|
1
|
Yang J and Weinberg RA:
Epithelial-mesenchymal transition: At the crossroads of development
and tumor metastasis. Dev Cell. 14:818–829. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Yilmaz M and Christofori G: EMT, the
cytoskeleton and cancer cell invasion. Cancer Metastasis Rev.
28:15–33. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Lin YC, Tsai PH, Lin CY, et al: Impact of
flavonoids on matrix metalloproteinase secretion and invadopodia
formation in highly invasive A431-III cancer cells. PLoS ONE.
8:e719032013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Shankar J, Messenberg A, Chan J, Underhill
TM, Foster LJ and Nabi IR: Pseudopodial actin dynamics control
epithelial-mesenchymal transition in metastatic cancer cells.
Cancer Res. 70:3780–3790. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Taylor MA, Davuluri G, Parvani JG,
Schiemann BJ, Wendt MK, Plow EF, Schiemann WP and Sossey-Alaoui K:
Upregulated WAVE3 expression is essential for TGF-β-mediated EMT
and metastasis of triple-negative breast cancer cells. Breast
Cancer Res Treat. 142:341–353. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lee MR and Jeon TJ: Cell migration:
Regulation of cytoskeleton by Rap1 in Dictyostelium discoideum. J
Microbiol. 50:555–561. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Mun H and Jeon TJ: Regulation of actin
cytoskeleton by Rap1 binding to RacGEF1. Mol Cells. 34:71–76. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lee C, Lee C, Lee S, Siu A and Ramos DM:
The cytoplasmic extension of the integrin β6 subunit regulates
epithelial-to-mesenchymal transition. Anticancer Res. 34:659–664.
2014.PubMed/NCBI
|
|
9
|
Chan E, Saito A, Honda T and Di Guglielmo
GM: The acetylenic tricyclic bis(cyano enone), TBE-31 inhibits
non-small cell lung cancer cell migration through direct binding
with actin. Cancer Prev Res (Phila). 7:727–737. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Shagieva GS, Domnina LV, Chipysheva TA,
Ermilova VD, Chaponnier C and Dugina VB: Actin isoforms and
reorganization of adhesion junctions in epithelial-to-mesenchymal
transition of cervical carcinoma cells. Biochemistry (Mosc).
77:1266–1276. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Nakashima J, Liao F, Sparks JA, Tang Y and
Blancaflor EB: The actin cytoskeleton is a suppressor of the
endogenous skewing behaviour of Arabidopsis primary roots in
microgravity. Plant Biol Stuttg. 16 (Suppl 1):142–150. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
DelToro F, Fernández FT, Tilsner J, Wright
KM, Tenllado F, Chung BN, Praveen S and Canto T: Potato virus Y
HCPro localization at distinct, dynamically related and
environment-influenced structures in the cell cytoplasm. Mol Plant
Microbe Interact. 27:1331–1343. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Visegrády B, Lorinczy D, Hild G, Somogyi B
and Nyitrai M: A simple model for the cooperative stabilisation of
actin filaments by phalloidin and jasplakinolide. FEBS Lett.
579:6–10. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Anderson TW, Vaughan AN and Cramer LP:
Retrograde flow and myosin II activity within the leading cell edge
deliver F-actin to the lamella to seed the formation of graded
polarity actomyosin II filament bundles in migrating fibroblasts.
