|
1
|
Spindler KP and Wright RW: Clinical
practice. Anterior cruciate ligament tear. N Engl J Med.
359:2135–2142. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Frobell RB, Roos EM, Roos HP, Ranstam J
and Lohmander LS: A randomized trial of treatment for acute
anterior cruciate ligament tears. N Engl J Med. 363:331–342. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Brophy RH, Zeltser D, Wright RW and
Flanigan D: Anterior cruciate ligament reconstruction and
concomitant articular cartilage injury: incidence and treatment.
Arthroscopy. 26:112–120. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Lohmander LS, Ostenberg A, Englund M and
Roos H: High prevalence of knee osteoarthritis, pain, and
functional limitations in female soccer players twelve years after
anterior cruciate ligament injury. Arthritis Rheum. 50:3145–3152.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Nelson F, Billinghurst RC, Pidoux I, et
al: Early post-traumatic osteoarthritis-like changes in human
articular cartilage following rupture of the anterior cruciate
ligament. Osteoarthritis Cartilage. 14:114–119. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Li G, Moses JM, Papannagari R, Pathare NP,
De Frate LE and Gill TJ: Anterior cruciate ligament deficiency
alters the in vivo motion of the tibiofemoral cartilage contact
points in both the anteroposterior and mediolateral directions. J
Bone Joint Surg Am. 88:1826–1834. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Van de Velde SK, Bingham JT, Hosseini A,
et al: Increased tibiofemoral cartilage contact deformation in
patients with anterior cruciate ligament deficiency. Arthritis
Rheum. 60:3693–3702. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Church S and Keating JF: Reconstruction of
the anterior cruciate ligament: timing of surgery and the incidence
of meniscal tears and degenerative change. J Bone Joint Surg Br.
87:1639–1642. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Granan LP, Bahr R, Lie SA and Engebretsen
L: Timing of anterior cruciate ligament reconstructive surgery and
risk of cartilage lesions and meniscal tears: a cohort study based
on the Norwegian National Knee Ligament Registry. Am J Sports Med.
37:955–961. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fajardo M and Di Cesare PE:
Disease-modifying therapies for osteoarthritis: current status.
Drugs Aging. 22:141–161. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li H, Hosseini A, Li JS, Gill TJ IV and Li
G: Quantitative magnetic resonance imaging (MRI) morphological
analysis of knee cartilage in healthy and anterior cruciate
ligament-injured knees. Knee Surg Sports Traumatol Arthrosc.
20:1496–1502. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Friel NA and Chu CR: The role of ACL
injury in the development of posttraumatic knee osteoarthritis.
Clin Sports Med. 32:1–12. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ferretti A, Conteduca F, De Carli A,
Fontana M and Mariani PP: Osteoarthritis of the knee after ACL
reconstruction. Int Orthop. 15:367–371. 1991. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Daniel DM, Stone ML, Dobson BE, Fithian
DC, Rossman DJ and Kaufman KR: Fate of the ACL-injured patient. A
prospective outcome study. Am J Sports Med. 22:632–644. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Li H, Tao H, Hua Y, Chen J, Li Y and Chen
S: Quantitative magnetic resonance imaging assessment of cartilage
status: a comparison between young men with and without anterior
cruciate ligament reconstruction. Arthroscopy. 29:2012–2019. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Oiestad BE, Holm I, Engebretsen L and
Risberg MA: The association between radiographic knee
osteoarthritis and knee symptoms, function and quality of life
10–15 years after anterior cruciate ligament reconstruction. Br J
Sports Med. 45:583–588. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Kraus VB, Birmingham J, Stabler TV, et al:
Effects of intraarticular I11-Ra for acute anterior cruciate
ligament knee injury: a randomized controlled pilot trial
(NCT00332254). Osteoarthritis Cartilage. 20:271–278. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Wei L, Fleming BC, Sun X, et al:
Comparison of differential biomarkers of osteoarthritis with and
without posttraumatic injury in the Hartley guinea pig model. J
Orthop Res. 28:900–906. 2010.PubMed/NCBI
|
|
19
|
Marks PH and Donaldson ML: Inflammatory
cytokine profiles associated with chondral damage in the anterior
cruciate ligament-deficient knee. Arthroscopy. 21:1342–1347. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Aigner T, Soeder S and Haag J: IL-1beta
and BMPs - interactive players of cartilage matrix degradation and
regeneration. Eur Cell Mater. 12:49–56. 2006.PubMed/NCBI
|
|
21
|
Turner NA, Warburton P, O'Regan DJ, Ball
SG and Porter KE: Modulatory effect of interleukin-1alpha on
expression of structural matrix proteins, MMPs and TIMPs in human
cardiac myofibroblasts: role of p 38 MAP kinase. Matrix Biol.
