|
1
|
Siegel R, Naishadham D and Jemal A: Cancer
statistics, 2012. CA Cancer J Clin. 62:10–29. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Milo R, Shen-Orr S, Itzkovitz S, Kashtan
N, Chklovskii D and Alon U: Network motifs: Simple building blocks
of complex networks. Science. 298:824–827. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Widder S, Solé R and Macía J: Evolvability
of feed-forward loop architecture biases its abundance in
transcription networks. BMC Syst Biol. 6:72012. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shen-Orr SS, Milo R, Mangan S and Alon U:
Network motifs in the transcriptional regulation network of
Escherichia coli. Nat Genet. 31:64–68. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Re A, Corá D, Taverna D and Caselle M:
Genome-wide survey of microRNA-transcription factor feed-forward
regulatory circuits in human. Mol Biosyst. 5:854–867. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ma HW, Kumar B, Ditges U, Gunzer F, Buer J
and Zeng AP: An extended transcriptional regulatory network of
Escherichia coli and analysis of its hierarchical structure and
network motifs. Nucleic Acids Res. 32:6643–6649. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mangan S and Alon U: Structure and
function of the feed-forward loop network motif. Proc Natl Acad Sci
USA. 100:11980–11985. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
He XX, Guo AY, Xu CR, et al:
Bioinformatics analysis identifies miR-221 as a core regulator in
hepatocellular carcinoma and its silencing suppresses tumor
properties. Oncol Rep. 32:1200–1210. 2014.PubMed/NCBI
|
|
9
|
Yan JW, Lin JS and He XX: The emerging
role of miR-375 in cancer. Int J Cancer. 135:1011–1018. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Li Y, Liang C, Easterbrook S, Luo J and
Zhang Z: Investigating the functional implications of reinforcing
feedback loops in transcriptional regulatory networks. Mol Biosys.
10:3238–3248. 2014. View Article : Google Scholar
|
|
11
|
Fujita Y, Komatsu N, Matsuda M and Aoki K:
Fluorescence resonance energy transfer based quantitative analysis
of feedforward and feedback loops in epidermal growth factor
receptor signaling and the sensitivity to molecular targeting
drugs. FEBS J. 281:3177–3192. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Hsieh WT, Tzeng KR, Ciou JS, Tsai JJ,
Kurubanjerdjit N, Huang CH, et al: Transcription factor and
microRNA-regulated network motifs for cancer and signal
transduction networks. BMC Syst Biol. 9:(Suppl 1). S52015.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Latchman DS: Transcription factors: An
overview. Int J Biochem Cell Biol. 29:1305–1312. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Mitchell PJ and Tjian R: Transcriptional
regulation in mammalian cells by sequence-specific DNA binding
proteins. Science. 245:371–378. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ptashne M and Gann A: Transcriptional
activation by recruitment. Nature. 386:569–577. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
van Nimwegen E: Scaling laws in the
functional content of genomes. Trends Genet. 19:479–484. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Lane D and Levine A: p53 Research: The
past thirty years and the next thirty years. Cold Spring Harb
Perspect Biol. 2:a0008932010. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hainaut P and Wiman KG: 30 years and a
long way into p53 research. Lancet Oncol. 10:913–919. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Hermeking H: p53 enters the microRNA
world. Cancer Cell. 12:414–418. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Brosh R, Shalgi R, Liran A, Landan G,
Korotayev K, Nguyen GH, Enerly E, Johnsen H, Buganim Y, Solomon H,
et al: p53-Repressed miRNAs are involved with E2F in a feed-forward
loop promoting proliferation. Mol Syst Biol. 4:2292008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Altshuler ML, Severin SE and Glukhov AI:
The tumor cell and telomerase. Biochemistry (Mosc). 68:1275–1283.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Sanda T, Lawton LN, Barrasa MI, Fan ZP,
Kohlhammer H, Gutierrez A, Ma W, Tatarek J, Ahn Y, Kelliher MA, et
al: Core transcriptional regulatory circuit controlled by the TAL1
complex in human T cell acute lymphoblastic leukemia. Cancer Cell.
22:209–221. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Lujambio A and Lowe SW: The microcosmos of
cancer. Nature. 482:347–355. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Calin GA and Croce CM: MicroRNA-cancer
connection: The beginning of a new tale. Cancer Res. 66:7390–7394.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Lewis BP, Burge CB and Bartel DP:
Conserved seed pairing, often flanked by adenosines, indicates that
thousands of human genes are microRNA targets. Cell. 120:15–20.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Eiring AM, Harb JG, Neviani P, Garton C,
Oaks JJ, Spizzo R, Liu S, Schwind S, Santhanam R, Hickey CJ, et al:
miR-328 functions as an RNA decoy to modulate hnRNP E2 regulation
of mRNA translation in leukemic blasts. Cell. 140:652–665. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Moretti F, Thermann R and Hentze MW:
Mechanism of translational regulation by miR-2 from sites in the 5′
untranslated region or the open reading frame. RNA. 16:2493–2502.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shalgi R, Brosh R, Oren M, Pilpel Y and
Rotter V: Coupling transcriptional and post-transcriptional miRNA
regulation in the control of cell fate. Aging (Albany NY).
