|
1
|
Bartel DP: MicroRNAs: genomics,
biogenesis, mechanism, and function. Cell. 116:281–297. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Zhao Y, Ransom JF, Li A, Vedantham V, von
Drehle M, Muth AN, Tsuchihashi T, McManus MT, Schwartz RJ and
Srivastava D: Dysregulation of cardiogenesis, cardiac conduction,
and cell cycle in mice lacking miRNA-1-2. Cell. 129:303–317. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Carleton M, Cleary MA and Linsley PS:
MicroRNAs and cell cycle regulation. Cell Cycle. 6:2127–2132. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Takamizawa J, Konishi H, Yanagisawa K,
Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y,
Mitsudomi T and Takahashi T: Reduced expression of the let-7
microRNAs in human lung cancers in association with shortened
postoperative survival. Cancer Res. 64:3753–3756. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Guo J, Miao Y, Xiao B, Huan R, Jiang Z,
Meng D and Wang Y: Differential expression of microRNA species in
human gastric cancer versus non-tumorous tissues. J Gastroenterol
Hepatol. 24:652–657. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
van Rooij E, Sutherland LB, Liu N,
Williams AH, McAnally J, Gerard RD, Richardson JA and Olson EN: A
signature pattern of stress-responsive microRNAs that can evoke
cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA.
103:18255–18260. 2006.PubMed/NCBI
|
|
7
|
Iorio MV, Ferracin M, Liu CG, Veronese A,
Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M,
Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I,
Calin GA, Querzoli P, Negrini M and Croce CM: MicroRNA gene
expression deregulation in human breast cancer. Cancer Res.
65:7065–7070. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yoon SO, Chun SM, Han EH, Choi J, Jang SJ,
Koh SA, Hwang S and Yu E: Deregulated expression of microRNA-221
with the potential for prognostic biomarkers in surgically resected
hepatocellular carcinoma. Hum Pathol. 42:1391–1400
|
|
9
|
Calin GA, Dumitru CD, Shimizu M, Bichi R,
Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L,
Kipps T, Negrini M, Bullrich F and Croce CM: Frequent deletions and
down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in
chronic lymphocytic leukemia. Proc Natl Acad Sci USA.
99:15524–15529. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sempere LF, Freemantle S, Pitha-Rowe I,
Moss E, Dmitrovsky E and Ambros V: Expression profiling of
mammalian microRNAs uncovers a subset of brain-expressed microRNAs
with possible roles in murine and human neuronal differentiation.
Genome Biol. 5:R132004. View Article : Google Scholar
|
|
11
|
Lagos-Quintana M, Rauhut R, Yalcin A,
Meyer J, Lendeckel W and Tuschl T: Identification of
tissue-specific microRNAs from mouse. Curr Biol. 12:735–739. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
He X, Zhang Q, Liu Y and Pan X: Cloning
and identification of novel microRNAs from rat hippocampus. Acta
Biochim Biophys Sin (Shanghai). 39:708–714. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Natera-Naranjo O, Aschrafi A, Gioio AE and
Kaplan BB: Identification and quantitative analyses of microRNAs
located in the distal axons of sympathetic neurons. RNA.
16:1516–1529. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Nudelman AS, DiRocco DP, Lambert TJ,
Garelick MG, Le J, Nathanson NM and Storm DR: Neuronal activity
rapidly induces transcription of the CREB-regulated microRNA-132,
in vivo. Hippocampus. 20:492–498. 2010.PubMed/NCBI
|
|
15
|
Sano T, Reynolds JP, Jimenez-Mateos EM,
Matsushima S, Taki W and Henshall DC: MicroRNA-34a upregulation
during seizure-induced neuronal death. Cell Death Dis. 3:e2872012.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Dirnagl U, Becker K and Meisel A:
Preconditioning and tolerance against cerebral ischaemia: from
experimental strategies to clinical use. Lancet Neurol. 8:398–412.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dhodda VK, Sailor KA, Bowen KK and
Vemuganti R: Putative endogenous mediators of
preconditioning-induced ischemic tolerance in rat brain identified
by genomic and proteomic analysis. J Neurochem. 89:73–89. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Dharap A and Vemuganti R: Ischemic
pre-conditioning alters cerebral microRNAs that are upstream to
neuroprotective signaling pathways. J Neurochem. 113:1685–1691.
2010.PubMed/NCBI
|
|
19
|
Lee ST, Chu K, Jung KH, Yoon HJ, Jeon D,
Kang KM, Park KH, Bae EK, Kim M, Lee SK and Roh JK: MicroRNAs
induced during ischemic preconditioning. Stroke. 41:1646–1651.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Lusardi TA, Farr CD, Faulkner CL,
Pignataro G, Yang T, Lan J, Simon RP and Saugstad JA: Ischemic
preconditioning regulates expression of microRNAs and a predicted
target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab.