Mol Biol Cell. 19:5006–5018. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Nürnberg A, Kitzing T and Grosse R:
Nucleating actin for invasion. Nat Rev Cancer. 11:177–187. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Henry WI, Dubois J and Quick QA: The
microtubule inhibiting agent epothilone B antagonizes glioma cell
motility associated with reorganization of the actin-binding
protein α-actinin 4. Oncol Rep. 25:887–893. 2011.PubMed/NCBI
|
|
17
|
Bamburg JR: Proteins of the ADF/cofilin
family: Essential regulators of actin dynamics. Annu Rev Cell Dev
Biol. 15:185–230. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Vlecken DH and Bagowski CP: LIMK1 and
LIMK2 are important for metastatic behavior and tumor cell-induced
angiogenesis of pancreatic cancer cells. Zebrafish. 6:433–439.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Guarino M: Src signaling in cancer
invasion. J Cell Physiol. 223:14–26. 2010.PubMed/NCBI
|
|
20
|
Shibue T, Brooks MW, Inan MF, Reinhardt F
and Weinberg RA: The outgrowth of micrometastases is enabled by the
formation of filopodium-like protrusions. Cancer Discov. 2:706–721.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Mellor H: The role of formins in filopodia
formation. Biochim Biophys Acta. 1803:191–200. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Hotulainen P, Llano O, Smirnov S,
Tanhuanpää K, Faix J, Rivera C and Lappalainen P: Defining
mechanisms of actin polymerization and depolymerization during
dendritic spine morphogenesis. J Cell Biol. 185:323–339. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wilhelm K: Roentgenological follow-up
studies of silicone joint surface replacement in hand surgery as
exemplified by scaphoid total and partial prosthesis. Handchir
Mikrochir Plast Chir. 22:177–182. 1990.(In German). PubMed/NCBI
|
|
24
|
Gervasi M, BianchiSmiraglia A, Cummings M,
Zheng Q, Wang D, Liu S and Bakin AV: JunB contributes to Id2
repression and the epithelial-mesenchymal transition in response to
transforming growth factor-β. J Cell Biol. 196:589–603. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Safina AF, Varga AE, Bianchi A, Zheng Q,
Kunnev D, Liang P and Bakin AV: Ras alters epithelial-mesenchymal
transition in response to TGFbeta by reducing actin fibers and
cell-matrix adhesion. Cell Cycle. 8:284–298. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Iwaya K, Oikawa K, Semba S, et al:
Correlation between liver metastasis of the colocalization of
actin-related protein 2 and 3 complex and WAVE2 in colorectal
carcinoma. Cancer Sci. 98:992–999. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Monteiro P, Rossé C, Castro-Castro A, et
al: Endosomal WASH and exocyst complexes control exocytosis of
MT1-MMP at invadopodia. J Cell Biol. 203:1063–1079. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Spence HJ, Timpson P, Tang HR, Insall RH
and Machesky LM: Scar/WAVE3 contributes to motility and plasticity
of lamellipodial dynamics but not invasion in three dimensions.
Biochem J. 448:35–42. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Helgeson LA, Prendergast JG, Wagner AR,
RodnickSmith M and Nolen BJ: Interactions with actin monomers,
actin filaments, and Arp2/3 complex define the roles of WASP family
proteins and cortactin in coordinately regulating branched actin
networks. J Biol Chem. 289:28856–28869. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Han SP, Gambin Y, Gomez GA, et al:
Cortactin scaffolds Arp2/3 and WAVE2 at the epithelial zonula
adherens. J Biol Chem. 289:7764–7775. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Adams JC: Fascin-1 as a biomarker and
prospective therapeutic target in colorectal cancer. Expert Rev Mol
Diagn. 15:41–48. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Béland MJ, Hesslein PS, Finlay CD,
Faerron-Angel JE, Williams WG and Rowe RD: Noninvasive
transcutaneous cardiac pacing in children. Pacing Clin
Electrophysiol. 10:1262–1270. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Gay O, Gilquin B, Nakamura F, et al:
RefilinB (FAM101B) targets filamin A to organize perinuclear actin
networks and regulates nuclear shape. Proc Natl Acad Sci USA.
108:11464–11469. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Gay O, Gilquin B, Pitaval A and Baudier J:
Refilins: A link between perinuclear actin bundle dynamics and
mechanosensing signaling. BioArchitecture. 1:245–249. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Vindin H and Gunning P: Cytoskeletal
tropomyosins: Choreographers of actin filament functional
diversity. J Muscle Res Cell Motil. 34:261–274. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Bach CT, Creed S, Zhong J, et al:
Tropomyosin isoform expression regulates the transition of
adhesions to determine cell speed and direction. Mol Cell Biol.
