|
1
|
Flynn DC: Adaptor proteins. Oncogene.
20:6270–6272. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pawson T and Scott JD: Signaling through
scaffold, anchoring and adaptor proteins. Science. 278:2075–2080.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Tsyba L, Nikolaienko O, Dergai O, Dergai
M, Novokhatska O, Skrypkina I and Rynditch A: Intersectin
multidomain adaptor proteins: Regulation of functional diversity.
Gene. 473:67–75. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Koch CA, Anderson D, Moran MF, Ellis C and
Pawson T: SH2 and SH3 domains: Elements that control interactions
of cytoplasmic signaling proteins. Science. 252:668–674. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cantley LC: The phosphoinositide 3-kinase
pathway. Science. 296:1655–1657. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dong H, O'Brien RJ, Fung ET, Lanahan AA,
Worley PF and Huganir RL: GRIP: A synaptic PDZ domain-containing
protein that interacts with AMPA receptors. Nature. 386:279–284.
1997. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Denlinger LC, Fisette PL, Sommer JA,
Watters JJ, Prabhu U, Dubyak GR, Proctor RA and Bertics PJ: Cutting
edge: The nucleotide receptor P2X7 contains multiple protein-and
lipid-interaction motifs including a potential binding site for
bacterial lipopolysaccharide. J Immunol. 167:1871–1876. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Schlaepfer DD, Hanks SK, Hunter T and van
der Geer P: Integrin-mediated signal transduction linked to Ras
pathway by GRB2 binding to focal adhesion kinase. Nature.
372:786–791. 1994. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Kurokawa K, Mochizuki N, Ohba Y, Mizuno H,
Miyawaki A and Matsuda M: A pair of fluorescent resonance energy
transfer-based probes for tyrosine phosphorylation of the CrkII
adaptor protein in vivo. J Biol Chem. 276:31305–31310. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Musacchio A, Smith CJ, Roseman AM,
Harrison SC, Kirchhausen T and Pearse BM: Functional organization
of clathrin in coats: Combining electron cryomicroscopy and X-ray
crystallography. Mol Cell. 3:761–770. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zuiderweg ER: Mapping protein-protein
interactions in solution by NMR spectroscopy. Biochemistry. 41:1–7.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Rosen MK, Yamazaki T, Gish GD, Kay CM,
Pawson T and Kay LE: Direct demonstration of an intramolecular
SH2-phosphotyrosine interaction in the Crk protein. Nature.
374:477–479. 1995. View
Article : Google Scholar : PubMed/NCBI
|
|
13
|
Dyson HJ and Wright PE: Unfolded proteins
and protein folding studied by. Chem Rev. 104:3607–3622. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ren R, Ye ZS and Baltimore D: Abl
protein-tyrosine kinase selects the Crk adapter as a substrate
using SH3-binding sites. Genes Dev. 8:783–795. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Feller SM: Crk family adaptors-signalling
complex formation and biological roles. Oncogene. 20:6348–6371.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Akira S, Takeda K and Kaisho T: Toll-like
receptors: Critical proteins linking innate and acquired immunity.
Nat Immunol. 2:675–680. 2001. View
Article : Google Scholar : PubMed/NCBI
|
|
17
|
Liu SK, Fang N, Koretzky GA and McGlade
CJ: The hematopoietic-specific adaptor protein gads functions in
T-cell signaling via interactions with the SLP-76 and LAT adaptors.
Curr Biol. 9:67–75. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liu SK and McGlade CJ: Gads is a novel SH2
and SH3 domain-containing adaptor protein that binds to
tyrosine-phosphorylated Shc. Oncogene. 17:3073–3082. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Clements JL, Yang B, Ross-Barta SE,
Eliason SL, Hrstka RF, Williamson RA and Koretzky GA: Requirement
for the leukocyte-specific adapter protein SLP-76 for normal T cell
development. Science. 281:416–419. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Parsons JT: Focal adhesion kinase: The
first ten years. J Cell Sci. 116:1409–1416. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Bustelo XR: Vav proteins, adaptors and
cell signaling. Oncogene. 20:6372–6381. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Tybulewicz VL: Vav-family proteins in
T-cell signalling. Current Opin Immunol. 17:267–274. 2005.
