
cyclin-dependent kinase 8 and β-catenin in the oncogenesis and
progression of gastric adenocarcinoma. Int J Oncol. 38:1375–1383.
2011.
|
|
53
|
Masuda TA, Inoue H, Nishida K, et al:
Cyclin-dependent kinase 1 gene expression is associated with poor
prognosis in gastric carcinoma. Clin Cancer Res. 9:5693–5698.
2003.PubMed/NCBI
|
|
54
|
Sun W, Yao L, Jiang B, Shao H, Zhao Y and
Wang Q: A role for Cdkl1 in the development of gastric cancer. Acta
Oncol. 51:790–796. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Gryko M, Pryczynicz A, Guzinska-Ustymowicz
K, et al: Immunohistochemical assessment of apoptosis-associated
proteins: p53, Bcl-xL, Bax and Bak in gastric cancer cells in
correlation with clinical and pathomorphological factors. Adv Med
Sci. 57:77–83. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Tsujitani S, Saito H, Wakatsuki T, et al:
Relationship between expression of apoptosis-related proteins and
the efficacy of postoperative chemotherapy in patients with T3
gastric cancer. Surg Today. 42:225–232. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Pietrantonio F, Biondani P, de Braud F, et
al: Bax expression is predictive of favorable clinical outcome in
chemonaive advanced gastric cancer patients treated with
capecitabine, oxaliplatin, and irinotecan regimen. Transl Oncol.
5:155–159. 2012. View Article : Google Scholar
|
|
58
|
Jeong SH, Han JH, Kim JH, et al: Bax
predicts outcome in gastric cancer patients treated with
5-fluorouracil, leucovorin, and oxaliplatin palliative
chemotherapy. Dig Dis Sci. 56:131–138. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Liu X, Cai H, Huang H, Long Z, Shi Y and
Wang Y: The prognostic significance of apoptosis-related biological
markers in Chinese gastric cancer patients. PLoS One. 6:e296702011.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yildirim M, Suren D, Goktas S, et al: The
predictive role of Bcl-2 expression in operable locally advanced or
metastatic gastric carcinoma. J BUON. 17:106–109. 2012.PubMed/NCBI
|
|
61
|
Lee JS, Jung WK, Jeong MH, Yoon TR and Kim
HK: Sanguinarine induces apoptosis of HT-29 human colon cancer
cells via the regulation of Bax/Bcl-2 ratio and caspase-9-dependent
pathway. Int J Toxicol. 31:70–77. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kim MA, Lee HE, Lee HS, Yang HK and Kim
WH: Expression of apoptosis-related proteins and its clinical
implication in surgically resected gastric carcinoma. Virchows
Arch. 459:503–510. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Paschos KA, Canovas D and Bird NC: The
role of cell adhesion molecules in the progression of colorectal
cancer and the development of liver metastasis. Cell Signal.
21:665–674. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Paredes J, Figueiredo J, Albergaria A, et
al: Epithelial E- and P-cadherins: role and clinical significance
in cancer. Biochim Biophys Acta. 1826:297–311. 2012.PubMed/NCBI
|
|
65
|
Almeida PR, Ferreira VA, Santos CC, et al:
E-cadherin immunoexpression patterns in the characterisation of
gastric carcinoma histotypes. J Clin Pathol. 63:635–639. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Stanculescu D, Margaritescu C, Stepan A
and Mitrut AO: E-cadherin in gastric carcinomas related to
histological prognostic parameters. Rom J Morphol Embryol. 52(Suppl
3): 1107–1112. 2011.PubMed/NCBI
|
|
67
|
Chen X, Wang Y, Xia H, et al: Loss of
E-cadherin promotes the growth, invasion and drug resistance of
colorectal cancer cells and is associated with liver metastasis.
