|
1
|
Nolan JP, Soar J, Zideman DA, Biarent D,
Bossaert LL, Deakin C, Koster RW, Wyllie J and Böttiger B: ERC
Guidelines Writing Group: European Resuscitation Council Guidelines
for Resuscitation 2010 Section 1. Executive summary. Resuscitation.
81:1219–1276. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Field JM, Hazinski MF, Sayre MR, Chameides
L, Schexnayder SM, Hemphill R, Samson RA, Kattwinkel J, Berg RA,
Bhanji F, et al: Part 1: executive summary: 2010 American Heart
Association Guidelines for Cardiopulmonary Resuscitation and
Emergency Cardiovascular Care. Circulation. 122(Suppl 3):
S640–S656. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Abella BS, Alvarado JP, Myklebust H,
Edelson DP, Barry A, O'Hearn N, Vanden Hoek TL and Becker LB:
Quality of cardiopulmonary resuscitation during in-hospital cardiac
arrest. JAMA. 293:305–310. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
van Alem AP, Vrenken RH, de Vos R, Tijssen
JG and Koster RW: Use of automated external defibrillator by first
responders in out of hospital cardiac arrest: Prospective
controlled trial. BMJ. 327:13122003. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Girotra S, Spertus JA, Li Y, Berg RA,
Nadkarni VM and Chan PS: American Heart Association Get With the
Guidelines - Resuscitation Investigators: Survival trends in
pediatric in-hospital cardiac arrests: An analysis from Get With
the Guidelines-Resuscitation. Circ Cardiovasc Qual Outcomes.
6:42–49. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Young GB: Clinical practice. Neurologic
prognosis after cardiac arrest. N Engl J Med. 361:605–611. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Go AS, Mozaffarian D, Roger VL, Benjamin
EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, et al:
American Heart Association Statistics Committee and Stroke
Statistics Subcommittee: Heart disease and stroke statistics-2014
update: A report from the American Heart Association. Circulation.
129:e28–e292. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
No authors listed: Part 1: Introduction to
the International Guidelines 2000 for CPR and ECC: A consensus on
science. Circulation. 102(Suppl 8): I1–I11. 2000.PubMed/NCBI
|
|
9
|
Papastylianou A and Mentzelopoulos S:
Current pharmacological advances in the treatment of cardiac
arrest. Emerg Med Int. 2012:8158572012. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liu F and McCullough LD: Inflammatory
responses in hypoxic ischemic encephalopathy. Acta Pharmacol Sin.
34:1121–1130. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Lucas SM, Rothwell NJ and Gibson RM: The
role of inflammation in CNS injury and disease. Br J Pharmacol.
147(Suppl 1): S232–S240. 2006.PubMed/NCBI
|
|
12
|
Swanson RA, Ying W and Kauppinen TM:
Astrocyte influences on ischemic neuronal death. Curr Mol Med.
4:193–205. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wong CH and Crack PJ: Modulation of
neuro-inflammation and vascular response by oxidative stress
following cerebral ischemia-reperfusion injury. Curr Med Chem.
15:1–14. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Iadecola C and Anrather J: The immunology
of stroke: From mechanisms to translation. Nat Med. 17:796–808.
2011. View
Article : Google Scholar : PubMed/NCBI
|
|
15
|
Dezfulian C, Shiva S, Alekseyenko A,
Pendyal A, Beiser DG, Munasinghe JP, Anderson SA, Chesley CF,
Vanden Hoek TL and Gladwin MT: Nitrite therapy after cardiac arrest
reduces reactive oxygen species generation, improves cardiac and
neurological function, and enhances survival via reversible
inhibition of mitochondrial complex I. Circulation. 120:897–905.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Lambertsen KL, Clausen BH, Babcock AA,
Gregersen R, Fenger C, Nielsen HH, Haugaard LS, Wirenfeldt M,
Nielsen M, Dagnaes-Hansen F, et al: Microglia protect neurons
against ischemia by synthesis of tumor necrosis factor. J Neurosci.