View Article : Google Scholar
|
|
23
|
Defilippi P, Di Stefano P and Cabodi S:
P130Cas: A versatile scaffold in signaling networks. Trends Cell
Biol. 16:257–263. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Luttrell LM, Daaka Y and Lefkowitz RJ:
Regulation of tyrosine kinase cascades by G-protein-coupled
receptors. Curr Opin Cell Biol. 11:177–183. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Gatesman A, Walker VG, Baisden JM, Weed SA
and Flynn DC: Protein kinase Calpha activates c-Src and induces
podosome formation via AFAP-110. Mol Cell Biol. 24:7578–7597. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Durieu-Trautmann O, Chaverot N, Cazaubon
S, Strosberg AD and Couraud P: Intercellular adhesion molecule 1
activation induces tyrosine phosphorylation of the
cytoskeleton-associated protein cortactin in brain microvessel
endothelial cells. J Biol Chem. 269:12536–12540. 1994.PubMed/NCBI
|
|
27
|
Tanaka M, Gupta R and Mayer BJ:
Differential inhibition of signaling pathways by dominant-negative
SH2/SH3 adapter proteins. Mol Cell Biol. 15:6829–6837. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Taganov KD, Boldin MP, Chang KJ and
Baltimore D: NF-kappaB-dependent induction of microRNA miR-146, an
inhibitor targeted to signaling proteins of innate immune
responses. Proc Natl Acad Sci USA. 103:12481–12486. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Unterholzner L, Sumner RP, Baran M, Ren H,
Mansur DS, Bourke NM, Randow F, Smith GL and Bowie AG: Vaccinia
virus protein C6 is a virulence factor that binds TBK-1 adaptor
proteins and inhibits activation of IRF3 and IRF7. PLoS Pathog.
7:e10022472011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Dawson MA, Prinjha RK, Dittmann A,
Giotopoulos G, Bantscheff M, Chan WI, Robson SC, Chung CW, Hopf C,
Savitski MM, et al: Inhibition of BET recruitment to chromatin as
an effective treatment for MLL-fusion leukaemia. Nature.
478:529–533. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Zheng Y, Zhang C, Croucher DR, Soliman MA,
St-Denis N, Pasculescu A, Taylor L, Tate SA, Hardy WR, Colwill K,
et al: Temporal regulation of EGF signalling networks by the
scaffold protein Shc1. Nature. 499:166–171. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Flynn DC, Leu TH, Reynolds AB and Parsons
JT: Identification and sequence analysis of cDNAs encoding a
110-kilodalton actin filament-associated pp60src substrate. Mol
Cell Biol. 13:7892–7900. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Qian Y, Baisden JM, Zot HG, Van Winkle WB
and Flynn DC: The carboxy terminus of AFAP-110 modulates direct
interactions with actin filaments and regulates its ability to
alter actin filament integrity and induce lamellipodia formation.
Exp Cell Res. 255:102–113. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Baisden JM, Qian Y, Zot HM and Flynn DC:
The actin filament-associated protein AFAP-110 is an adaptor
protein that modulates changes in actin filament integrity.
Oncogene. 20:6435–6447. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Xu J, Bai XH, Lodyga M, Han B, Xiao H,
Keshavjee S, Hu J, Zhang H, Yang BB and Liu M: XB130, a novel
adaptor protein for signal transduction. J Biol Chem.
282:16401–16412. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Snyder BN, Cho Y, Qian Y, Coad JE, Flynn
DC and Cunnick JM: AFAP1L1 is a novel adaptor protein of the AFAP
family that interacts with cortactin and localizes to invadosomes.
