|
1
|
Blatter LA and Wier WG: Nitric oxide
decreases [Ca2+]i in vascular smooth muscle by inhibition of the
calcium current. Cell Calcium. 15:122–131. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Colton CA, Fagni L and Gilbert D: The
action of hydrogen peroxide on paired pulse and long term
potentiation in the hippocampus. Free Radic Biol Med. 7:3–8. 1989.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Kang S, Kassam N, Gauthier ML and O'Day
DH: Post-mortem changes in calmodulin binding proteins in muscle
and lung. Forensic Sci Int. 131:140–147. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Koh JY and Choi DW: Quantitative
determination of glutamate mediated cortical neuronal injury in
cell culture by lactate dehydrogenase efflux assay. J Neurosci
Methods. 20:83–90. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Grześk G, Wiciński M, Malinowski B, Grześk
E, Manysiak S, Odrowąż-Sypniewska G, Darvish N and Birwagen M:
Calcium blockers inhibit cyclosporine A-induced hyperreactivity of
vascular smooth muscle cells. Mol Med Rep. 5:1469–1474.
2012.PubMed/NCBI
|
|
6
|
Slupski M, Szadujkis-Szadurski L, Grześk
G, Szadujkis-Szadurski R, Szadujkis-Szadurska K, Wlodarczyk Z,
Masztalerz M, Piotrowiak I and Jasiński M: Guanylate cyclase
activators influence reactivity of human mesenteric superior
arteries retrieved and preserved in the same conditions as
transplanted kidneys. Transplant Proc. 39:1350–1353. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Depre C, Fierain L and Hue L: Activation
of nitric oxide synthase by ischemia in the perfused heart.
Cardiovasc Res. 33:82–87. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ikonomidou C, Mosinger JL, Salles KS,
Labruyere J and Olney JW: Sensitivity of the developing rat brain
to hypobaric/ischemic damage parallels sensitivity to
N-methyl-aspartate neurotoxicity. J Neurosci. 9:2809–2818.
1989.PubMed/NCBI
|
|
9
|
Tosun M, Paul RJ and Rapoport RM:
Intracellular Ca2+ elevation and contraction due to prostaglandin
F2α in rat aorta. Eur J Pharmacol. 340:203–208. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Willmott NJ, Galione A and Smith PA:
Nitric oxide induces intracellular Ca2+ mobilization and increases
secretion of incorporated 5-hydroxytryptamine in rat pancreatic
β-cells. FEBS Lett. 371:99–104. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Bloch-Bogusławska E: The effect of the
time of death on the reactivity of rat caudal artery regulated by
Bay-K 8644 (an agonist directly affecting the Ca channel). Arch Med
Sadowej Kryminol. 56:132–135. 2006.(In Polish). PubMed/NCBI
|
|
12
|
Grześk G and Szadujkis-Szadurski L:
Pharmacometric analysis of α 1-adrenoceptor function in rat tail
artery pretreated with lipopolysaccharides. Pol J Pharmacol.
53:605–613. 2001.PubMed/NCBI
|
|
13
|
Grześk G, Kozinski M, Tantry US, Wicinski
M, Fabiszak T, Navarese EP, Grzesk E, Jeong YH, Gurbel PA and
Kubica J: High-dose, but not low-dose, aspirin impairs
anticontractile effect of ticagrelor following ADP stimulation in
rat tail artery smooth muscle cells. Biomed Res Int.
2013:9282712013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kanner J, Harel S and Granit R: Nitric
oxide, an inhibitor of lipid oxidation by lipooxygenase,
cyclooxygenase and hemoglobin. Lipids. 27:46–49. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Coburn RF, Moreland S, Moreland RS and
Baron CB: Rate-limiting energy-dependent steps controlling
oxidative metabolism-contraction coupling in rabbit aorta. J
Physiol. 448:473–492. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Aizenman E, Hartnett KA and Reynolds IJ:
Oxygen free radicals regulate NMDA receptor function via a redox
modulatory site. Neuron. 5:841–846. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Bredt DS, Hwang PM and Snyder SH:
Localization of nitric oxide synthase indicating a neural role for
nitric oxide. Nature. 347:768–770. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Choi DW: Nitric oxide: foe or friend to
the injured brain? Proc Natl Acad Sci USA. 90:9741–9743. 1993.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Brenman JE, Chao DS, Gee SH, McGee AW,
Craven SE, Santillano DR, Wu Z, Huang F, Xia H, Peters MF, et al:
Interaction of nitric oxide synthase with the postsynaptic density
protein PSD-95 and α 1-synthropin mediated by PDZ domains Cell.
84:757–767. 1996.PubMed/NCBI
|
|
20
|
Choi DW: Glutamate neurotoxicity and
diseases of the nervous system. Neuron. 1:623–634. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Furchgott RF and Vanhoutte PM:
Endothelium-derived relaxing and contracting factors. FASEB J.
3:2007–2018. 1989.PubMed/NCBI
|
|
22
|
Szadujkis-Szadurska K, Grzesk G,
Szadujkis-Szadurski L, Gajdus M and Matusiak G: Role of nitric
oxide and cGMP in the modulation of vascular contraction induced by
angiotensin II and Bay K8644 during ischemia/reperfusion. Exp Ther
Med. 5:616–620. 2013.PubMed/NCBI
|