|
1
|
Lindgren M, Hallbrink M, Prochiantz A and
Langel U: Cell-penetrating peptides. Trends Pharmacol Sci.
21:99–103. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Green M and Loewenstein PM: Autonomous
functional domains of chemically synthesized human immunodeficiency
virus tat trans-activator protein. Cell. 55:1179–1188. 1988.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Frankel AD and Pabo CO: Cellular uptake of
the tat protein from human immunodeficiency virus. Cell.
55:1189–1193. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Joliot A, Pernelle C, Deagostini-Bazin H
and Prochiantz A: Antennapedia homeobox peptide regulates neural
morphogenesis. Proc Natl Acad Sci USA. 88:1864–1868. 1991.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Elliott G and O'Hare P: Intercellular
trafficking and protein delivery by a herpesvirus structural
protein. Cell. 88:223–233. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Fawell S, Seery J, Daikh Y, Moore C, Chen
LL, Pepinsky B and Barsoum J: Tat-mediated delivery of heterologous
proteins into cells. Proc Natl Acad Sci USA. 91:664–668. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lewin M, Carlesso N, Tung CH, Tang XW,
Cory D, Scadden DT and Weissleder R: Tat peptide-derivatized
magnetic nanoparticles allow in vivo tracking and recovery of
progenitor cells. Nat Biotechnol. 18:410–414. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kumar P, Wu H, McBride JL, Jung KE, Kim
MH, Davidson BL, Lee SK, Shankar P and Manjunath N: Transvascular
delivery of small interfering RNA to the central nervous system.
Nature. 448:39–43. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Jafari S, Maleki Dizaj S and Adibkia K:
Cell-penetrating peptides and their analogues as novel nanocarriers
for drug delivery. Bioimpacts. 5:103–111. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Milletti F: Cell-penetrating peptides:
Classes, origin, and current landscape. Drug Discov Today.
17:850–860. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Wender PA, Mitchell DJ, Pattabiraman K,
Pelkey ET, Steinman L and Rothbard JB: The design, synthesis, and
evaluation of molecules that enable or enhance cellular uptake:
Peptoid molecular transporters. Proc Natl Acad Sci USA.
97:13003–13008. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Mai JC, Shen H, Watkins SC, Cheng T and
Robbins PD: Efficiency of protein transduction is cell
type-dependent and is enhanced by dextran sulfate. J Biol Chem.
277:30208–30218. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Tunnemann G, Ter-Avetisyan G, Martin RM,
Stockl M, Herrmann A and Cardoso MC: Live-cell analysis of cell
penetration ability and toxicity of oligo-arginines. J Pept Sci.
14:469–476. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zahid M and Robbins PD: Cell-type specific
penetrating peptides: Therapeutic promises and challenges.
Molecules. 20:13055–13070. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ragin AD, Morgan RA and Chmielewski J:
Cellular import mediated by nuclear localization signal Peptide
sequences. Chem Biol. 9:943–948. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Oehlke J, Scheller A, Wiesner B, Krause E,
Beyermann M, Klauschenz E, Melzig M and Bienert M: Cellular uptake
of an alpha-helical amphipathic model peptide with the potential to
deliver polar compounds into the cell interior non-endocytically.
Biochim Biophys Acta. 1414:127–139. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Deshayes S, Plénat T, Aldrian-Herrada G,
Divita G, Le Grimellec C and Heitz F: Primary amphipathic
cell-penetrating peptides: Structural requirements and interactions
with model membranes. Biochemistry. 43:7698–7706. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Nan YH, Park IS, Hahm KS and Shin SY:
Antimicrobial activity, bactericidal mechanism and LPS-neutralizing
activity of the cell-penetrating peptide pVEC and its analogs. J
Pept Sci. 17:812–817. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Johansson HJ, El-Andaloussi S, Holm T, Mäe
M, Jänes J, Maimets T and Langel U: Characterization of a novel
cytotoxic cell-penetrating peptide derived from p14ARF protein. Mol
Ther. 16:115–123. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Magzoub M, Sandgren S, Lundberg P, Oglecka
K, Lilja J, Wittrup A, Eriksson Göran LE, Langel U, Belting M and
Gräslund A: N-terminal peptides from unprocessed prion proteins
enter cells by macropinocytosis. Biochem Biophys Res Commun.
348:379–385. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Eguchi A and Dowdy SF: siRNA delivery
using peptide transduction domains. Trends Pharmacol Sci.