29:613–620. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Xue R, Yang L, Tang Z, et al: The profile
of MMP and TIMP in injured rat ACL. Mol Cell Biomech. 7:115–124.
2010.PubMed/NCBI
|
|
23
|
Chen WP, Tang JL, Bao JP, et al: Effects
of diallyl sulphide in chondrocyte and cartilage in experimental
osteoarthritis in rabbit. Phytother Res. 25:351–356.
2011.PubMed/NCBI
|
|
24
|
Tang Z, Yang L, Zhang J, et al:
Coordinated expression of MMPs and TIMPs in rat knee
intra-articular tissues after ACL injury. Connect Tissue Res.
50:315–322. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Ra HJ and Parks WC: Control of matrix
metalloproteinase catalytic activity. Matrix Biol. 26:587–596.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lin PM, Chen CT and Torzilli PA: Increased
stromelysin-1 (MMP-3), proteoglycan degradation (3B3- and 7D4) and
collagen damage in cyclically load-injured articular cartilage.
Osteoarthritis Cartilage. 12:485–496. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ni GX, Zhan LQ, Gao MQ, Lei L, Zhou YZ and
Pan YX: Matrix metalloproteinase-3 inhibitor retards treadmill
running-induced cartilage degradation in rats. Arthritis Res Ther.
13:R1922011. View
Article : Google Scholar : PubMed/NCBI
|
|
28
|
Catterall JB, Stabler TV, Flannery CR and
Kraus VB: Changes in serum and synovial fluid biomarkers after
acute injury (NCT00332254). Arthritis Res Ther. 12:R2292010.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hattori S, Sakane M, Mutsuzaki H, Tanaka
J, Ochiai N and Nakajima H: Chondrocyte apoptosis and decrease of
glycosaminoglycan in cranial cruciate ligament insertion after
resection in rabbits. J Vet Med Sci. 69:253–258. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sakane M, Mutsuzaki H, Hattori S, Nakajima
H and Ochiai N: Time dependence of changes of two cartilage layers
in anterior cruciate ligament insertion after resection on
chondrocyte apoptosis and decrease in glycosaminoglycan. Sports Med
Arthrosc Rehabil Ther Technol. 1:272009. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Connelly JT, Wilson CG and Levenston ME:
Characterization of proteoglycan production and processing by
chondrocytes and BMSCs in tissue engineered constructs.
Osteoarthritis Cartilage. 16:1092–1100. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Little CB, Hughes CE, Curtis CL, et al:
Matrix metalloproteinases are involved in C-terminal and
interglobular domain processing of cartilage aggrecan in late stage
cartilage degradation. Matrix Biol. 21:271–288. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Troeberg L and Nagase H: Proteases
involved in cartilage matrix degradation in osteoarthritis. Biochim
Biophys Acta. 1824:133–145. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Caterson B, Flannery CR, Hughes CE and
Little CB: Mechanisms involved in cartilage proteoglycan
catabolism. Matrix Biol. 19:333–344. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sondergaard BC, Schultz N, Madsen SH,
Bay-Jensen AC, Kassem M and Karsdal MA: MAPKs are essential
upstream signaling pathways in proteolytic cartilage degradation -
divergence in pathways leading to aggrecanase and MMP-mediated
articular cartilage degradation. Osteoarthritis Cartilage.
18:279–288. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Lorenz H, Wenz W, Ivancic M, Steck E and
Richter W: Early and stable upregulation of collagen type II,
collagen type I and YK140 expression levels in cartilage during
early experimental osteoarthritis occurs independent of joint
location and histological grading. Arthritis Res Ther. 7:R156–R165.
2005. View
Article : Google Scholar : PubMed/NCBI
|
|
37
|
Pujol JP, Chadjichristos C, Legendre F, et
al: Interleukin-1 and transforming growth factor-beta 1 as crucial
factors in osteoarthritic cartilage metabolism. Connect Tissue Res.