30:744–756. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Dharap A, Bowen K, Place R, Li LC and
Vemuganti R: Transient focal ischemia induces extensive temporal
changes in rat cerebral microRNAome. J Cereb Blood Flow Metab.
29:675–687. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Yin KJ, Deng Z, Huang H, Hamblin M, Xie C,
Zhang J and Chen YE: miR-497 regulates neuronal death in mouse
brain after transient focal cerebral ischemia. Neurobiol Dis.
38:17–26. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pandi G, Nakka VP, Dharap A, Roopra A and
Vemuganti R: MicroRNA miR-29c down-regulation leading to
de-repression of its target DNA methyltransferase 3a promotes
ischemic brain damage. PLoS One. 8:e580392013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xu WH, Yao XY, Yu HJ, Huang JW and Cui LY:
Downregulation of miR-199a may play a role in 3-nitropropionic acid
induced ischemic tolerance in rat brain. Brain Res. 1429:116–123.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Selbach M, Schwanhäusser B, Thierfelder N,
Fang Z, Khanin R and Rajewsky N: Widespread changes in protein
synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ricarte Filho JC and Kimura ET: MicroRNAs:
novel class of gene regulators involved in endocrine function and
cancer. Arq Bras Endocrinol Metabol. 50:1102–1107. 2006.PubMed/NCBI
|
|
27
|
Hu JR, Lv GH and Yin BL: Altered microRNA
expression in the ischemic-reperfusion spinal cord with
atorvastatin therapy. J Pharmacol Sci. 121:343–346. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Cimmino A, Calin GA, Fabbri M, Iorio MV,
Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M,
Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M and
Croce CM: miR-15 and miR-16 induce apoptosis by targeting BCL2.
Proc Natl Acad Sci USA. 102:13944–13949. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cao L, Feng C, Li L and Zuo Z:
Contribution of microRNA-203 to the isoflurane
preconditioning-induced neuroprotection. Brain Res Bull.
88:525–528. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kocerha J, Kauppinen S and Wahlestedt C:
microRNAs in CNS disorders. Neuromolecular Med. 11:162–172. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tan KS, Armugam A, Sepramaniam S, Lim KY,
Setyowati KD, Wang CW and Jeyaseelan K: Expression profile of
MicroRNAs in young stroke patients. PLoS One. 4:e76892009.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Tan JR, Tan KS, Koo YX, Yong FL, Wang CW,
Armugam A and Jeyaseelan K: Blood microRNAs in low or no risk
ischemic stroke patients. Int J Mol Sci. 14:2072–2084. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Siegel C, Li J, Liu F, Benashski SE and
McCullough LD: miR-23a regulation of X-linked inhibitor of
apoptosis (XIAP) contributes to sex differences in the response to
cerebral ischemia. Proc Natl Acad Sci USA. 108:11662–11667. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Harraz MM, Eacker SM, Wang X, Dawson TM
and Dawson VL: MicroRNA-223 is neuroprotective by targeting
glutamate receptors. Proc Natl Acad Sci USA. 109:18962–18967. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Witwer KW, Sisk JM, Gama L and Clements
JE: MicroRNA regulation of IFN-beta protein expression: rapid and
sensitive modulation of the innate immune response. J Immunol.
184:2369–2376. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Selvamani A, Sathyan P, Miranda RC and
Sohrabji F: An antagomir to microRNA Let7f promotes neuroprotection
in an ischemic stroke model. PLoS One. 7:e326622012. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Buller B, Liu X, Wang X, Zhang RL, Zhang
L, Hozeska-Solgot A, Chopp M and Zhang ZG: MicroRNA-21 protects
neurons from ischemic death. FEBS J. 277:4299–4307. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ouyang YB, Lu Y, Yue S, Xu LJ, Xiong XX,
White RE, Sun X and Giffard RG: miR-181 regulates GRP78 and
influences outcome from cerebral ischemia in vitro and in vivo.
Neurobiol Dis. 45:555–563. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Liu XS, Chopp M, Zhang RL, Tao T, Wang XL,
Kassis H, Hozeska-Solgot A, Zhang L, Chen C and Zhang ZG: MicroRNA
profiling in subventricular zone after stroke: MiR-124a regulates
proliferation of neural progenitor cells through Notch signaling
pathway. PLoS One. 6:e234612011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zeng L, Liu J, Wang Y, Wang L, Weng S,
Tang Y, Zheng C, Cheng Q, Chen S and Yang GY: MicroRNA-210 as a
novel blood biomarker in acute cerebral ischemia. Front Biosci
(Elite Ed). 3:1265–1272. 2011.PubMed/NCBI
|
|
41
|
Rink C and Khanna S: MicroRNA in ischemic
stroke etiology and pathology. Physiol Genomics. 43:521–528. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Eacker SM, Dawson TM and Dawson VL:
Understanding microRNAs in neurodegeneration. Nat Rev Neurosci.