29:1506–1514. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
O'Neill GM, Stehn J and Gunning PW:
Tropomyosins as interpreters of the signalling environment to
regulate the local cytoskeleton. Semin Cancer Biol. 18:35–44. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Bach CT, Murray RZ, Owen D, Gaus K and
O'Neill GM: Tropomyosin Tm5NM1 spatially restricts src kinase
activity through perturbation of Rab11 vesicle trafficking. Mol
Cell Biol. 34:4436–4446. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Pawlak G and Helfman DM: Cytoskeletal
changes in cell transformation and tumorigenesis. Curr Opin Genet
Dev. 11:41–47. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
SosseyAlaoui K, DownsKelly E, Das M, Izem
L, Tubbs R and Plow EF: WAVE3, an actin remodeling protein, is
regulated by the metastasis suppressor microRNA, miR-31, during the
invasion-metastasis cascade. Int J Cancer. 129:1331–1343. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Sadhukhan S, Sarkar K, Taylor M, Candotti
F and Vyas YM: Nuclear role of WASp in gene transcription is
uncoupled from its ARP2/3-dependent cytoplasmic role in actin
polymerization. J Immunol. 193:150–160. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Boczkowska M, Rebowski G, Kast DJ and
Dominguez R: Structural analysis of the transitional state of
Arp2/3 complex activation by two actin-bound WCAs. Nat Commun.
5:33082014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Holmes WR, Carlsson AE and
Edelstein-Keshet L: Regimes of wave type patterning driven by
refractory actin feedback: Transition from static polarization to
dynamic wave behaviour. Phys Biol. 9:0460052012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Lai FP, Szczodrak M, Oelkers JM, et al:
Cortactin promotes migration and platelet-derived growth
factor-induced actin reorganization by signaling to Rho-GTPases.
Mol Biol Cell. 20:3209–3223. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Ridley AJ, Schwartz MA, Burridge K, Firtel
RA, Ginsberg MH, Borisy G, Parsons JT and Horwitz AR: Cell
migration: Integrating signals from front to back. Science.
302:1704–1709. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Oh SY, Knelson EH, Blobe GC and Mythreye
K: The type III TGFβ receptor regulates filopodia formation via a
Cdc42-mediated IRSp53-N-WASP interaction in epithelial cells.
Biochem J. 454:79–89. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
ElSibai M, Pertz O, Pang H, Yip SC, Lorenz
M, Symons M, Condeelis JS, Hahn KM and Backer JM:
RhoA/ROCK-mediated switching between Cdc42- and Rac1-dependent
protrusion in MTLn3 carcinoma cells. Exp Cell Res. 314:1540–1552.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhang Z, Yang M, Chen R, Su W, Li P, Chen
S, Chen Z, Chen A, Li S and Hu C: IBP regulates
epithelial-to-mesenchymal transition and the motility of breast
cancer cells via Rac1, RhoA and Cdc42 signaling pathways. Oncogene.
33:3374–3382. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Gardberg M, Kaipio K, Lehtinen L, et al:
FHOD1, a formin upregulated in epithelial-mesenchymal transition,
participates in cancer cell migration and invasion. PLoS ONE.
8:e749232013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pettee KM, Dvorak KM, NestorKalinoski AL
and Eisenmann KM: An mDia2/ROCK signaling axis regulates invasive
egress from epithelial ovarian cancer spheroids. PLoS ONE.
9:e903712014. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Jaiswal R, Breitsprecher D, Collins A,
Corrêa IR Jr, Xu MQ and Goode BL: The formin Daam1 and fascin
directly collaborate to promote filopodia formation. Curr Biol.
23:1373–1379. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Takeya R and Sumimoto H: Fhos, a mammalian
formin, directly binds to F-actin via a region N-terminal to the
FH1 domain and forms a homotypic complex via the FH2 domain to
promote actin fiber formation. J Cell Sci. 116:4567–4575. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jurmeister S, Baumann M, Balwierz A,
Keklikoglou I, Ward A, Uhlmann S, Zhang JD, Wiemann S and Sahin Ö:
MicroRNA-200c represses migration and invasion of breast cancer
cells by targeting actin-regulatory proteins FHOD1 and PPM1F. Mol
Cell Biol. 32:633–651. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Yao Y, Gu X, Liu H, Wu G, Yuan D, Yang X
and Song Y: Metadherin regulates proliferation and metastasis via
actin cytoskeletal remodelling in non-small cell lung cancer. Br J
Cancer. 111:355–364. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Basquin C and Sauvonnet N:
Phosphoinositide 3-kinase at the crossroad between endocytosis and
signaling of cytokine receptors. Commun Integr Biol. 6:e242432013.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ray A, Schatten H and Ray BK: Activation
of Sp1 and its functional co-operation with serum amyloid
A-activating sequence binding factor in synoviocyte cells trigger
synergistic action of interleukin-1 and interleukin-6 in serum
amyloid A gene expression. J Biol Chem. 274:4300–4308. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Bendris N, Cheung CT, Leong HS, Lewis JD,
Chambers AF, Blanchard JM and Lemmers B: Cyclin A2, a novel
regulator of EMT. Cell Mol Life Sci. 71:4881–4894. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Bendris N, Arsic N, Lemmers B and
Blanchard JM: Cyclin A2, Rho GTPases and EMT. Small GTPases.