Eur J Cell Biol. 90:376–389. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Qian Y, Gatesman AS, Baisden JM, Zot HG,
Cherezova L, Qazi I, Mazloum N, Lee MY, Guappone-Koay A and Flynn
DC: Analysis of the role of the leucine zipper motif in regulating
the ability of AFAP-110 to alter actin filament integrity. J Cell
Biochem. 91:602–620. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Saltel F, Daubon T, Juin A, Ganuza IE,
Veillat V and Génot E: Invadosomes: Intriguing structures with
promise. Eur J Cell Biol. 90:100–107. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Proszynski TJ, Gingras J, Valdez G,
Krzewski K and Sanes JR: Podosomes are present in a postsynaptic
apparatus and participate in its maturation. Proc Natl Acad Sci
USA. 106:18373–18378. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Shi M, Huang W, Lin L, Zheng D, Zuo Q,
Wang L, Wang N, Wu Y, Liao Y and Liao W: Silencing of XB130 is
associated with both the prognosis and chemosensitivity of gastric
cancer. PloS One. 7:e416602012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lodyga M, Bai X-H, Kapus A and Liu M:
Adaptor protein XB130 is a Rac-controlled component of lamellipodia
that regulates cell motility and invasion. J Cell Sci.
123:4156–4169. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ma AD, Brass LF and Abrams CS: Pleckstrin
associates with plasma membranes and induces the formation of
membrane projections: Requirements for phosphorylation and the
NH2-terminal PH domain. J Cell Biol. 136:1071–1079. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Wang T, Pentyala S, Rebecchi MJ and
Scarlata S: Differential association of the pleckstrin homology
domains of phospholipases C-beta 1, C-beta 2 and C-delta 1 with
lipid bilayers and the beta gamma subunits of heterotrimeric G
proteins. Biochemistry. 38:1517–1524. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Gillingham AK and Munro S: Long
coiled-coil proteins and membrane traffic. Biochim Biophys Acta.
1641:71–85. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Zhang T, Kruys V, Huez G and Gueydan C:
AU-rich element-mediated translational control: Complexity and
multiple activities of trans-activating factors. Biochem Soc Trans.
30:952–958. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Shiozaki A and Liu M: Roles of XB130, a
novel adaptor protein, in cancer. J Clin Bioinforma. 1:102011.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Lodyga M, Xhi C, Anraku M, et al: P-080
Prognostic expression of a novel adaptor protein XB130 innon-small
cell lung cancer. Lung Cancer. 49:S1352005. View Article : Google Scholar
|
|
48
|
Shiozaki A, Lodyga M, Bai XH, Nadesalingam
J, Oyaizu T, Winer D, Asa SL, Keshavjee S and Liu M: XB130, a novel
adaptor protein, promotes thyroid tumor growth. Am J Pathol.
178:391–401. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lodyga M, De Falco V, Bai X, Kapus A,
Melillo RM, Santoro M and Liu M: XB130, a tissue-specific adaptor
protein that couples the RET/PTC oncogenic kinase to PI 3-kinase
pathway. Oncogene. 28:937–949. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Takeshita H, Shiozaki A, Bai XH, Iitaka D,
Kim H, Yang BB, Keshavjee S and Liu M: XB130, a new adaptor
protein, regulates expression of tumor suppressive microRNAs in
cancer cells. PloS One. 8:e590572013. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yu Z, Jian Z, Shen SH, Purisima E and Wang
E: Global analysis of microRNA target gene expression reveals that
miRNA targets are lower expressed in mature mouse and Drosophila
tissues than in the embryos. Nucleic Acids Res. 35:152–164. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shi M, Zheng D, Sun L, Wang L, Lin L, Wu
Y, Zhou M and Liao W, Liao Y, Zuo Q and Liao W: XB130 promotes
proliferation and invasion of gastric cancer cells. J Transl Med.
12:12014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zuo Q, Huang H, Shi M, Zhang F, Sun J, Bin
J, Liao Y and Liao W: Multivariate analysis of several molecular
markers and clinicopathological features in postoperative prognosis
of hepatocellular carcinoma. Anat Rec (Hoboken). 295:423–431. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shiozaki A, Kosuga T, Ichikawa D, Komatsu
S, Fujiwara H, Okamoto K, Iitaka D, Nakashima S, Shimizu H,
Ishimoto T, et al: XB130 as an independent prognostic factor in
human esophageal squamous cell carcinoma. Ann Surg Oncol.
20:3140–3150. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zhang J, Jiang X and Zhang J: Prognostic
significance of XB130 expression in surgically resected pancreatic
ductal adenocarcinoma. World J Surg Oncol. 12:492014. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Courtneidge S: Role of Src in signal
transduction pathways. The Jubilee Lecture. Biochem Soc Trans.