29:1319–1330. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Polderman KH: Mechanisms of action,
physiological effects, and complications of hypothermia. Crit Care
Med. 37(Suppl 7): S186–S202. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Arrich J, Holzer M, Havel C, Müllner M and
Herkner H: Hypothermia for neuroprotection in adults after
cardiopulmonary resuscitation. Cochrane Database Syst Rev.
9:CD0041282012.PubMed/NCBI
|
|
19
|
Soleimanpour H, Khoshnudi F, Movaghar MH
and Ziapour B: Improvement of decerebrate status in a hanged child
following emergent tracheostomy. Pak J Biol Sci. 13:1164–1165.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kvietys PR and Granger DN: Role of
reactive oxygen and nitrogen species in the vascular responses to
inflammation. Free Radic Biol Med. 52:556–592. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Steinman L: Elaborate interactions between
the immune and nervous systems. Nat Immunol. 5:575–581. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kalogeris T, Baines CP, Krenz M and
Korthuis RJ: Cell biology of ischemia/reperfusion injury. Int Rev
Cell Mol Biol. 298:229–317. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Farina C, Aloisi F and Meinl E: Astrocytes
are active players in cerebral innate immunity. Trends Immunol.
28:138–145. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Medzhitov R, Preston-Hurlburt P and
Janeway CA: A human homologue of the Drosophila Toll protein
signals activation of adaptive immunity. Nature. 388:394–397. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
del Zoppo G, Ginis I, Hallenbeck JM,
Iadecola C, Wang X and Feuerstein GZ: Inflammation and stroke:
Putative role for cytokines, adhesion molecules and iNOS in brain
response to ischemia. Brain Pathol. 10:95–112. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Aloisi F: Immune function of microglia.
Glia. 36:165–179. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Nakajima K and Kohsaka S: Microglia:
Activation and their significance in the central nervous system. J
Biochem. 130:169–175. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Schilling M, Besselmann M, Leonhard C,
Mueller M, Ringelstein EB and Kiefer R: Microglial activation
precedes and predominates over macrophage infiltration in transient
focal cerebral ischemia: A study in green fluorescent protein
transgenic bone marrow chimeric mice. Exp Neurol. 183:25–33. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Stoll G, Jander S and Schroeter M:
Inflammation and glial responses in ischemic brain lesions. Prog
Neurobiol. 56:149–171. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yenari MA, Kauppinen TM and Swanson RA:
Microglial activation in stroke: Therapeutic targets.
Neurotherapeutics. 7:378–391. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kettenmann H, Hanisch UK, Noda M and
Verkhratsky A: Physiology of microglia. Physiol Rev. 91:461–553.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ladeby R, Wirenfeldt M, Dalmau I,
Gregersen R, García-Ovejero D, Babcock A, Owens T and Finsen B:
Proliferating resident microglia express the stem cell antigen CD34
in response to acute neural injury. Glia. 50:121–131. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Ladeby R, Wirenfeldt M, Garcia-Ovejero D,
Fenger C, Dissing-Olesen L, Dalmau I and Finsen B: Microglial cell
population dynamics in the injured adult central nervous system.
Brain Res Brain Res Rev. 48:196–206. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Denes A, Vidyasagar R, Feng J, Narvainen
J, McColl BW, Kauppinen RA and Allan SM: Proliferating resident
microglia after focal cerebral ischaemia in mice. J Cereb Blood
Flow Metab. 27:1941–1953. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sawada M, Suzumura A, Yamamoto H and
Marunouchi T: Activation and proliferation of the isolated
microglia by colony stimulating factor-1 and possible involvement
of protein kinase C. Brain Res. 509:119–124. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Schöbitz B, de Kloet ER, Sutanto W and
Holsboer F: Cellular localization of interleukin 6 mRNA and
interleukin 6 receptor mRNA in rat brain. Eur J Neurosci.