1:762–770. 2009.PubMed/NCBI
|
|
30
|
Johnson SM, Grosshans H, Shingara J, Byrom
M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D and Slack
FJ: RAS is regulated by the let-7 microRNA family. Cell.
120:635–647. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Burk U, Schubert J, Wellner U, Schmalhofer
O, Vincan E, Spaderna S and Brabletz T: A reciprocal repression
between ZEB1 and members of the miR-200 family promotes EMT and
invasion in cancer cells. EMBO Rep. 9:582–589. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Hwang CI, Choi J, Zhou Z, Flesken-Nikitin
A, Tarakhovsky A and Nikitin AY: MET-dependent cancer invasion may
be preprogrammed by early alterations of p53-regulated feedforward
loop and triggered by stromal cell-derived HGF. Cell Cycle.
10:3834–3840. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Avraham R and Yarden Y: Regulation of
signalling by microRNAs. Biochem Soc Trans. 40:26–30. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kobayashi K, Sakurai K, Hiramatsu H, Inada
K, Shiogama K, Nakamura S, et al: The miR-199a/Brm/EGR1 axis is a
determinant of anchorage-independent growth in epithelial tumor
cell lines. Sci Rep. 5:84282015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
He L, Thomson JM, Hemann MT,
Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe
SW, Hannon GJ, et al: A microRNA polycistron as a potential human
oncogene. Nature. 435:828–833. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Garzon R, Marcucci G and Croce CM:
Targeting microRNAs in cancer: Rationale, strategies and
challenges. Nat Rev Drug Discov. 9:775–789. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Song S and Ajani JA: The role of microRNAs
in cancers of the upper gastrointestinal tract. Nat Rev
Gastroenterol Hepatol. 10:109–118. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chang TC, Yu D, Lee YS, Wentzel EA, Arking
DE, West KM, Dang CV, Thomas-Tikhonenko A and Mendell JT:
Widespread microRNA repression by Myc contributes to tumorigenesis.
Nat Genet. 40:43–50. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Jiang X, Huang H, Li Z, Li Y, Wang X,
Gurbuxani S, et al: Blockade of miR-150 maturation by
MLL-fusion/MYC/LIN-28 is required for MLL-associated leukemia.
Cancer Cell. 22:524–535. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Musilova K and Mraz M: MicroRNAs in B-cell
lymphomas: How a complex biology gets more complex. Leukemia.
29:1004–1017. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Zhao X, Lwin T, Zhang X, Huang A, Wang J,
Marquez VE, Chen-Kiang S, Dalton WS, Sotomayor E and Tao J:
Disruption of the MYC-miRNA-EZH2 loop to suppress aggressive B-cell
lymphoma survival and clonogenicity. Leukemia. 27:2341–2350. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
O'Donnell KA, Wentzel EA, Zeller KI, Dang
CV and Mendell JT: c-Myc-regulated microRNAs modulate E2F1
expression. Nature. 435:839–843. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ning Z, Wang A, Liang J, et al: USP22
promotes epithelial-mesenchymal transition via the FAK pathway in
pancreatic cancer cells. Oncol Rep. 32:1451–1458. 2014.PubMed/NCBI
|
|
44
|
Kent OA, Chivukula RR, Mullendore M,
Wentzel EA, Feldmann G, Lee KH, Liu S, Leach SD, Maitra A and
Mendell JT: Repression of the miR-143/145 cluster by oncogenic Ras
initiates a tumor-promoting feed-forward pathway. Genes Dev.
24:2754–2759. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
El Baroudi M, Corà D, Bosia C, Osella M
and Caselle M: A curated database of miRNA mediated feed-forward
loops involving MYC as master regulator. PLoS One. 6:e147422011.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Polioudakis D, Bhinge AA, Killion PJ, Lee
BK, Abell NS and Iyer VR: A Myc-microRNA network promotes exit from
quiescence by suppressing the interferon response and cell-cycle
arrest genes. Nucleic Acids Res. 41:2239–2254. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
He L, He X, Lim LP, de Stanchina E, Xuan
Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al: A microRNA
component of the p53 tumour suppressor network. Nature.