49:293–297. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chadjichristos C, Ghayor C, Kypriotou M,
et al: Sp1 and Sp3 transcription factors mediate interleukin-1 beta
down-regulation of human type II collagen gene expression in
articular chondrocytes. J Biol Chem. 278:39762–39772. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Porée B, Kypriotou M, Chadjichristos C, et
al: Interleukin-6 (IL-6) and/or soluble IL-6 receptor
down-regulation of human type II collagen gene expression in
articular chondrocytes requires a decrease of Sp1. Sp3 ratio and of
the binding activity of both factors to the CO12A1 promoter. J Biol
Chem. 283:4850–4865. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Mutsuzaki H, Sakane M, Ikeda K, et al:
Histological changes and apoptosis of cartilage layer in human
anterior cruciate ligament tibial insertion after rupture. Knee
Surg Sports Traumatol Arthrosc. 15:602–609. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mutsuzaki H, Sakane M, Honda K, Ikeda K,
Hattori S and Ochiai N: Cell death and cell proliferation in
cartilage layers in human anterior cruciate ligament tibial
insertions after rupture. Connect Tissue Res. 51:282–288. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Nishimuta JF and Levenston ME: Response of
cartilage and meniscus tissue explants to in vitro compressive
overload. Osteoarthritis Cartilage. 20:422–429. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xu L, Hayashi D, Roemer FW, Felson DT and
Guermazi A: Magnetic resonance imaging of subchondral bone marrow
lesions in association with osteoarthritis. Semin Arthritis Rheum.
42:105–118. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lewis JL, Deloria LB, Oyen-Tiesma M,
Thompson RC Jr, Ericson M and Oegema TR Jr: Cell death after
cartilage impact occurs around matrix cracks. J Orthop Res.
21:881–887. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Frobell RB: Change in cartilage thickness,
posttraumatic bone marrow lesions, and joint fluid volumes after
acute ACL disruption: a two-year prospective MRI study of sixty-one
subjects. J Bone Joint Surg Am. 93:1096–1103. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Nakamae A, Engebretsen L, Bahr R,
Krosshaug T and Ochi M: Natural history of bone bruises after acute
knee injury: clinical outcome and histopathological findings. Knee
Surg Sports Traumatol Arthrosc. 14:1252–1258. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lahm A, Uhl M, Erggelet C, Haberstroh J
and Mrosek E: Articular cartilage degeneration after acute
subchondral bone damage: an experimental study in dogs with
histopathological grading. Acta Orthop Scand. 75:762–767. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lahm A, Kreuz PC, Oberst M, Haberstroh J,
Uhl M and Maier D: Subchondral and trabecular bone remodeling in
canine experimental osteoarthritis. Arch Orthop Trauma Surg.
126:582–587. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Beekhuizen M, van Osch GJ, Bot AG, et al:
Inhibition of oncostatin M in osteoarthritic synovial fluid
enhances GAG production in osteoarthritic cartilage repair. Eur
Cell Mater. 26:80–90. 2013.PubMed/NCBI
|
|
50
|
Tsuchida AI, Beekhuizen M, Rutgers M, et
al: Interleukin-6 is elevated in synovial fluid of patients with
focal cartilage defects and stimulates cartilage matrix production
in an in vitro regeneration model. Arthritis Res Ther. 14:R2622012.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sharif M, Kirwan J, Charni N, Sandell LJ,
Whittles C and Garnero P: A 5-yr longitudinal study of type IIA
collagen synthesis and total type II collagen degradation in
patients with knee osteoarthritis - association with disease
progression. Rheumatology (Oxford). 46:938–943. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lohmander LS, Atley LM, Pietka TA and Eyre
DR: The release of crosslinked peptides from type II collagen into
human synovial fluid is increased soon after joint injury and in
osteoarthritis. Arthritis Rheum. 48:3130–3139. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Duclos ME, Roualdes O, Cararo R, Rousseau
JC, Roger T and Hartmann DJ: Significance of the serum CTX-II level
in an osteoarthritis animal model: a 5-month longitudinal study.