5:1426–1435. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Nedergaard M, Ransom B and Goldman SA: New
roles for astrocytes: Redefining the functional architecture of the
brain. Trends Neurosci. 26:523–530. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Ransom B, Behar T and Nedergaard M: New
roles for astrocytes (stars at last). Trends Neurosci. 26:520–522.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Matsumoto S, Matsumoto M, Yamashita A,
Ohtake K, Ishida K, Morimoto Y and Sakabe T: The temporal profile
of the reaction of microglia, astrocytes, and macrophages in the
delayed onset paraplegia after transient spinal cord ischemia in
rabbits. Anesth Analg. 96:1777–1784. 2003.table of contents.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Nedergaard M and Dirnagl U: Role of glial
cells in cerebral ischemia. Glia. 50:281–286. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Fiskum G, Danilov CA, Mehrabian Z,
Bambrick LL, Kristian T, McKenna MC, Hopkins I, Richards EM and
Rosenthal RE: Postischemic oxidative stress promotes mitochondrial
metabolic failure in neurons and astrocytes. Ann N Y Acad Sci.
1147:129–138. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bambrick L, Kristian T and Fiskum G:
Astrocyte mitochondrial mechanisms of ischemic brain injury and
neuroprotection. Neurochem Res. 29:601–608. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Lin MT and Beal MF: Mitochondrial
dysfunction and oxidative stress in neurodegenerative diseases.
Nature. 443:787–795. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Ouyang YB, Voloboueva LA, Xu LJ and
Giffard RG: Selective dysfunction of hippocampal CA1 astrocytes
contributes to delayed neuronal damage after transient forebrain
ischemia. J Neurosci. 27:4253–4260. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Shichita T, Sugiyama Y, Ooboshi H,
Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y, Iida M, Cua DJ,
et al: Pivotal role of cerebral interleukin-17-producing
gammadeltaT cells in the delayed phase of ischemic brain injury.
Nat Med. 15:946–950. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Price CJ, Menon DK, Peters AM, Ballinger
JR, Barber RW, Balan KK, Lynch A, Xuereb JH, Fryer T, Guadagno JV,
et al: Cerebral neutrophil recruitment, histology, and outcome in
acute ischemic stroke: An imaging-based study. Stroke.
35:1659–1664. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Connolly ES Jr, Winfree CJ, Springer TA,
Naka Y, Liao H, Yan SD, Stern DM, Solomon RA, Gutierrez-Ramos JC
and Pinsky DJ: Cerebral protection in homozygous null ICAM-1 mice
after middle cerebral artery occlusion. Role of neutrophil adhesion
in the pathogenesis of stroke. J Clin Invest. 97:209–216. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Connolly ES Jr, Winfree CJ, Prestigiacomo
CJ, Kim SC, Choudhri TF, Hoh BL, Naka Y, Solomon RA and Pinsky DJ:
Exacerbation of cerebral injury in mice that express the P-selectin
gene: Identification of P-selectin blockade as a new target for the
treatment of stroke. Circ Res. 81:304–310. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yilmaz G and Granger DN: Cell adhesion
molecules and ischemic stroke. Neurol Res. 30:783–793. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Ishikawa M, Stokes KY, Zhang JH, Nanda A
and Granger DN: Cerebral microvascular responses to
hypercholesterolemia: Roles of NADPH oxidase and P-selectin. Circ
Res. 94:239–244. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Amantea D, Nappi G, Bernardi G, Bagetta G
and Corasaniti MT: Post-ischemic brain damage: Pathophysiology and
role of inflammatory mediators. FEBS J. 276:13–26. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kriz J: Inflammation in ischemic brain
injury: Timing is important. Crit Rev Neurobiol. 18:145–157. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ajmo CT Jr, Collier LA, Leonardo CC, Hall
AA, Green SM, Womble TA, Cuevas J, Willing AE and Pennypacker KR:
Blockade of adrenoreceptors inhibits the splenic response to
stroke. Exp Neurol. 218:47–55. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Shigematsu T, Wolf RE and Granger DN:
T-lymphocytes modulate the microvascular and inflammatory responses
to intestinal ischemia-reperfusion. Microcirculation. 9:99–109.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ysebaert DK, De Greef KE, De Beuf A, Van
Rompay AR, Vercauteren S, Persy VP and De Broe ME: T cells as
mediators in renal ischemia/reperfusion injury. Kidney Int.