Mol Biol Rep. 39:6707–6714. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kang H, Min BS, Lee KY, et al: Loss of
E-cadherin and MUC2 expressions correlated with poor survival in
patients with stages II and III colorectal carcinoma. Ann Surg
Oncol. 18:711–719. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Okugawa Y, Toiyama Y, Inoue Y, et al:
Clinical significance of serum soluble E-cadherin in colorectal
carcinoma. J Surg Res. 175:e67–e73. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kamikihara T, Ishigami S, Arigami T, et
al: Clinical implications of N-cadherin expression in gastric
cancer. Pathol Int. 62:161–166. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Kim MA, Jung EJ, Lee HS, et al: P-cadherin
expression in gastric carcinoma: its regulation mechanism and
prognostic significance. Hum Pathol. 41:877–885. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Sun L, Hu H, Peng L, et al: P-cadherin
promotes liver metastasis and is associated with poor prognosis in
colon cancer. Am J Pathol. 179:380–390. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Park J, Park E, Han SW, et al:
Down-regulation of P-cadherin with PF-03732010 inhibits cell
migration and tumor growth in gastric cancer. Invest New Drugs.
30:1404–1412. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
St Hill CA: Interactions between
endothelial selectins and cancer cells regulate metastasis. Front
Biosci. 16:3233–3251. 2011.PubMed/NCBI
|
|
75
|
Ferroni P, Roselli M, Spila A, et al:
Serum sE-selectin levels and carcinoembryonic antigen
mRNA-expressing cells in peripheral blood as prognostic factors in
colorectal cancer patients. Cancer. 116:2913–2921. 2010. View Article : Google Scholar
|
|
76
|
Sato H, Usuda N, Kuroda M, Hashimoto S,
Maruta M and Maeda K: Significance of serum concentrations of
E-selectin and CA19-9 in the prognosis of colorectal cancer. Jpn J
Clin Oncol. 40:1073–1080. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Robertson JH, Yang SY, Winslet MC and
Seifalian AM: Functional blocking of specific integrins inhibit
colonic cancer migration. Clin Exp Metastasis. 26:769–780. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Alexiou D, Karayiannakis AJ, Syrigos KN,
et al: Clinical significance of serum levels of E-selectin,
intercellular adhesion molecule-1, and vascular cell adhesion
molecule-1 in gastric cancer patients. Am J Gastroenterol.
98:478–485. 2003. View Article : Google Scholar
|
|
79
|
Dymicka-Piekarska V, Guzinska-Ustymowicz
K, Kuklinski A and Kemona H: Prognostic significance of adhesion
molecules (sICAM-1, sVCAM-1) and VEGF in colorectal cancer
patients. Thromb Res. 129:e47–e50. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kuai WX, Wang Q, Yang XZ, Zhao Y, Yu R and
Tang XJ: Interleukin-8 associates with adhesion, migration,
invasion and chemosensitivity of human gastric cancer cells. World
J Gastroenterol. 18:979–985. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lee YS, Choi I, Ning Y, et al:
Interleukin-8 and its receptor CXCR2 in the tumour microenvironment
promote colon cancer growth, progression and metastasis. Br J
Cancer. 106:1833–1841. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Barderas R, Bartolome RA,
Fernandez-Acenero MJ, Torres S and Casal JI: High expression of
IL-13 receptor α2 in colorectal cancer is associated with invasion,
liver metastasis, and poor prognosis. Cancer Res. 72:2780–2790.
2012.
|
|
83
|
Formentini A, Braun P, Fricke H, Link KH,
Henne-Bruns D and Kornmann M: Expression of interleukin-4 and
interleukin-13 and their receptors in colorectal cancer. Int J
Colorectal Dis. 27:1369–1376. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Liang J, Li Y, Liu X, Xu X and Zhao Y:
Relationship between cytokine levels and clinical classification of
gastric cancer. Asian Pac J Cancer Prev. 12:1803–1806.
2011.PubMed/NCBI
|
|
85
|
Leushacke M, Sporle R, Bernemann C, et al:
An RNA interference phenotypic screen identifies a role for FGF
signals in colon cancer progression. PLoS One. 6:e233812011.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Zhao WM, Wang L, Park H, et al: Monoclonal
antibodies to fibroblast growth factor receptor 2 effectively
inhibit growth of gastric tumor xenografts. Clin Cancer Res.
