|
1
|
Narlik-Grassow M, Blanco-Aparicio C and
Carnero A: The PIM family of serine/threonine kinases in cancer.
Med Res Rev. 34:136–159. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Warfel NA and Kraft AS: PIM kinase (and
Akt) biology and signaling in tumors. Pharmacol Ther. 151:41–49.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Li J, Loveland BE and Xing PX: Anti-Pim-1
mAb inhibits activation and proliferation of T lymphocytes and
prolongs mouse skin allograft survival. Cell Immunol. 272:87–93.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Aho TLT, Sandholm J, Peltola KJ, Mankonen
HP, Lilly M and Koskinen PJ: Pim-1 kinase promotes inactivation of
the pro-apoptotic Bad protein by phosphorylating it on the Ser112
gatekeeper site. FEBS Lett. 571:43–49. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H
and Qiu Y: The 44 kDa Pim-1 kinase directly interacts with tyrosine
kinase Etk/BMX and protects human prostate cancer cells from
apoptosis induced by chemotherapeutic drugs. Oncogene. 25:70–78.
2006.PubMed/NCBI
|
|
6
|
Saris CJM, Domen J and Berns A: The pim-1
oncogene encodes two related protein-serine/threonine kinases by
alternative initiation at AUG and CUG. EMBO J. 10:655–664.
1991.PubMed/NCBI
|
|
7
|
Kumar A, Mandiyan V, Suzuki Y, Zhang C,
Rice J, Tsai J, Artis DR, Ibrahim P and Bremer R: Crystal
structures of proto-oncogene kinase Pim1: A target of aberrant
somatic hypermutations in diffuse large cell lymphoma. J Mol Biol.
348:183–193. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Bachmann M and Möröy T: The
serine/threonine kinase Pim-1. Int J Biochem Cell Biol. 37:726–730.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yin J, Shine L, Raycroft F, Deeti S,
Reynolds A, Ackerman KM, Glaviano A, O'Farrell S, O'Leary O, Kilty
C, et al: Inhibition of the Pim1 oncogene results in diminished
visual function. PLoS One. 7:e521772012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Magnuson NS, Wang Z, Ding G and Reeves R:
Why target PIM1 for cancer diagnosis and treatment? Future Oncol.
6:1461–1478. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Hofmann AD, Takahashi T, Duess J, Gosemann
JH and Puri P: Increased expression of activated pSTAT3 and PIM-1
in the pulmonary vasculature of experimental congenital
diaphragmatic hernia. J Pediatr Surg. 50:908–911. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Zhang Y, Wang Z and Magnuson NS: Pim-1
kinase-dependent phosphorylation of p21Cip1/WAF1 regulates its
stability and cellular localization in H1299 cells. Mol Cancer Res.
5:909–922. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Morishita D, Katayama R, Sekimizu K,
Tsuruo T and Fujita N: Pim kinases promote cell cycle progression
by phosphorylating and down-regulating p27Kip1 at the
transcriptional and posttranscriptional levels. Cancer Res.
68:5076–5085. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Lam LT, Zhang H, Xue J, Hessler P, Tahir
SK, Chen J, Jin S, Souers AJ and Leverson JD: Colorectal cancer
cell lines with high BCL-XL and low MCL-1 expression are sensitive
to a potent and selective BCL-XL inhibitor. Cancer Res. 74(Suppl
19): 27592014. View Article : Google Scholar
|
|
15
|
Kumar JK, Ping RYS, Teong HF, Goh S and
Clément MV: Activation of a non-genomic Pim-1/Bad-Pser75 module is
required for an efficient pro-survival effect of Bcl-xL induced by
androgen in LNCaP cells. Int J Biochem Cell Biol. 43:594–603. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Block KM, Hanke NT, Maine EA and Baker AF:
IL-6 stimulates STAT3 and Pim-1 kinase in pancreatic cancer cell
lines. Pancreas. 41:773–781. 2012.PubMed/NCBI
|
|
17
|
Dhanasekaran SM, Barrette TR, Ghosh D,
Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA and Chinnaiyan
AM: Delineation of prognostic biomarkers in prostate cancer.
Nature. 412:822–826. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hu XF, Li J, Vandervalk S, Wang Z,
Magnuson NS and Xing PX: PIM-1-specific mAb suppresses human and
mouse tumor growth by decreasing PIM-1 levels, reducing Akt
phosphorylation, and activating apoptosis. J Clin Invest.