30:11–17. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Xing L, Ge C, Zeltser R, Maskevitch G,
Mayer BJ and Alexandropoulos K: c-Src signaling induced by the
adapters Sin and Cas is mediated by Rap1 GTPase. Mol Cell Biol.
20:7363–7377. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Martin GS: The hunting of the Src. Nat Rev
Mol Cell Biol. 2:467–475. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Okutani D, Lodyga M, Han B and Liu M: Src
protein tyrosine kinase family and acute inflammatory responses. Am
J Physiol Lung Cell Mol Physiol. 291:L129–L141. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tsygankov AY: Non-receptor protein
tyrosine kinases. Front Biosci. 8:s595–s635. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Williams JC, Weijland A, Gonfloni S,
Thompson A, Courtneidge SA, Superti-Furga G and Wierenga RK: The
2.35 A crystal structure of the inactivated form of chicken Src: A
dynamic molecule with multiple regulatory interactions. J Mol Biol.
274:757–775. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Okada M, Nada S, Yamanashi Y, Yamamoto T
and Nakagawa H: CSK: A protein-tyrosine kinase involved in
regulation of src family kinases. J Biol Chem. 266:24249–24252.
1991.PubMed/NCBI
|
|
63
|
Gregorieff A, Cloutier JF and Veillette A:
Sequence requirements for association of protein-tyrosine
phosphatase PEP with the Src homology 3 domain of inhibitory
tyrosine protein kinase p50 csk. J Biol Chem. 273:13217–13222.
1998. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Bouton AH, Riggins RB and Bruce-Staskal
PJ: Functions of the adapter protein Cas: Signal convergence and
the determination of cellular responses. Oncogene. 20:6448–6458.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Alexandropoulos K and Baltimore D:
Coordinate activation of c-Src by SH3-and SH2-binding sites on a
novel p130Cas-related protein, Sin. Genes Dev. 10:1341–1355. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Nakamoto T, Sakai R, Ozawa K, Yazaki Y and
Hirai H: Direct binding of C-terminal region of p130 to SH2 and SH3
domains of Src kinase. J Biol Chem. 271:8959–8965. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Shiozaki A, Shen-Tu G, Bai X, Iitaka D, De
Falco V, Santoro M, Keshavjee S and Liu M: XB130 mediates cancer
cell proliferation and survival through multiple signaling events
downstream of Akt. PloS One. 7:e436462012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Viglietto G, Motti ML, Bruni P, Melillo
RM, D'Alessio A, Califano D, Vinci F, Chiappetta G, Tsichlis P,
Bellacosa A, et al: Cytoplasmic relocalization and inhibition of
the cyclin-dependent kinase inhibitor p27(Kip1) by PKB/Akt-mediated
phosphorylation in breast cancer. Nat Med. 8:1136–1144. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhou BP, Liao Y, Xia W, Spohn B, Lee MH
and Hung MC: Cytoplasmic localization of p21Cip1/WAF1 by
Akt-induced phosphorylation in HER-2/neu-overexpressing cells. Nat
Cell Biol. 3:245–252. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Luo J, Manning BD and Cantley LC:
Targeting the PI3K-Akt pathway in human cancer: Rationale and
promise. Cancer Cell. 4:257–262. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Vivanco I and Sawyers CL: The
phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev
Cancer. 2:489–501. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yamanaka D, Akama T, Fukushima T, Nedachi
T, Kawasaki C, Chida K, Minami S, Suzuki K, Hakuno F and Takahashi
S: Phosphatidylinositol 3-kinase-binding protein, PI3KAP/XB130, is
required for cAMP-induced amplification of IGF mitogenic activity
in FRTL-5 thyroid cells. Mol Endocrinol. 26:1043–1055. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Zhao J, Bai X, Wang Y, Keshavjee S and Liu
M: Potential role of XB130 in the regulation of airway epithelium
repair and regeneration after transplantation. The Journal of Heart
and Lung Transplantation. 32:S2962013. View Article : Google Scholar
|