16:5750–5758. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hwang TL, Lee LY, Wang CC, Liang Y, Huang
SF and Wu CM: CCL7 and CCL21 overexpression in gastric cancer is
associated with lymph node metastasis and poor prognosis. World J
Gastroenterol. 18:1249–1256. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Cambien B, Richard-Fiardo P, Karimdjee BF,
et al: CCL5 neutralization restricts cancer growth and potentiates
the targeting of PDGFRβ in colorectal carcinoma. PLoS One.
6:e288422011.PubMed/NCBI
|
|
89
|
Chen HJ, Edwards R, Tucci S, et al:
Chemokine 25-induced signaling suppresses colon cancer invasion and
metastasis. J Clin Invest. 122:3184–3196. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Heckmann D, Laufs S, Maier P, et al: A
lentiviral CXCR4 overexpression and knockdown model in colorectal
cancer cell lines reveals plerixafor-dependent suppression of
SDF-1α-induced migration and invasion. Onkologie. 34:502–508.
2011.PubMed/NCBI
|
|
91
|
Margolin DA, Silinsky J, Grimes C, et al:
Lymph node stromal cells enhance drug-resistant colon cancer cell
tumor formation through SDF-1α/CXCR4 paracrine signaling.
Neoplasia. 13:874–886. 2011.PubMed/NCBI
|
|
92
|
Skeen VR, Paterson I, Paraskeva C and
Williams AC: TGF-β1 signalling, connecting aberrant inflammation
and colorectal tumorigenesis. Curr Pharm Des. 18:3874–3888.
2012.
|
|
93
|
Ananiev J, Gulubova M, Tchernev G, et al:
Relation between transforming growth factor-β1 expression, its
receptor and clinicopathological factors and survival in
HER2-negative gastric cancers. Wien Klin Wochenschr. 123:668–673.
2011.
|
|
94
|
Terashima M, Kitada K, Ochiai A, et al:
Impact of expression of human epidermal growth factor receptors
EGFR and ERBB2 on survival in stage II/III gastric cancer. Clin
Cancer Res. 18:5992–6000. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu Y, Li Q and Zhu L: Expression of the
hepatocyte growth factor and c-Met in colon cancer: correlation
with clinicopathological features and overall survival. Tumori.
98:105–112. 2012.PubMed/NCBI
|
|
96
|
Yang X, Takano Y and Zheng HC: The
pathobiological features of gastrointestinal cancers (Review).
Oncol Lett. 3:961–969. 2012.PubMed/NCBI
|
|
97
|
Kim JY, Bae BN, Kwon JE, Kim HJ and Park
K: Prognostic significance of epidermal growth factor receptor and
vascular endothelial growth factor receptor in colorectal
adenocarcinoma. APMIS. 119:449–459. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Tsai HL, Yang IP, Lin CH, et al:
Predictive value of vascular endothelial growth factor
overexpression in early relapse of colorectal cancer patients after
curative resection. Int J Colorectal Dis. 28:415–424. 2013.
View Article : Google Scholar
|
|
99
|
Hasan MR, Ho SH, Owen DA and Tai IT:
Inhibition of VEGF induces cellular senescence in colorectal cancer
cells. Int J Cancer. 129:2115–2123. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Morales-Gutierrez C, Abad-Barahona A,
Moreno-Gonzalez E, Enriquez de Salamanca R and Vegh I: Tumour
VEGF/non tumour VEGF protein expression ratio as a biomarker for
survival in colorectal cancer patients. Eur J Surg Oncol.
37:526–531. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Sun P, Yu H, Zhang WQ, Hu M and Lv R:
Lentivirus-mediated siRNA targeting VEGF inhibits gastric cancer
growth in vivo. Oncol Rep. 28:1687–1692. 2012.PubMed/NCBI
|
|
102
|
Li M, Liu F, Sun P, et al: Correlations
between serum levels of vascular endothelial growth factor and
endostatin with clinical pathological characteristics of patients
with gastrointestinal cancers. Hepatogastroenterology.