447:1130–1134. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lin CJ, Cencic R, Mills JR, Robert F and
Pelletier J: c-Myc and eIF4F are components of a feedforward loop
that links transcription and translation. Cancer Res. 68:5326–5334.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lin CJ, Malina A and Pelletier J: c-Myc
and eIF4F constitute a feedforward loop that regulates cell growth:
Implications for anticancer therapy. Cancer Res. 69:7491–7494.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Cohen EE and Rosner MR: MicroRNA-regulated
feed forward loop network. Cell Cycle. 8:2477–2478. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Cohen EE, Zhu H, Lingen MW, Martin LE, Kuo
WL, Choi EA, Kocherginsky M, Parker JS, Chung CH and Rosner MR: A
feed-forward loop involving protein kinase Calpha and microRNAs
regulates tumor cell cycle. Cancer Res. 69:65–74. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Rokavec M, Wu W and Luo J-L: IL6-mediated
suppression of miR-200c directs constitutive activation of
inflammatory signaling circuit driving transformation and
tumorigenesis. Mol Cell. 45:777–789. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Alexiou P, Maragkakis M, Papadopoulos GL,
Reczko M and Hatzigeorgiou AG: Lost in translation: An assessment
and perspective for computational microRNA target identification.
Bioinformatics. 25:3049–3055. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Reyes-Herrera PH and Ficarra E: One decade
of development and evolution of microRNA target prediction
algorithms. Genomics Proteomics Bioinformatics. 10:254–263. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Mendes ND, Freitas AT and Sagot MF:
Current tools for the identification of miRNA genes and their
targets. Nucleic Acids Res. 37:2419–2433. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Nazarov PV, Reinsbach SE, Muller A, Nicot
N, Philippidou D, Vallar L and Kreis S: Interplay of microRNAs,
transcription factors and target genes: Linking dynamic expression
changes to function. Nucleic Acids Res. 41:2817–2831. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Dubchak I, Munoz M, Poliakov A, Salomonis
N, Minovitsky S, Bodmer R and Zambon AC: Whole-Genome rVISTA: A
tool to determine enrichment of transcription factor binding sites
in gene promoters from transcriptomic data. Bioinformatics.
29:2059–2061. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Krystkowiak I, Lenart J, Debski K, Kuterba
P, Petas M, Kaminska B and Dabrowski M: Nencki Genomics Database -
Ensembl funcgen enhanced with intersections, user data and
genome-wide TFBS motifs. Database (Oxford). 2013:bat0692013.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jiang C, Xuan Z, Zhao F and Zhang MQ:
TRED: A transcriptional regulatory element database, new entries
and other development. Nucleic Acids Res. 35:(Database). D137–D140.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yamashita R, Sugano S, Suzuki Y and Nakai
K: DBTSS: DataBase of Transcriptional Start Sites progress report
in 2012. Nucleic Acids Res. 40:(D1). D150–D154. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kolchanov NA, Podkolodnaia OA, Anan'ko EA,
Ignat'eva EV, Podkolodnyĭ NL, Merkulov VM, Stepanenko IL,
Pozdniakov MA, Belova OE, Grigorovich DA, et al: Regulation of
eukaryotic gene transcription: Description in the TRRD database.
Mol Biol (Mosk). 35:934–942. 2001.(In Russian). PubMed/NCBI
|
|
62
|
Robertson G, Hirst M, Bainbridge M,
Bilenky M, Zhao Y, Zeng T, Euskirchen G, Bernier B, Varhol R,
Delaney A, et al: Genome-wide profiles of STAT1 DNA association
using chromatin immunoprecipitation and massively parallel
sequencing. Nat Methods. 4:651–657. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Perez-Pinera P, Ousterout DG, Brunger JM,
Farin AM, Glass KA, Guilak F, Crawford GE, Hartemink AJ and
Gersbach CA: Synergistic and tunable human gene activation by
combinations of synthetic transcription factors. Nat Methods.
10:239–242. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hesselberth JR, Chen X, Zhang Z, Sabo PJ,
Sandstrom R, Reynolds AP, Thurman RE, Neph S, Kuehn MS, Noble WS,
et al: Global mapping of protein-DNA interactions in vivo by
digital genomic footprinting. Nat Methods. 6:283–289. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hellman LM and Fried MG: Electrophoretic
mobility shift assay (EMSA) for detecting protein-nucleic acid
interactions. Nat Protoc. 2:1849–1861. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Fernandez PC, Frank SR, Wang L, Schroeder
M, Liu S, Greene J, Cocito A and Amati B: Genomic targets of the
human c-Myc protein. Genes Dev. 17:1115–1129. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wang J, Lu M, Qiu C and Cui Q: TransmiR: A
transcription factor-microRNA regulation database. Nucleic Acids
Res. 38:(Database). D119–D122. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Yan Z, Shah PK, Amin SB, Samur MK, Huang
N, Wang X, Misra V, Ji H, Gabuzda D and Li C: Integrative analysis
of gene and miRNA expression profiles with transcription
factor-miRNA feed-forward loops identifies regulators in human
cancers. Nucleic Acids Res. 40:e1352012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Poliseno L, Salmena L, Zhang J, Carver B,
Haveman WJ and Pandolfi PP: A coding-independent function of gene
and pseudogene mRNAs regulates tumour biology. Nature.
465:1033–1038. 2010. View Article : Google Scholar : PubMed/NCBI
|