119:362–375. 2009.PubMed/NCBI
|
|
19
|
Li J, Hu XF, Loveland BE and Xing PX:
Pim-1 expression and monoclonal antibody targeting in human
leukemia cell lines. Exp Hematol. 37:1284–1294. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Xie Y, Xu K, Linn DE, Yang X, Guo Z,
Shimelis H, Nakanishi T, Ross DD, Chen H, Fazli L, et al: The
44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes
its multimerization and drug-resistant activity in human prostate
cancer cells. J Biol Chem. 283:3349–3356. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Li Z, Lin F, Zhuo C, Deng G, Chen Z, Yin
S, Gao Z, Piccioni M, Tsun A, Cai S, et al: PIM1 kinase
phosphorylates the human transcription factor FOXP3 at serine 422
to negatively regulate its activity under inflammation. J Biol
Chem. 289:26872–26881. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nie H, Zheng Y, Li R, Guo TB, He D, Fang
L, Liu X, Xiao L, Chen X, Wan B, et al: Phosphorylation of FOXP3
controls regulatory T cell function and is inhibited by TNF-α in
rheumatoid arthritis. Nat Med. 19:322–328. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Morawski PA, Mehra P, Chen C, Bhatti T and
Wells AD: Foxp3 protein stability is regulated by cyclin-dependent
kinase 2. J Biol Chem. 288:24494–24502. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Oleinika K, Nibbs RJ, Graham GJ and Fraser
AR: Suppression, subversion and escape: The role of regulatory T
cells in cancer progression. Clin Exp Immunol. 171:36–45. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Isaac M, Siu A and Jongstra J: The
oncogenic PIM kinase family regulates drug resistance through
multiple mechanisms. Drug Resist Updat. 14:203–211. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Xie Y, Burcu M, Linn DE, Qiu Y and Baer
MR: Pim-1 kinase protects P-glycoprotein from degradation and
enables its glycosylation and cell surface expression. Mol
Pharmacol. 78:310–318. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Natarajan K, Bhullar J, Shukla S, Burcu M,
Chen ZS, Ambudkar SV and Baer MR: The Pim kinase inhibitor SGI-1776
decreases cell surface expression of P-glycoprotein (ABCB1) and
breast cancer resistance protein (ABCG2) and drug transport by
Pim-1-dependent and -independent mechanisms. Biochem Pharmacol.
85:514–524. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kim KT, Baird K, Ahn JY, Meltzer P, Lilly
M, Levis M and Small D: Pim-1 is up-regulated by constitutively
activated FLT3 and plays a role in FLT3-mediated cell survival.
Blood. 105:1759–1767. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lilly M, Sandholm J, Cooper JJ, Koskinen
PJ and Kraft A: The PIM-1 serine kinase prolongs survival and
inhibits apoptosis-related mitochondrial dysfunction in part
through a bcl-2-dependent pathway. Oncogene. 18:4022–4031. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jiang T, Guo Z, Dai B, Kang M, Ann DK,
Kung HJ and Qiu Y: Bi-directional regulation between tyrosine
kinase Etk/BMX and tumor suppressor p53 in response to DNA damage.
J Biol Chem. 279:50181–50189. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Riganti C, Gazzano E, Gulino GR, Volante
M, Ghigo D and Kopecka J: Two repeated low doses of doxorubicin are
more effective than a single high dose against tumors
overexpressing P-glycoprotein. Cancer Lett. 360:219–226. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Gribar JJ, Ramachandra M, Hrycyna CA, Dey
S and Ambudkar SV: Functional characterization of
glycosylation-deficient human P-glycoprotein using a vaccinia virus
expression system. J Membr Biol. 173:203–214. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Meshinchi S and Appelbaum FR: Structural
and functional alterations of FLT3 in acute myeloid leukemia. Clin
Cancer Res. 15:4263–4269. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Schmidt-Arras D, Böhmer SA, Koch S, Müller
JP, Blei L, Cornils H, Bauer R, Korasikha S, Thiede C and Böhmer
FD: Anchoring of FLT3 in the endoplasmic reticulum alters signaling
quality. Blood. 113:3568–3576. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Stout BA, Bates ME, Liu LY, Farrington NN
and Bertics PJ: IL-5 and granulocyte-macrophage colony-stimulating
factor activate STAT3 and STAT5 and promote Pim-1 and cyclin D3
protein expression in human eosinophils. J Immunol. 173:6409–6417.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Choudhary C, Olsen JV, Brandts C, Cox J,
Reddy PN, Böhmer FD, Gerke V, Schmidt-Arras DE, Berdel WE,
Müller-Tidow C, et al: Mislocalized activation of oncogenic RTKs
switches downstream signaling outcomes. Mol Cell. 36:326–339. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Natarjan K, Xie Y, Burcu M, Linn DE, Qui Y
and Baer MR: Pim-1 kinase phosphorylates and stabilizes 130 kDa
FLT3 and promotes aberrant STAT5 signaling in acute myeloid
leukemia with FLT3 internal tandem duplication. PLoS One.