3:225–228. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Whipple RA, Vitolo MI, Boggs AE,
Charpentier MS, Thompson K and Martin SS: Parthenolide and
costunolide reduce microtentacles and tumor cell attachment by
selectively targeting detyrosinated tubulin independent from NF-κB
inhibition. Breast Cancer Res. 15:R832013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Charpentier M and Martin S: Interplay of
Stem Cell Characteristics, EMT and Microtentacles in Circulating
Breast Tumor Cells. Cancers Basel. 5:1545–1565. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Whipple RA, Matrone MA, Cho EH, Balzer EM,
Vitolo MI, Yoon JR, Ioffe OB, Tuttle KC, Yang J and Martin SS:
Epithelial-to-mesenchymal transition promotes tubulin
detyrosination and microtentacles that enhance endothelial
engagement. Cancer Res. 70:8127–8137. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Oyanagi J, Ogawa T, Sato H, Higashi S and
Miyazaki K: Epithelial-mesenchymal transition stimulates human
cancer cells to extend microtubule-based invasive protrusions and
suppresses cell growth in collagen gel. PLoS ONE. 7:e532092012.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Kaneko T, Itoh TJ and Hotani H:
Morphological transformation of liposomes caused by assembly of
encapsulated tubulin and determination of shape by
microtubule-associated proteins (MAPs). J Mol Biol. 284:1671–1681.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Park I, Lee HO, Choi E, et al: Loss of
BubR1 acetylation causes defects in spindle assembly checkpoint
signaling and promotes tumor formation. J Cell Biol. 202:295–309.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhang Q, Zhai S, Li L, Li X, Jiang C,
Zhang C and Yan B: P-glycoprotein-evading anti-tumor activity of a
novel tubulin and HSP90 dual inhibitor in a non-small-cell lung
cancer model. J Pharmacol Sci. 126:66–76. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kamal A, Rao AV, Nayak VL, Reddy NV,
Swapna K, Ramakrishna G and Alvala M: Synthesis and biological
evaluation of imidazo[1,5-a]pyridine-benzimidazole hybrids as
inhibitors of both tubulin polymerization and PI3K/Akt pathway. Org
Biomol Chem. 12:9864–9880. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Braun A, Dang K, Buslig F, Baird MA,
Davidson MW, Waterman CM and Myers KA: Rac1 and Aurora A regulate
MCAK to polarize microtubule growth in migrating endothelial cells.
J Cell Biol. 206:97–112. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Tian X, Tian Y, Moldobaeva N, Sarich N and
Birukova AA: Microtubule dynamics control HGF-induced lung
endothelial barrier enhancement. PLoS ONE. 9:e1059122014.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Suzuki K and Takahashi K: Regulation of
lamellipodia formation and cell invasion by CLIP-170 in invasive
human breast cancer cells. Biochem Biophys Res Commun. 368:199–204.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Takahashi K and Suzuki K: Requirement of
kinesin-mediated membrane transport of WAVE2 along microtubules for
lamellipodia formation promoted by hepatocyte growth factor. Exp
Cell Res. 314:2313–2322. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhao E, Amir M, Lin Y and Czaja MJ:
Stathmin mediates hepatocyte resistance to death from oxidative
stress by down regulating JNK. PLoS ONE. 9:e1097502014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Cassimeris L: The oncoprotein 18/stathmin
family of microtubule destabilizers. Curr Opin Cell Biol. 14:18–24.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Manna T, Thrower DA, Honnappa S, Steinmetz
MO and Wilson L: Regulation of microtubule dynamic instability in
vitro by differentially phosphorylated stathmin. J Biol Chem.