30:341–345. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Oehlke J, Krause E, Wiesner B, Beyermann M
and Bienert M: Extensive cellular uptake into endothelial cells of
an amphipathic beta-sheet forming peptide. FEBS Lett. 415:196–199.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Pujals S and Giralt E: Proline-rich,
amphipathic cell-penetrating peptides. Adv Drug Deliv Rev.
60:473–484. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Pooga M, Hällbrink M, Zorko M and Langel
U: Cell penetration by transportan. FASEB J. 12:67–77.
1998.PubMed/NCBI
|
|
25
|
Schafmeister CE, Po J and Verdine GL: An
all-hydrocarbon cross-linking system for enhancing the helicity and
metabolic stability of peptides. J Am Chem Soc. 122:5891–5892.
2000. View Article : Google Scholar
|
|
26
|
Ochocki JD, Mullen DG, Wattenberg EV and
Distefano MD: Evaluation of a cell penetrating prenylated peptide
lacking an intrinsic fluorophore via in situ click reaction. Bioorg
Med Chem Lett. 21:4998–5001. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Covic L, Gresser AL, Talavera J, Swift S
and Kuliopulos A: Activation and inhibition of G protein-coupled
receptors by cell-penetrating membrane-tethered peptides. Proc Natl
Acad Sci USA. 99:643–648. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Gao S, Simon MJ, Hue CD, Morrison B III
and Banta S: An unusual cell penetrating peptide identified using a
plasmid display-based functional selection platform. ACS Chem Biol.
6:484–491. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gao C, Mao S, Ditzel HJ, Farnaes L,
Wirsching P, Lerner RA and Janda KD: A cell-penetrating peptide
from a novel pVII-pIX phage-displayed random peptide library.
Bioorg Med Chem. 10:4057–4065. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Nakayama F, Yasuda T, Umeda S, Asada M,
Imamura T, Meineke V and Akashi M: Fibroblast growth factor-12
(FGF12) translocation into intestinal epithelial cells is dependent
on a novel cell-penetrating peptide domain: Involvement of
internalization in the in vivo role of exogenous FGF12. J Biol
Chem. 286:25823–25834. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Fonseca SB, Pereira MP and Kelley SO:
Recent advances in the use of cell-penetrating peptides for medical
and biological applications. Adv Drug Deliv Rev. 61:953–964. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Madani F, Lindberg S, Langel U, Futaki S
and Graslund A: Mechanisms of cellular uptake of cell-penetrating
peptides. J Biophys. 2011:4147292011.PubMed/NCBI
|
|
33
|
Choi YS and David AE: Cell penetrating
peptides and the mechanisms for intracellular entry. Curr Pharm
Biotechnol. 15:192–199. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wu X and Gehring W: Cellular uptake of the
Antennapedia homeodomain polypeptide by macropinocytosis. Biochem
Biophys Res Commun. 443:1136–1140. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Polanco C, Samaniego JL, Castañón-González
JA, Buhse T and Sordo ML: Characterization of a possible uptake
mechanism of selective antibacterial peptides. Acta Biochim Pol.
60:629–633. 2013.PubMed/NCBI
|
|
36
|
Vivès E, Brodin P and Lebleu B: A
truncated HIV-1 Tat protein basic domain rapidly translocates
through the plasma membrane and accumulates in the cell nucleus. J
Biol Chem. 272:16010–16017. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Derossi D, Joliot AH, Chassaing G and
Prochiantz A: The third helix of the Antennapedia homeodomain
translocates through biological membranes. J Biol Chem.
269:10444–10450. 1994.PubMed/NCBI
|
|
38
|
Veach RA, Liu D, Yao S, Chen Y, Liu XY,
Downs S and Hawiger J: Receptor/transporter-independent targeting
of functional peptides across the plasma membrane. J Biol Chem.
279:11425–11431. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Herce HD and Garcia AE: Molecular dynamics
simulations suggest a mechanism for translocation of the HIV-1 TAT
peptide across lipid membranes. Proc Natl Acad Sci USA.
104:20805–20810. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Pouny Y, Rapaport D, Mor A, Nicolas P and
Shai Y: Interaction of antimicrobial dermaseptin and its
fluorescently labeled analogues with phospholipid membranes.