8:e764532013.PubMed/NCBI
|
|
38
|
Lanigan F, Geraghty JG and Bracken AP:
Transcriptional regulation of cellular senescence. Oncogene.
30:2901–2911. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Vargas J, Feltes BC, Poloni JG and Bonatto
D: Senescence, an endogenous anticancer mechanism. Fronti Biosci
(Landmark Ed.). 17:2616–2643. 2012. View
Article : Google Scholar
|
|
40
|
Jin B, Wang Y, Wu CL, Liu KY, Chen H and
Mao ZB: PIM-1 modulates cellular senescence and links IL-6
signaling to heterochromatin formation. Aging Cell. 13:879–889.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mohsin S, Khan M, Nguyen J, Alkatib M,
Siddiqi S, Hariharan N, Wallach K, Monsanto M, Gude N, Dembitsky W,
et al: Rejuvenation of human cardiac progenitor cells with Pim-1
kinase. Circ Res. 113:1169–1179. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Samse K, Emathinger J, Hariharan N,
Quijada P, Ilves K, Völkers M, Ormachea L, De La Torre A, Orogo AM,
Alvarez R, et al: Functional ffect of Pim1 depends upon
intracellular localization in human cardiac progenitor cells. J
Biol Chem. 290:13935–13947. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Linn DE, Yang X, Xie Y, Alfano A, Deshmukh
D, Wang X, Shimelis H, Chen H, Li W, Xu K, et al: Differential
regulation of androgen receptor by PIM-1 kinases via
phosphorylation-dependent recruitment of distinct ubiquitin E3
ligases. J Biol Chem. 287:22959–22968. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ha S, Iqbal NJ, Mita P, Ruoff R, Gerald
WL, Lepor H, Taneja SS, Lee P, Melamed J, Garabedian MJ, et al:
Phosphorylation of the androgen receptor by PIM1 in hormone
refractory prostate cancer. Oncogene. 32:3992–4000. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Song H, Zhang B, Watson MA, Humphrey PA,
Lim H and Milbrandt J: Loss of Nkx3.1 leads to the activation of
discrete downstream target genes during prostate tumorigenesis.
Oncogene. 28:3307–3319. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Xu K, Shimelis H, Linn DE, Jiang R, Yang
X, Sun F, Guo Z, Chen H, Li W, Chen H, et al: Regulation of
androgen receptor transcriptional activity and specificity by
RNF6-induced ubiquitination. Cancer Cell. 15:270–282. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kim J, Roh M and Abdulkadir SA: Pim1
promotes human prostate cancer cell tumorigenicity and c-MYC
transcriptional activity. BMC Cancer. 10:2482010. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kim J, Eltoum IE, Roh M, Wang J and
Abdulkadir SA: Interactions between cells with distinct mutations
in c-MYC and Pten in prostate cancer. PLoS Genet. 5:e10005422009.
View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Wang J, Kim J, Roh M, Franco OE, Hayward
SW, Wills ML and Abdulkadir SA: Pim1 kinase synergizes with c-MYC
to induce advanced prostate carcinoma. Oncogene. 29:2477–2487.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zippo A, De Robertis A, Serafini R and
Oliviero S: PIM1-dependent phosphorylation of histone H3 at serine
10 is required for MYC-dependent transcriptional activation and
oncogenic transformation. Nat Cell Biol. 9:932–944. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Santio NM, Eerola SK, Paatero I,
Yli-Kauhaluoma J, Anizon F, Moreau P, Tuomela J, Härkönen P and
Koskinen PJ: Pim kinases promote migration and metastatic growth of
prostate cancer xenografts. PLoS One. 10:e01303402015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Zemskova MY, Song JH, Cen B, Cerda-Infante
J, Montecinos VP and Kraft AS: Regulation of prostate stromal
fibroblasts by the PIM1 protein kinase. Cell Signal. 27:135–146.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Cen B, Xiong Y, Song JH, Mahajan S, DuPont
R, McEachern K, DeAngelo DJ, Cortes JE, Minden MD, Ebens A, et al:
The Pim-1 protein kinase is an important regulator of MET receptor
tyrosine kinase levels and signaling. Mol Cell Biol. 34:2517–2532.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Cen B, Mahajan S, Wang W and Kraft AS:
Elevation of receptor tyrosine kinases by small molecule AKT
inhibitors in prostate cancer is mediated by Pim-1. Cancer Res.