284:15640–15649. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li N, Jiang P, Du W, Wu Z, Li C, Qiao M,
Yang X and Wu M: Siva1 suppresses epithelial-mesenchymal transition
and metastasis of tumor cells by inhibiting stathmin and
stabilizing microtubules. Proc Natl Acad Sci USA. 108:12851–12856.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Furlan D, Sahnane N, Bernasconi B, et al:
APC alterations are frequently involved in the pathogenesis of
acinar cell carcinoma of the pancreas, mainly through gene loss and
promoter hypermethylation. Virchows Arch. 464:553–564. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Baldwin AT and Phillips BT: The tumor
suppressor APC differentially regulates multiple β-catenins through
the function of axin and CKIα during C. elegans asymmetric stem
cell divisions. J Cell Sci. 127:2771–2781. 2014.PubMed/NCBI
|
|
77
|
Yamana N, Arakawa Y, Nishino T, et al: The
Rho-mDia1 pathway regulates cell polarity and focal adhesion
turnover in migrating cells through mobilizing Apc and c-Src. Mol
Cell Biol. 26:6844–6858. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chang HW, Lee YS, Nam HY, et al: Knockdown
of β-catenin controls both apoptotic and autophagic cell death
through LKB1/AMPK signaling in head and neck squamous cell
carcinoma cell lines. Cell Signal. 25:839–847. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Odenwald MA, Prosperi JR and Goss KH:
APC/β-catenin-rich complexes at membrane protrusions regulate
mammary tumor cell migration and mesenchymal morphology. BMC
Cancer. 13:122013. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Hoy SM: Albumin-bound paclitaxel: A review
of its use for the first-line combination treatment of metastatic
pancreatic cancer. Drugs. 74:1757–1768. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Meany HJ, Sackett DL, Maris JM, Ward Y,
Krivoshik A, Cohn SL, Steinberg SM, Balis FM and Fox E: Clinical
outcome in children with recurrent neuroblastoma treated with
ABT-751 and effect of ABT-751 on proliferation of neuroblastoma
cell lines and on tubulin polymerization in vitro. Pediatr Blood
Cancer. 54:47–54. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Coderch C, Morreale A and Gago F:
Tubulin-based structure-affinity relationships for antimitotic
Vinca alkaloids. Anticancer Agents Med Chem. 12:219–225. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Shin SY, Kim JH, Yoon H, Choi YK, Koh D,
Lim Y and Lee YH: Novel antimitotic activity of
2-hydroxy-4-methoxy-2′,3′-benzochalcone (HymnPro) through the
inhibition of tubulin polymerization. J Agric Food Chem.
61:12588–12597. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Landowski TH, Samulitis BK and Dorr RT:
The diaryl oxazole PC-046 is a tubulin-binding agent with
experimental anti-tumor efficacy in hematologic cancers. Invest New
Drugs. 31:1616–1625. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Li WT, Yeh TK, Song JS, et al: BPR0C305,
an orally active microtubule-disrupting anticancer agent.
Anticancer Drugs. 24:1047–1057. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Nicholl ID and Quinlan RA: Chaperone
activity of alpha-crystallins modulates intermediate filament
assembly. EMBO J. 13:945–953. 1994.PubMed/NCBI
|
|
87
|
Helfand BT, Chang L and Goldman RD:
Intermediate filaments are dynamic and motile elements of cellular
architecture. J Cell Sci. 117:133–141. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
SutohYoneyama M, Hatakeyama S, Habuchi T,
Inoue T, Nakamura T, Funyu T, Wiche G, Ohyama C and Tsuboi S:
Vimentin intermediate filament and plectin provide a scaffold for
invadopodia, facilitating cancer cell invasion and extravasation
for metastasis. Eur J Cell Biol. 93:157–169. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Szeverenyi I, Cassidy AJ, Chung CW, et al:
The Human Intermediate Filament Database: Comprehensive information
on a gene family involved in many human diseases. Hum Mutat.
29:351–360. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Wettstein G, Bellaye PS, Micheau O and
Bonniaud P: Small heat shock proteins and the cytoskeleton: An
essential interplay for cell integrity. Int J Biochem Cell Biol.
44:1680–1686. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Johnen N, Francart ME, Thelen N, Cloes M
and Thiry M: Evidence for a partial epithelial-mesenchymal
transition in postnatal stages of rat auditory organ morphogenesis.
Histochem Cell Biol. 138:477–488. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Kim S and Coulombe PA: Intermediate
filament scaffolds fulfill mechanical, organizational and signaling
functions in the cytoplasm. Genes Dev. 21:1581–1597. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Kim S, Kellner J, Lee CH and Coulombe PA:
Interaction between the keratin cytoskeleton and eEF1Bgamma affects
protein synthesis in epithelial cells. Nat Struct Mol Biol.