Biochemistry. 31:12416–12423. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Lee MT, Hung WC, Chen FY and Huang HW:
Many-body effect of antimicrobial peptides: On the correlation
between lipid's spontaneous curvature and pore formation. Biophys
J. 89:4006–4016. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Richard JP, Melikov K, Vives E, Ramos C,
Verbeure B, Gait MJ, Chernomordik LV and Lebleu B: Cell-penetrating
peptides. A reevaluation of the mechanism of cellular uptake. J
Biol Chem. 278:585–590. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Vivès E, Schmidt J and Pèlegrin A:
Cell-penetrating and cell-targeting peptides in drug delivery.
Biochim Biophys Acta. 1786:126–138. 2008.PubMed/NCBI
|
|
44
|
Jones AT: Macropinocytosis: Searching for
an endocytic identity and role in the uptake of cell penetrating
peptides. J Cell Mol Med. 11:670–684. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Mayor S, Parton RG and Donaldson JG:
Clathrin-independent pathways of endocytosis. Cold Spring Harb
Perspect Biol. 6:62014. View Article : Google Scholar
|
|
46
|
Derossi D, Calvet S, Trembleau A,
Brunissen A, Chassaing G and Prochiantz A: Cell internalization of
the third helix of the Antennapedia homeodomain is
receptor-independent. J Biol Chem. 271:18188–18193. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Kawamoto S, Takasu M, Miyakawa T, Morikawa
R, Oda T, Futaki S and Nagao H: Inverted micelle formation of
cell-penetrating peptide studied by coarse-grained simulation:
Importance of attractive force between cell-penetrating peptides
and lipid head group. J Chem Phys. 134:0951032011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tünnemann G, Martin RM, Haupt S, Patsch C,
Edenhofer F and Cardoso MC: Cargo-dependent mode of uptake and
bioavailability of TAT-containing proteins and peptides in living
cells. FASEB J. 20:1775–1784. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Lundberg P, El-Andaloussi S, Sütlü T,
Johansson H and Langel U: Delivery of short interfering RNA using
endosomolytic cell-penetrating peptides. FASEB J. 21:2664–2671.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jones AT and Sayers EJ: Cell entry of cell
penetrating peptides: tales of tails wagging dogs. J Control
Release. 161:582–591. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Mueller J, Kretzschmar I, Volkmer R and
Boisguerin P: Comparison of cellular uptake using 22 CPPs in 4
different cell lines. Bioconjug Chem. 19:2363–2374. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Pysz MA, Gambhir SS and Willmann JK:
Molecular imaging: Current status and emerging strategies. Clin
Radiol. 65:500–516. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Condeelis J and Weissleder R: In vivo
imaging in cancer. Cold Spring Harb Perspect Biol. 2:a0038482010.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Walling MA, Novak JA and Shepard JRE:
Quantum dots for live cell and in vivo imaging. Int J Mol Sci.
10:441–491. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ruan G, Agrawal A, Marcus AI and Nie S:
Imaging and tracking of tat peptide-conjugated quantum dots in
living cells: New insights into nanoparticle uptake, intracellular
transport, and vesicle shedding. J Am Chem Soc. 129:14759–14766.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Lei Y, Tang H, Yao L, Yu R, Feng M and Zou
B: Applications of mesenchymal stem cells labeled with Tat peptide
conjugated quantum dots to cell tracking in mouse body. Bioconjug
Chem. 19:421–427. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Prantner AM, Sharma V, Garbow JR and
Piwnica-Worms D: Synthesis and characterization of a
Gd-DOTA-D-permeation peptide for magnetic resonance relaxation
enhancement of intracellular targets. Mol Imaging. 2:333–341. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Polyakov V, Sharma V, Dahlheimer JL, Pica
CM, Luker GD and Piwnica-Worms D: Novel Tat-peptide chelates for
direct transduction of technetium-99m and rhenium into human cells
for imaging and radiotherapy. Bioconjug Chem. 11:762–771. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jiménez-Mancilla N, Ferro-Flores G,
Santos-Cuevas C, Ocampo-García B, Luna-Gutiérrez M, Azorín-Vega E,
Isaac-Olivé K, Camacho-López M and Torres-García E: Multifunctional
targeted therapy system based on (99m) Tc/(177) Lu-labeled gold
nanoparticles-Tat(49–57)-Lys(3) -bombesin internalized in nuclei of
prostate cancer cells. J Labelled Comp Radiopharm. 56:663–671.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Santos-Cuevas CL, Ferro-Flores G,
Rojas-Calderón EL, García-Becerra R, Ordaz-Rosado D, de Arteaga