10:837–841. 2009.PubMed/NCBI
|
|
43
|
Hébert SS, Horré K, Nicolaï L,
Papadopoulou AS, Mandemakers W, Silahtaroglu AN, Kauppinen S,
Delacourte A and De Strooper B: Loss of microRNA cluster
miR-29a/b-1 in sporadic Alzheimer’s disease correlates with
increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA.
105:6415–6420. 2008.PubMed/NCBI
|
|
44
|
Cogswell JP, Ward J, Taylor IA, Waters M,
Shi Y, Cannon B, Kelnar K, Kemppainen J, Brown D, Chen C, Prinjha
RK, Richardson JC, Saunders AM, Roses AD and Richards CA:
Identification of miRNA changes in Alzheimer’s disease brain and
CSF yields putative biomarkers and insights into disease pathways.
J Alzheimers Dis. 14:27–41. 2008.
|
|
45
|
Boissonneault V, Plante I, Rivest S and
Provost P: MicroRNA-298 and microRNA-328 regulate expression of
mouse beta-amyloid precursor protein-converting enzyme 1. J Biol
Chem. 284:1971–1981. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang WX, Rajeev BW, Stromberg AJ, Ren N,
Tang G, Huang Q, Rigoutsos I and Nelson PT: The expression of
microRNA miR-107 decreases early in Alzheimer’s disease and may
accelerate disease progression through regulation of beta-site
amyloid precursor protein-cleaving enzyme 1. J Neurosci.
28:1213–1223. 2008.PubMed/NCBI
|
|
47
|
Patel N, Hoang D, Miller N, Ansaloni S,
Huang Q, Rogers JT, Lee JC and Saunders AJ: MicroRNAs can regulate
human APP levels. Mol Neurodegener. 3:102008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lukiw WJ, Zhao Y and Cui JG: An
NF-kappaB-sensitive micro RNA-146a-mediated inflammatory circuit in
Alzheimer disease and in stressed human brain cells. J Biol Chem.
283:31315–31322. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Croce N, Gelfo F, Ciotti MT, Federici G,
Caltagirone C, Bernardini S and Angelucci F: NPY modulates
miR-30a-5p and BDNF in opposite direction in an in vitro model of
Alzheimer disease: a possible role in neuroprotection? Mol Cell
Biochem. 376:189–195. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Harraz MM, Dawson TM and Dawson VL:
MicroRNAs in Parkinson’s disease. J Chem Neuroanat. 42:127–130.
2011.
|
|
51
|
Mouradian MM: MicroRNAs in Parkinson’s
disease. Neurobiol Dis. 46:279–284. 2012.
|
|
52
|
Doxakis E: Post-transcriptional regulation
of alpha-synuclein expression by mir-7 and mir-153. J Biol Chem.
285:12726–12734. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Martins M, Rosa A, Guedes LC, Fonseca BV,
Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER,
Vance JM, Outeiro TF, Wang L, Borovecki F, Ferreira JJ and Oliveira
SA: Convergence of miRNA expression profiling, α-synuclein
interacton and GWAS in Parkinson’s disease. PLoS One.
6:e254432011.
|
|
54
|
Kim J, Inoue K, Ishii J, Vanti WB, Voronov
SV, Murchison E, Hannon G and Abeliovich A: A MicroRNA feedback
circuit in midbrain dopamine neurons. Science. 317:1220–1224. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Wang G, van der Walt JM, Mayhew G, Li YJ,
Züchner S, Scott WK, Martin ER and Vance JM: Variation in the
miRNA-433 binding site of FGF20 confers risk for Parkinson disease
by overexpression of alpha-synuclein. Am J Hum Genet. 82:283–289.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Margis R, Margis R and Rieder CR:
Identification of blood microRNAs associated to Parkinson’s
disease. J Biotechnol. 152:96–101. 2011.
|
|
57
|
Packer AN, Xing Y, Harper SQ, Jones L and
Davidson BL: The bifunctional microRNA miR-9/miR-9* regulates REST
and CoREST and is downregulated in Huntington’s disease. J
Neurosci. 28:14341–14346. 2008.PubMed/NCBI
|
|
58
|
Lee ST, Chu K, Im WS, Yoon HJ, Im JY, Park
JE, Park KH, Jung KH, Lee SK, Kim M and Roh JK: Altered microRNA
regulation in Huntington’s disease models. Exp Neurol. 227:172–179.