14:982–983. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Nieminen M, Henttinen T, Merinen M,
MarttilaIchihara F, Eriksson JE and Jalkanen S: Vimentin function
in lymphocyte adhesion and transcellular migration. Nat Cell Biol.
8:156–162. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Yamasaki T, Seki N, Yamada Y, Yoshino H,
Hidaka H, Chiyomaru T, Nohata N, Kinoshita T, Nakagawa M and
Enokida H: Tumor suppressive microRNA-138 contributes to cell
migration and invasion through its targeting of vimentin in renal
cell carcinoma. Int J Oncol. 41:805–817. 2012.PubMed/NCBI
|
|
96
|
Toivola DM, Strnad P, Habtezion A and
Omary MB: Intermediate filaments take the heat as stress proteins.
Trends Cell Biol. 20:79–91. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Herrmann H, Strelkov SV, Burkhard P and
Aebi U: Intermediate filaments: Primary determinants of cell
architecture and plasticity. J Clin Invest. 119:1772–1783. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yang Z, Garcia A, Xu S, Powell DR, Vertino
PM, Singh S and Marcus AI: Withania somnifera root extract inhibits
mammary cancer metastasis and epithelial to mesenchymal transition.
PLoS ONE. 8:e750692013. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Mendez MG, Kojima S and Goldman RD:
Vimentin induces changes in cell shape, motility, and adhesion
during the epithelial to mesenchymal transition. FASEB J.
24:1838–1851. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Liu X, Wang C, Chen Z, Jin Y, Wang Y,
Kolokythas A, Dai Y and Zhou X: MicroRNA-138 suppresses
epithelial-mesenchymal transition in squamous cell carcinoma cell
lines. Biochem J. 440:23–31. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Huang Y, Tong J, He F, Yu X, Fan L, Hu J,
Tan J and Chen Z: miR-141 regulates TGF-β1-induced epithelial
mesenchymal transition through repression of HIPK2
expression in renal tubular epithelial cells. Int J Mol Med.
35:311–318. 2015.PubMed/NCBI
|
|
102
|
Luo W, Li S, Peng B, Ye Y, Deng X and Yao
K: Embryonic stem cells markers SOX2, OCT4 and Nanog expression and
their correlations with epithelial-mesenchymal transition in
nasopharyngeal carcinoma. PLoS ONE. 8:e563242013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Traub P, Kühn S and Grüb S: Separation and
characterization of homo and hetero-oligomers of the intermediate
filament proteins desmin and vimentin. J Mol Biol. 230:837–856.
1993. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Sahlgren CM, Mikhailov A, Hellman J, Chou
YH, Lendahl U, Goldman RD and Eriksson JE: Mitotic reorganization
of the intermediate filament protein nestin involves
phosphorylation by cdc2 kinase. J Biol Chem. 276:16456–16463. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Kawamoto M, Ishiwata T, Cho K, Uchida E,
Korc M, Naito Z and Tajiri T: Nestin expression correlates with
nerve and retroperitoneal tissue invasion in pancreatic cancer. Hum
Pathol. 40:189–198. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Matsuda Y, Naito Z, Kawahara K, Nakazawa
N, Korc M and Ishiwata T: Nestin is a novel target for suppressing
pancreatic cancer cell migration, invasion and metastasis. Cancer
Biol Ther. 11:512–523. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Su HT, Weng CC, Hsiao PJ, Chen LH, Kuo TL,
Chen YW, Kuo KK and Cheng KH: Stem cell marker nestin is critical
for TGF-β1-mediated tumor progression in pancreatic cancer. Mol
Cancer Res. 11:768–779. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Christiansen JJ and Rajasekaran AK:
Reassessing epithelial to mesenchymal transition as a prerequisite
for carcinoma invasion and metastasis. Cancer Res. 66:8319–8326.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wicki A, Lehembre F, Wick N, Hantusch B,
Kerjaschki D and Christofori G: Tumor invasion in the absence of
epithelial-mesenchymal transition: Podoplanin-mediated remodeling
of the actin cytoskeleton. Cancer Cell. 9:261–272. 2006. View Article : Google Scholar : PubMed/NCBI
|