Murphy C and Pedraza-López M: 99mTc-N2S2-Tat (49–57)-bombesin
internalized in nuclei of prostate and breast cancer cells:
Kinetics, dosimetry and effect on cellular proliferation. Nucl Med
Commun. 32:303–313. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Weinstain R, Savariar EN, Felsen CN and
Tsien RY: In vivo targeting of hydrogen peroxide by activatable
cell-penetrating peptides. J Am Chem Soc. 136:874–877. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Good L, Awasthi SK, Dryselius R, Larsson O
and Nielsen PE: Bactericidal antisense effects of peptide-PNA
conjugates. Nat Biotechnol. 19:360–364. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Deshayes S, Konate K, Aldrian G, Crombez
L, Heitz F and Divita G: Structural polymorphism of non-covalent
peptide-based delivery systems: Highway to cellular uptake. Biochim
Biophys Acta. 1798:2304–2314. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tan XX, Actor JK and Chen Y: Peptide
nucleic acid antisense oligomer as a therapeutic strategy against
bacterial infection: Proof of principle using mouse intraperitoneal
infection. Antimicrob Agents Chemother. 49:3203–3207. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Tilley LD, Mellbye BL, Puckett SE, Iversen
PL and Geller BL: Antisense peptide-phosphorodiamidate morpholino
oligomer conjugate: Dose-response in mice infected with Escherichia
coli. J Antimicrob Chemother. 59:66–73. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Makarov SS: NF-kappa B in rheumatoid
arthritis: A pivotal regulator of inflammation, hyperplasia, and
tissue destruction. Arthritis Res. 3:200–206. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Brown JD, Lin CY, Duan Q, Griffin G,
Federation AJ, Paranal RM, Bair S, Newton G, Lichtman AH, Kung AL,
et al: NF-κB directs dynamic super enhancer formation in
inflammation and atherogenesis. Mol Cell. 56:219–231. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Hunot S, Brugg B, Ricard D, Michel PP,
Muriel MP, Ruberg M, Faucheux BA, Agid Y and Hirsch EC: Nuclear
translocation of NF-kappaB is increased in dopaminergic neurons of
patients with parkinson disease. Proc Natl Acad Sci USA.
94:7531–7536. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Karin M and Greten FR: NF-kappaB: Linking
inflammation and immunity to cancer development and progression.
Nat Rev Immunol. 5:749–759. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
May MJ, D'Acquisto F, Madge LA, Glöckner
J, Pober JS and Ghosh S: Selective inhibition of NF-kappaB
activation by a peptide that blocks the interaction of NEMO with
the IkappaB kinase complex. Science. 289:1550–1554. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Davé SH, Tilstra JS, Matsuoka K, Li F,
Karrasch T, Uno JK, Sepulveda AR, Jobin C, Baldwin AS, Robbins PD
and Plevy SE: Amelioration of chronic murine colitis by
peptide-mediated transduction of the IkappaB kinase inhibitor NEMO
binding domain peptide. J Immunol. 179:7852–7859. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Peterson JM, Kline W, Canan BD, Ricca DJ,
Kaspar B, Delfín DA, DiRienzo K, Clemens PR, Robbins PD, Baldwin
AS, et al: Peptide-based inhibition of NF-κB rescues diaphragm
muscle contractile dysfunction in a murine model of Duchenne
muscular dystrophy. Mol Med. 17:508–515. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Hegedüs R, Manea M, Orbán E, Szabó I, Kiss
E, Sipos E, Halmos G and Mező G: Enhanced cellular uptake and in
vitro antitumor activity of short-chain fatty acid acylated
daunorubicin-GnRH-III bioconjugates. Eur J Med Chem. 56:155–165.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Pan L, Liu J, He Q, Wang L and Shi J:
Overcoming multidrug resistance of cancer cells by direct
intranuclear drug delivery using TAT-conjugated mesoporous silica
nanoparticles. Biomaterials. 34:2719–2730. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kondo E, Saito K, Tashiro Y, Kamide K, Uno
S, Furuya T, Mashita M, Nakajima K, Tsumuraya T, Kobayashi N, et
al: Tumour lineage-homing cell-penetrating peptides as anticancer
molecular delivery systems. Nat Commun. 3:9512012. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Koshkaryev A, Piroyan A and Torchilin VP:
Bleomycin in octaarginine-modified fusogenic liposomes results in
improved tumor growth inhibition. Cancer Lett. 334:293–301. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Walker L, Perkins E, Kratz F and Raucher
D: Cell penetrating peptides fused to a thermally targeted
biopolymer drug carrier improve the delivery and antitumor efficacy
of an acid-sensitive doxorubicin derivative. Int J Pharm.