Osteoarthritis Cartilage. 18:1467–1476. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Freeston JE, Garnero P, Wakefield RJ,
Hensor EM, Conaghan PG and Emery P: Urinary type II collagen
C-terminal peptide is associated with synovitis and predicts
structural bone loss in very early inflammatory arthritis. Ann
Rheum Dis. 70:331–333. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ikegawa S, Sano M, Koshizuka Y and
Nakamura Y: Isolation, characterization and mapping of the mouse
and human PRG4 (proteoglycan 4) genes. Cytogenet Cell Genet.
90:291–297. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Jay GD, Tantravahi U, Britt DE, Barrach HJ
and Cha CJ: Homology of lubricin and superficial zone protein
(SZP): products of megakaryocyte stimulating factor (MSF) gene
expression by human synovial fibroblasts and articular chondrocytes
localized to chromosome 1q25. J Orthop Res. 19:677–687. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Liu YJ, Lu SH, Xu B, et al:
Hemangiopoietin, a novel human growth factor for the primitive
cells of both hematopoietic and endothelial cell lineages. Blood.
103:4449–4456. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Coles JM, Zhang L, Blum JJ, et al: Loss of
cartilage structure, stiffness, and frictional properties in mice
lacking PRG4. Arthritis Rheum. 62:1666–1674. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Schmidt TA, Gastelum NS, Nguyen QT,
Schumacher BL and Sah RL: Boundary lubrication of articular
cartilage: role of synovial fluid constituents. Arthritis Rheum.
56:882–891. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Rhee DK, Marcelino J, Baker M, et al: The
secreted glycoprotein lubricin protects cartilage surfaces and
inhibits synovial cell overgrowth. J Clin Invest. 115:622–631.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Elsaid KA, Machan JT, Waller K, Fleming BC
and Jay GD: The impact of anterior cruciate ligament injury on
lubricin metabolism and the effect of inhibiting tumor necrosis
factor alpha on chondroprotection in an animal model. Arthritis
Rheum. 60:2997–3006. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Nugent GE, Aneloski NM, Schmidt TA,
Schumacher BL, Voegtline MS and Sah RL: Dynamic shear stimulation
of bovine cartilage biosynthesis of proteoglycan 4. Arthritis
Rheum. 54:1888–1896. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nugent-Derfus GE, Takara T, O'Neill JK, et
al: Continuous passive motion applied to whole joints stimulates
chondrocyte biosynthesis of PRG4. Osteoarthritis Cartilage.
15:566–574. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Matyas JR, Atley L, Ionescu M, Eyre DR and
Poole AR: Analysis of cartilage biomarkers in the early phases of
canine experimental osteoarthritis. Arthritis Rheum. 50:543–552.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Jones AR, Chen S, Chai DH, et al:
Modulation of lubricin biosynthesis and tissue surface properties
following cartilage mechanical injury. Arthritis Rheum. 60:133–142.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Englert C, McGowan KB, Klein TJ, Giurea A,
Schumacher BL and Sah RL: Inhibition of integrative cartilage
repair by proteoglycan 4 in synovial fluid. Arthritis Rheum.
52:1091–1099. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Schmidt TA, Gastelum NS, Han EH,
Nugent-Derfus GE, Schumacher BL and Sah RL: Differential regulation
of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and
TGF-beta1. Osteoarthritis Cartilage. 16:90–97. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Neu CP, Khalafi A, Komvopoulos K, Schmid
TM and Reddi AH: Mechanotransduction of bovine articular cartilage
superficial zone protein by transforming growth factor beta
signaling. Arthritis Rheum. 56:3706–3714. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Gleghorn JP, Jones AR, Flannery CR and
Bonassar LJ: Alteration of articular cartilage frictional
properties by transforming growth factor beta, interleukin-1beta,
and oncostatin M. Arthritis Rheum. 60:440–449. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Elsaid KA, Fleming BC, Oksendahl HL, et
al: Decreased lubricin concentrations and markers of joint
inflammation in the synovial fluid of patients with anterior
cruciate ligament injury. Arthritis Rheum. 58:1707–1715. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Elsaid KA, Jay GD, Warman ML, Rhee DK and
Chichester CO: Association of articular cartilage degradation and
loss of boundary-lubricating ability of synovial fluid following
injury and inflammatory arthritis. Arthritis Rheum. 52:1746–1755.
2005. View Article : Google Scholar : PubMed/NCBI
|