66:491–496. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Brait VH, Arumugam TV, Drummond GR and
Sobey CG: Importance of T lymphocytes in brain injury,
immunodeficiency, and recovery after cerebral ischemia. J Cereb
Blood Flow Metab. 32:598–611. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Vaitaitis GM and Wagner DH: High
distribution of CD40 and TRAF2 in Th40 T cell rafts leads to
preferential survival of this auto-aggressive population in
autoimmunity. PLoS One. 3:e20762008. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Deng G, Carter J, Traystman RJ, Wagner DH
and Herson PS: Pro-inflammatory T-lymphocytes rapidly infiltrate
into the brain and contribute to neuronal injury following cardiac
arrest and cardiopulmonary resuscitation. J Neuroimmunol.
274:132–140. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Phillips S, Chokshi S, Riva A, Evans A,
Williams R and Naoumov NV: CD8(+) T cell control of hepatitis B
virus replication: Direct comparison between cytolytic and
noncytolytic functions. J Immunol. 184:287–295. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Santana MA and Rosenstein Y: What it takes
to become an effector T cell: The process, the cells involved, and
the mechanisms. J Cell Physiol. 195:392–401. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sairanen T, Carpén O,
Karjalainen-Lindsberg ML, Paetau A, Turpeinen U, Kaste M and
Lindsberg PJ: Evolution of cerebral tumor necrosis factor-alpha
production during human ischemic stroke. Stroke. 32:1750–1758.
2001. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Domínguez-Roldán JM, García-Alfaro C,
Jimenéz-González PI, Hernández-Hazañas F, Gascón Castillo ML and
Egea Guerrero JJ: Brain death: Repercussion on the organs and
tissues. Med Intensiva. 33:434–441. 2009.(In Spanish). View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Barone FC and Feuerstein GZ: Inflammatory
mediators and stroke: New opportunities for novel therapeutics. J
Cereb Blood Flow Metab. 19:819–834. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ferrarese C, Mascarucci P, Zoia C,
Cavarretta R, Frigo M, Begni B, Sarinella F, Frattola L and De
Simoni MG: Increased cytokine release from peripheral blood cells
after acute stroke. J Cereb Blood Flow Metab. 19:1004–1009. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Soriano SG, Amaravadi LS, Wang YF, Zhou H,
Yu GX, Tonra JR, Fairchild-Huntress V, Fang Q, Dunmore JH and
Huszar D: Mice deficient in fractalkine are less susceptible to
cerebral ischemia-reperfusion injury. J Neuroimmunol. 125:59–65.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Kumai Y, Ooboshi H, Takada J, Kamouchi M,
Kitazono T, Egashira K, Ibayashi S and Iida M: Anti-monocyte
chemoattractant protein-1 gene therapy protects against focal brain
ischemia in hypertensive rats. J Cereb Blood Flow Metab.
24:1359–1368. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhu Y, Yang GY, Ahlemeyer B, Pang L, Che
XM, Culmsee C, Klumpp S and Krieglstein J: Transforming growth
factor-beta 1 increases bad phosphorylation and protects neurons
against damage. J Neurosci. 22:3898–3909. 2002.PubMed/NCBI
|
|
68
|
Spera PA, Ellison JA, Feuerstein GZ and
Barone FC: IL-10 reduces rat brain injury following focal stroke.
Neurosci Lett. 251:189–192. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Vila N, Castillo J, Dávalos A, Esteve A,
Planas AM and Chamorro A: Levels of anti-inflammatory cytokines and
neurological worsening in acute ischemic stroke. Stroke.
34:671–675. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Savaş S, Delibaş N, Savaş C, Sütçü R and
Cindaş A: Pentoxifylline reduces biochemical markers of
ischemia-reperfusion induced spinal cord injury in rabbits. Spinal
Cord. 40:224–229. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Liu T, Clark RK, McDonnell PC, Young PR,
White RF, Barone FC and Feuerstein GZ: Tumor necrosis factor-alpha
expression in ischemic neurons. Stroke. 25:1481–1488. 1994.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Uno H, Matsuyama T, Akita H, Nishimura H
and Sugita M: Induction of tumor necrosis factor-alpha in the mouse
hippocampus following transient forebrain ischemia. J Cereb Blood
Flow Metab. 17:491–499. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Offner H, Subramanian S, Parker SM,
Afentoulis ME, Vandenbark AA and Hurn PD: Experimental stroke
induces massive, rapid activation of the peripheral immune system.