73:3402–3411. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Tong Y, Stewart KD, Thomas S, Przytulinska
M, Johnson EF, Klinghofer V, Leverson J, McCall O, Soni NB, Luo Y,
et al: Isoxazolo[3,4-b]quinoline-3,4(1H,9H)-diones as unique,
potent and selective inhibitors for Pim-1 and Pim-2 kinases:
Chemistry, biological activities, and molecular modeling. Bioorg
Med Chem Lett. 18:5206–5208. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Holder S, Lilly M and Brown ML:
Comparative molecular field analysis of flavonoid inhibitors of the
PIM-1 kinase. Bioorg Med Chem. 15:6463–6473. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Blanco-Aparicio C, Collazo AM, Oyarzabal
J, Leal JF, Albarán MI, Lima FR, Pequeño B, Ajenjo N, Becerra M,
Alfonso P, et al: Pim 1 kinase inhibitor ETP-45299 suppresses
cellular proliferation and synergizes with PI3K inhibition. Cancer
Lett. 300:145–153. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yang Q, Chen LS, Neelapu SS and Gandhi V:
Combination of Pim kinase inhibitor SGI-1776 and bendamustine in
B-cell lymphoma. Clin Lymphoma Myeloma Leuk. 13(Suppl 2):
S355–S362. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Keeton E, McEachern K, Alimzhanov M, Wang
S, Cao Y, Bao L, Palakurthi S, Grondine M, Chen Y, Dillman K, et
al: Efficacy and biomarker modulation by AZD1208, a novel, potent
and selective pan-Pim kinase inhibitor, in models of acute myeloid
leukemia. Cancer Res. 72:27962012. View Article : Google Scholar
|
|
60
|
Mondello P, Cuzzocrea S and Mian M: Pim
kinases in hematological malignancies: Where are we now and where
are we going? J Hematol Oncol. 7:952014. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hospital MA, Green AS, Lacombe C, Mayeux
P, Bouscary D and Tamburini J: The FLT3 and Pim kinases inhibitor
SGI-1776 preferentially target FLT3-ITD AML cells. Blood.
119:1791–1792. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Foulks JM, Carpenter KJ, Luo B, Xu Y,
Senina A, Nix R, Chan A, Clifford A, Wilkes M, Vollmer D, et al: A
small-molecule inhibitor of PIM kinases as a potential treatment
for urothelial carcinomas. Neoplasia. 16:403–412. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Keeton EK, McEachern K, Dillman KS,
Palakurthi S, Cao Y, Grondine MR, Kaur S, Wang S, Chen Y, Wu A, et
al: AZD1208, a potent and selective pan-Pim kinase inhibitor,
demonstrates efficacy in preclinical models of acute myeloid
leukemia. Blood. 123:905–913. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Kirschner AN, Wang J, van der Meer R,
Anderson PD, Franco-Coronel OE, Kushner MH, Everett JH, Hameed O,
Keeton EK, Ahdesmaki M, et al: PIM kinase inhibitor AZD1208 for
treatment of MYC-driven prostate cancer. J Natl Cancer Inst.
107:dju4072014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Hogan C, Hutchison C, Marcar L, Milne D,
Saville M, Goodlad J, Kernohan N and Meek D: Elevated levels of
oncogenic protein kinase Pim-1 induce the p53 pathway in cultured
cells and correlate with increased Mdm2 in mantle cell lymphoma. J
Biol Chem. 283:18012–18023. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Turaka A, Buyyounouski MK, Hanlon AL,
Horwitz EM, Greenberg RE and Movsas B: Hypoxic prostate/muscle PO2
ratio predicts for outcome in patients with localized prostate
cancer: Long-term results. Int J Radiat Oncol Biol Phys.
82:e433–e439. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Guo Z, Wang A, Zhang W, Levit M, Gao Q,
Barberis C, Tabart M, Zhang J, Hoffmann D, Wiederschain D, et al:
PIM inhibitors target CD25-positive AML cells through concomitant
suppression of STAT5 activation and degradation of MYC oncogene.
Blood. 124:1777–1789. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Liang C and Li YY: Use of regulators and
inhibitors of Pim-1, a serine/threonine kinase, for tumour therapy
(Review). Mol Med Rep. 9:2051–2060. 2014.PubMed/NCBI
|
|
69
|
Xie Y and Bayakhmetov S: PIM1 kinase as a
promise of targeted therapy in prostate cancer stem cells (Review).
Mol Clin Oncol. 4:13–17. 2016.
|
|
70
|
Xie Y, Lu W, Liu S, Yang Q, Carver BS and
Chen Z: The essential role of ARF in prostate cancer
microenvironment. BJU Int. 116:41. 2015.
|