2011.
|
|
59
|
Zuccato C, Belyaev N, Conforti P, Ooi L,
Tartari M, Papadimou E, MacDonald M, Fossale E, Zeitlin S, Buckley
N and Cattaneo E: Widespread disruption of repressor element-1
silencing transcription factor/neuron-restrictive silencer factor
occupancy at its target genes in Huntington’s disease. J Neurosci.
27:6972–6983. 2007.PubMed/NCBI
|
|
60
|
Seredenina T, Gokce O and Luthi-Carter R:
Decreased striatal RGS2 expression is neuroprotective in
Huntington’s disease (HD) and exemplifies a compensatory aspect of
HD-induced gene regulation. PLoS One. 6:e222312011.
|
|
61
|
Landles C and Bates GP: Huntingtin and the
molecular pathogenesis of Huntington’s disease. Fourth in molecular
medicine review series. EMBO Rep. 5:958–963. 2004.
|
|
62
|
Jovicic A, Zaldivar Jolissaint JF, Moser
R, Silva Santos Mde F and Luthi-Carter R: MicroRNA-22 (miR-22)
overexpression is neuroprotective via general anti-apoptotic
effects and may also target specific Huntington’s disease-related
mechanisms. PLoS One. 8:e542222013.PubMed/NCBI
|
|
63
|
Christensen M, Larsen LA, Kauppinen S and
Schratt G: Recombinant adeno-associated virus-mediated microRNA
delivery into the postnatal mouse brain reveals a role for miR-134
in dendritogenesis in vivo. Front Neural Circuits.
3:162010.PubMed/NCBI
|
|
64
|
Gao J, Wang WY, Mao YW, Gräff J, Guan JS,
Pan L, Mak G, Kim D, Su SC and Tsai LH: A novel pathway regulates
memory and plasticity via SIRT1 and miR-134. Nature. 466:1105–1109.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hu K, Xie YY, Zhang C, Ouyang DS, Long HY,
Sun DN, Long LL, Feng L, Li Y and Xiao B: MicroRNA expression
profile of the hippocampus in a rat model of temporal lobe epilepsy
and miR-34a-targeted neuroprotection against hippocampal neurone
cell apoptosis post-status epilepticus. BMC Neurosci. 13:1152012.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kan AA, van Erp S, Derijck AA, de Wit M,
Hessel EV, O’Duibhir E, de Jager W, Van Rijen PC, Gosselaar PH, de
Graan PN and Pasterkamp RJ: Genome-wide microRNA profiling of human
temporal lobe epilepsy identifies modulators of the immune
response. Cell Mol Life Sci. 69:3127–3145. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Peng J, Omran A, Ashhab MU, Kong H, Gan N,
He F and Yin F: Expression patterns of miR-124, miR-134, miR-132,
and miR-21 in an immature rat model and children with mesial
temporal lobe epilepsy. J Mol Neurosci. 50:291–297. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Jimenez-Mateos EM, Bray I, Sanz-Rodriguez
A, Engel T, McKiernan RC, Mouri G, Tanaka K, Sano T, Saugstad JA,
Simon RP, Stallings RL and Henshall DC: miRNA expression profile
after status epilepticus and hippocampal neuroprotection by
targeting miR-132. Am J Pathol. 179:2519–2532. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Redell JB, Liu Y and Dash PK: Traumatic
brain injury alters expression of hippocampal microRNAs: potential
regulators of multiple pathophysiological processes. J Neurosci
Res. 87:1435–1448. 2009. View Article : Google Scholar
|
|
70
|
Redell JB, Zhao J and Dash PK: Altered
expression of miRNA-21 and its targets in the hippocampus after
traumatic brain injury. J Neurosci Res. 89:212–221. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jee MK, Jung JS, Im YB, Jung SJ and Kang
SK: Silencing of miR20a is crucial for Ngn1-mediated
neuroprotection in injured spinal cord. Hum Gene Ther. 23:508–520.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Jee MK, Jung JS, Choi JI, Jang JA, Kang
KS, Im YB and Kang SK: MicroRNA 486 is a potentially novel target
for the treatment of spinal cord injury. Brain. 135:1237–1252.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hu Z, Yu D, Almeida-Suhett C, Tu K, Marini
AM, Eiden L, Braga MF, Zhu J and Li Z: Expression of miRNAs and
their cooperative regulation of the pathophysiology in traumatic
brain injury. PLoS One. 7:e393572012. View Article : Google Scholar : PubMed/NCBI
|