J Cereb Blood Flow Metab. 26:654–665. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Dziewulska D and Mossakowski MJ: Cellular
expression of tumor necrosis factor a and its receptors in human
ischemic stroke. Clin Neuropathol. 22:35–40. 2003.PubMed/NCBI
|
|
75
|
Tarkowski E, Rosengren L, Blomstrand C,
Wikkelsö C, Jensen C, Ekholm S and Tarkowski A: Intrathecal release
of pro- and anti-inflammatory cytokines during stroke. Clin Exp
Immunol. 110:492–499. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zaremba J and Losy J: Early TNF-alpha
levels correlate with ischaemic stroke severity. Acta Neurol Scand.
104:288–295. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Intiso D, Stampatore P, Zarrelli MM,
Guerra GL, Arpaia G, Simone P, Tonali P and Beghi E: Incidence of
first-ever ischemic and hemorrhagic stroke in a well-defined
community of southern Italy, 1993–1995. Eur J Neurol. 10:559–565.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hasturk A, Atalay B, Calisaneller T,
Ozdemir O, Oruckaptan H and Altinors N: Analysis of serum
pro-inflammatory cytokine levels after rat spinal cord
ischemia/reperfusion injury and correlation with tissue damage.
Turk Neurosurg. 19:353–359. 2009.PubMed/NCBI
|
|
79
|
Lu K, Cho CL, Liang CL, Chen SD, Liliang
PC, Wang SY and Chen HJ: Inhibition of the MEK/ERK pathway reduces
microglial activation and interleukin-1-beta expression in spinal
cord ischemia/reperfusion injury in rats. J Thorac Cardiovasc Surg.
133:934–941. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mabuchi T, Kitagawa K, Ohtsuki T, Kuwabara
K, Yagita Y, Yanagihara T, Hori M, Matsumoto M, Chang DI and del
Zoppo GJ: Contribution of microglia/macrophages to expansion of
infarction and response of oligodendrocytes after focal cerebral
ischemia in rats. Stroke. 31:1735–1743. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Bernardes-Silva M, Anthony DC, Issekutz AC
and Perry VH: Recruitment of neutrophils across the blood-brain
barrier: The role of E- and P-selectins. J Cereb Blood Flow Metab.
21:1115–1124. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Mazzotta G, Sarchielli P, Caso V,
Paciaroni M, Floridi A, Floridi A and Gallai V: Different cytokine
levels in thrombolysis patients as predictors for clinical outcome.
Eur J Neurol. 11:377–381. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Akuzawa S, Kazui T, Shi E, Yamashita K,
Bashar AH and Terada H: Interleukin-1 receptor antagonist
attenuates the severity of spinal cord ischemic injury in rabbits.
J Vasc Surg. 48:694–700. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Clark WM, Rinker LG, Lessov NS, Hazel K
and Eckenstein F: Time course of IL-6 expression in experimental
CNS ischemia. Neurol Res. 21:287–292. 1999.PubMed/NCBI
|
|
85
|
Strle K, Zhou JH, Shen WH, Broussard SR,
Johnson RW, Freund GG, Dantzer R and Kelley KW: Interleukin-10 in
the brain. Crit Rev Immunol. 21:427–449. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Losy J and Zaremba J: Monocyte
chemoattractant protein-1 is increased in the cerebrospinal fluid
of patients with ischemic stroke. Stroke. 32:2695–2696. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zaremba J, Ilkowski J and Losy J: Serial
measurements of levels of the chemokines CCL2, CCL3 and CCL5 in
serum of patients with acute ischaemic stroke. Folia Neuropathol.