59:1865–1868. 2012.
|
|
103
|
Villarejo-Campos P, Padilla-Valverde D,
Martin RM, et al: Serum VEGF and VEGF-C values before surgery and
after postoperative treatment in gastric cancer. Clin Transl Oncol.
15:265–270. 2013. View Article : Google Scholar
|
|
104
|
Zhou Y, Li N, Zhuang W and Wu X: Vascular
endothelial growth factor (VEGF) gene polymorphisms and gastric
cancer risk in a Chinese Han population. Mol Carcinog. 50:184–188.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Zhang M, Zhu GY, Gao HY, Zhao SP and Xue
Y: Expression of tissue levels of matrix metalloproteinases and
tissue inhibitors of metalloproteinases in gastric adenocarcinoma.
J Surg Oncol. 103:243–247. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Kosaka Y, Mimori K, Fukagawa T, et al:
Clinical significance of molecular detection of matrix
metalloproteinase-1 in bone marrow and peripheral blood in patients
with gastric cancer. Ann Surg Oncol. 19(Suppl 3): S430–S437. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Lu ZH, Fang YJ, Wu XJ, Pan ZZ and Wan DS:
Expression of matrix metalloproteinase 1 in tissue of colon
carcinoma and its clinical prognostic significance. Zhonghua Yi Xue
Za Zhi. 91:2895–2898. 2011.(In Chinese).
|
|
108
|
Noh S, Jung JJ, Jung M, et al: MMP-2 as a
putative biomarker for carcinomatosis in gastric cancer.
Hepatogastroenterology. 58:2015–2019. 2011.PubMed/NCBI
|
|
109
|
Kryczka J, Stasiak M, Dziki L, Mik M,
Dziki A and Cierniewski C: Matrix metalloproteinase-2 cleavage of
the β1 integrin ectodomain facilitates colon cancer cell motility.
J Biol Chem. 287:36556–36566. 2012.
|
|
110
|
Yang B, Su K, Gao J and Rao Z: Expression
and prognostic value of matrix metalloproteinase-7 in colorectal
cancer. Asian Pac J Cancer Prev. 13:1049–1052. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Bi Z, Dong LD and Gu XM: Clinical
significance of MMP-7 and PTEN expression in colorectal cancer.
Hepatogastroenterology. 60:32–36. 2012.PubMed/NCBI
|
|
112
|
Fanelli MF, Chinen LT, Begnami MD, et al:
The influence of transforming growth factor-α, cyclooxygenase-2,
matrix metalloproteinase (MMP)-7, MMP-9 and CXCR4 proteins involved
in epithelial-mesenchymal transition on overall survival of
patients with gastric cancer. Histopathology. 61:153–161. 2012.
|
|
113
|
Sena P, Mariani F, Marzona L, et al:
Matrix metalloproteinases 15 and 19 are stromal regulators of
colorectal cancer development from the early stages. Int J Oncol.
41:260–266. 2012.PubMed/NCBI
|
|
114
|
Inagaki D, Oshima T, Yoshihara K, et al:
Overexpression of tissue inhibitor of metalloproteinase-1 gene
correlates with poor outcomes in colorectal cancer. Anticancer Res.
30:4127–4130. 2010.PubMed/NCBI
|
|
115
|
Yoshikawa T, Cho H, Tsuburaya A and
Kobayashi O: Impact of plasma tissue inhibitor of
metalloproteinase-1 on long-term survival in patients with gastric
cancer. Gastric Cancer. 12:31–36. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Watanabe M, Takahashi Y, Ohta T, Mai M,
Sasaki T and Seiki M: Inhibition of metastasis in human gastric
cancer cells transfected with tissue inhibitor of metalloproteinase
1 gene in nude mice. Cancer. 77(Suppl 8): 1676–1680. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Miyagi M, Aoyagi K, Kato S and Shirouzu K:
The TIMP-1 gene transferred through adenovirus mediation shows a
suppressive effect on peritoneal metastases from gastric cancer.