436:825–832. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Aroui S, Mili D, Brahim S, De Waard M and
Kenani A: Doxorubicin coupled to penetratin promotes apoptosis in
CHO cells by a mechanism involving c-Jun NH2-terminal kinase.
Biochem Biophys Res Commun. 396:908–914. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Dubikovskaya EA, Thorne SH, Pillow TH,
Contag CH and Wender PA: Overcoming multidrug resistance of
small-molecule therapeutics through conjugation with releasable
octaarginine transporters. Proc Natl Acad Sci USA. 105:12128–12133.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Lindgren M, Rosenthal-Aizman K, Saar K,
Eiríksdóttir E, Jiang Y, Sassian M, Ostlund P, Hällbrink M and
Langel U: Overcoming methotrexate resistance in breast cancer
tumour cells by the use of a new cell-penetrating peptide. Biochem
Pharmacol. 71:416–425. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Kanasty R, Dorkin JR, Vegas A and Anderson
D: Delivery materials for siRNA therapeutics. Nat Mater.
12:967–977. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Muratovska A and Eccles MR: Conjugate for
efficient delivery of short interfering RNA (siRNA) into mammalian
cells. FEBS Lett. 558:63–68. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Favaro MT, de Toledo MA, Alves RF, Santos
CA, Beloti LL, Janissen R, de la Torre LG, Souza AP and Azzoni AR:
Development of a non-viral gene delivery vector based on the dynein
light chain Rp3 and the TAT peptide. J Biotechnol. 173:10–18. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang HY, Chen JX, Sun YX, Deng JZ, Li C,
Zhang XZ and Zhuo RX: Construction of cell penetrating peptide
vectors with N-terminal stearylated nuclear localization signal for
targeted delivery of DNA into the cell nuclei. J Control Release.
155:26–33. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Schott JW, Galla M, Godinho T, Baum C and
Schambach A: Viral and non-viral approaches for transient delivery
of mRNA and proteins. Curr Gene Ther. 11:382–398. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Eto Y, Yoshioka Y, Asavatanabodee R, Kida
S, Maeda M, Mukai Y, Mizuguchi H, Kawasaki K, Okada N and Nakagawa
S: Transduction of adenovirus vectors modified with
cell-penetrating peptides. Peptides. 30:1548–1552. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Gratton JP, Yu J, Griffith JW, Babbitt RW,
Scotland RS, Hickey R, Giordano FJ and Sessa WC: Cell-permeable
peptides improve cellular uptake and therapeutic gene delivery of
replication-deficient viruses in cells and in vivo. Nat Med.
9:357–362. 2003. View
Article : Google Scholar : PubMed/NCBI
|
|
88
|
Takahashi K, Tanabe K, Ohnuki M, Narita M,
Ichisaka T, Tomoda K and Yamanaka S: Induction of pluripotent stem
cells from adult human fibroblasts by defined factors. Cell.
131:861–872. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ebrahimi B: Reprogramming barriers and
enhancers: Strategies to enhance the efficiency and kinetics of
induced pluripotency. Cell Regen (Lond). 4:102015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Gotoh S, Ito I, Nagasaki T, Yamamoto Y,
Konishi S, Korogi Y, Matsumoto H, Muro S, Hirai T, Funato M, et al:
Generation of alveolar epithelial spheroids via isolated progenitor
cells from human pluripotent stem cells. Stem Cell Rep. 3:394–403.
2014. View Article : Google Scholar
|
|
91
|
Kamao H, Mandai M, Okamoto S, Sakai N,
Suga A, Sugita S, Kiryu J and Takahashi M: Characterization of
human induced pluripotent stem cell-derived retinal pigment
epithelium cell sheets aiming for clinical application. Stem Cell
Rep. 2:205–218. 2014. View Article : Google Scholar
|
|
92
|
Waehler R, Russell SJ and Curiel DT:
Engineering targeted viral vectors for gene therapy. Nat Rev Genet.
8:573–587. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Woltjen K, Michael IP, Mohseni P, Desai R,
Mileikovsky M, Hämäläinen R, Cowling R, Wang W, Liu P, Gertsenstein
M, et al: piggyBac transposition reprograms fibroblasts to induced
pluripotent stem cells. Nature. 458:766–770. 2009. View Article : Google Scholar : PubMed/NCBI
|