Int J Clin Oncol. 12:17–24. 2007. View Article : Google Scholar
|
|
118
|
Nuovo GJ, Macconnell PB, Simsir A, Valea F
and French DL: Correlation of the in situ detection of polymerase
chain reaction-amplified metalloproteinase complementary DNAs and
their inhibitors with prognosis in cervical carcinoma. Cancer Res.
55:267–275. 1995.
|
|
119
|
Li BS, Zhao YL, Guo G, et al: Plasma
microRNAs, miR-223, miR-21 and miR-218, as novel potential
biomarkers for gastric cancer detection. PLoS One. 7:e416292012.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Li C, Li JF, Cai Q, et al: MiRNA-199a-3p
in plasma as a potential diagnostic biomarker for gastric cancer.
Ann Surg Oncol. Sep 7–2012.(Epub ahead of print).
|
|
121
|
Zhang X, Cui L, Ye G, et al: Gastric juice
microRNA-421 is a new biomarker for screening gastric cancer.
Tumour Biol. 33:2349–2355. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang M, Gu H, Wang S, et al: Circulating
miR-17-5p and miR-20a: Molecular markers for gastric cancer. Mol
Med Rep. 5:1514–1520. 2012.PubMed/NCBI
|
|
123
|
Valladares-Ayerbes M, Reboredo M,
Medina-Villaamil V, et al: Circulating miR-200c as a diagnostic and
prognostic biomarker for gastric cancer. J Transl Med. 10:1862012.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Kanaan Z, Rai SN, Eichenberger MR, et al:
Plasma miR-21: a potential diagnostic marker of colorectal cancer.
Ann Surg. 256:544–551. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Nugent M, Miller N and Kerin MJ:
Circulating miR-34a levels are reduced in colorectal cancer. J Surg
Oncol. 106:947–952. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Inoue T, Iinuma H, Ogawa E, Inaba T and
Fukushima R: Clinicopathological and prognostic significance of
microRNA-107 and its relationship to DICER1 mRNA expression in
gastric cancer. Oncol Rep. 27:1759–1764. 2012.PubMed/NCBI
|
|
127
|
Li J, Guo Y, Liang X, et al: MicroRNA-223
functions as an oncogene in human gastric cancer by targeting
FBXW7/hCdc4. J Cancer Res Clin Oncol. 138:763–774. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Xu XM, Qian JC, Deng ZL, et al: Expression
of miR-21, miR-31, miR-96 and miR-135b is correlated with the
clinical parameters of colorectal cancer. Oncol Lett. 4:339–345.
2012.PubMed/NCBI
|
|
129
|
Zhou T, Zhang G, Liu Z, Xia S and Tian H:
Overexpression of miR-92a correlates with tumor metastasis and poor
prognosis in patients with colorectal cancer. Int J Colorectal Dis.
28:19–24. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Hur K, Toiyama Y, Takahashi M, et al:
MicroRNA-200c modulates epithelial-to-mesenchymal transition (EMT)
in human colorectal cancer metastasis. Gut. Jul 10–2012.(Epub ahead
of print).
|
|
131
|
Li CL, Nie H, Wang M, et al: microRNA-155
is downregulated in gastric cancer cells and involved in cell
metastasis. Oncol Rep. 27:1960–1966. 2012.PubMed/NCBI
|
|
132
|
Li Z, Cao Y, Jie Z, et al: miR-495 and
miR-551a inhibit the migration and invasion of human gastric cancer
cells by directly interacting with PRL-3. Cancer Lett. 323:41–47.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Ruzzo A, Graziano F, Vincenzi B, et al:
High let-7a microRNA levels in KRAS-mutated colorectal carcinomas
may rescue anti-EGFR therapy effects in patients with chemotherapy-
refractory metastatic disease. Oncologist. 17:823–829. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Xu K, Liang X, Shen K, et al: MiR-222
modulates multidrug resistance in human colorectal carcinoma by
down-regulating ADAM-17. Exp Cell Res. 318:2168–2177. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Osawa S, Shimada Y, Sekine S, et al:
MicroRNA profiling of gastric cancer patients from formalin-fixed
paraffin-embedded samples. Oncol Lett. 2:613–619. 2011.PubMed/NCBI
|