44:282–289. 2006.PubMed/NCBI
|
|
88
|
Takami S, Minami M, Nagata I, Namura S and
Satoh M: Chemokine receptor antagonist peptide, viral MIP-II,
protects the brain against focal cerebral ischemia in mice. J Cereb
Blood Flow Metab. 21:1430–1435. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Dimitrijevic OB, Stamatovic SM, Keep RF
and Andjelkovic AV: Absence of the chemokine receptor CCR2 protects
against cerebral ischemia/reperfusion injury in mice. Stroke.
38:1345–1353. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kärkelä J, Bock E and Kaukinen S: CSF and
serum brain-specific creatine kinase isoenzyme (CK-BB),
neuron-specific enolase (NSE) and neural cell adhesion molecule
(NCAM) as prognostic markers for hypoxic brain injury after cardiac
arrest in man. J Neurol Sci. 116:100–109. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yilmaz G and Granger DN: Leukocyte
recruitment and ischemic brain injury. Neuromolecular Med.
12:193–204. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhang R, Chopp M, Zhang Z, Jiang N and
Powers C: The expression of P- and E-selectins in three models of
middle cerebral artery occlusion. Brain Res. 785:207–214. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Huang J, Choudhri TF, Winfree CJ,
McTaggart RA, Kiss S, Mocco J, Kim LJ, Protopsaltis TS, Zhang Y,
Pinsky DJ, et al: Postischemic cerebrovascular E-selectin
expression mediates tissue injury in murine stroke. Stroke.
31:3047–3053. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Ishikawa M, Cooper D, Russell J, Salter
JW, Zhang JH, Nanda A and Granger DN: Molecular determinants of the
prothrombogenic and inflammatory phenotype assumed by the
postischemic cerebral microcirculation. Stroke. 34:1777–1782. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Lindsberg PJ, Carpén O, Paetau A,
Karjalainen-Lindsberg ML and Kaste M: Endothelial ICAM-1 expression
associated with inflammatory cell response in human ischemic
stroke. Circulation. 94:939–945. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Kitagawa K, Matsumoto M, Mabuchi T, Yagita
Y, Ohtsuki T, Hori M and Yanagihara T: Deficiency of intercellular
adhesion molecule 1 attenuates microcirculatory disturbance and
infarction size in focal cerebral ischemia. J Cereb Blood Flow
Metab. 18:1336–1345. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bernard SA, Gray TW, Buist MD, Jones BM,
Silvester W, Gutteridge G and Smith K: Treatment of comatose
survivors of out-of-hospital cardiac arrest with induced
hypothermia. N Engl J Med. 346:557–563. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Yenari MA and Han HS: Influence of
hypothermia on post-ischemic inflammation: Role of nuclear factor
kappa B (NFkappaB). Neurochem Int. 49:164–169. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Callaway CW, Rittenberger JC, Logue ES and
McMichael MJ: Hypothermia after cardiac arrest does not alter serum
inflammatory markers. Crit Care Med. 36:2607–2612. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Cilio MR and Ferriero DM: Synergistic
neuroprotective therapies with hypothermia. Semin Fetal Neonatal
Med. 15:293–298. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Plane JM, Shen Y, Pleasure DE and Deng W:
Prospects for minocycline neuroprotection. Arch Neurol.
67:1442–1448. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chu LS, Fang SH, Zhou Y, Yin YJ, Chen WY,
Li JH, Sun J, Wang ML, Zhang WP and Wei EQ: Minocycline inhibits
5-lipoxygenase expression and accelerates functional recovery in
chronic phase of focal cerebral ischemia in rats. Life Sci.
86:170–177. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Yrjänheikki J, Tikka T, Keinänen R,
Goldsteins G, Chan PH and Koistinaho J: A tetracycline derivative,
minocycline, reduces inflammation and protects against focal
cerebral ischemia with a wide therapeutic window. Proc Natl Acad
Sci USA. 96:13496–13500. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lampl Y, Boaz M, Gilad R, Lorberboym M,
Dabby R, Rapoport A, Anca-Hershkowitz M and Sadeh M: Minocycline
treatment in acute stroke: An open-label, evaluator-blinded study.
Neurology. 69:1404–1410. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Ohsawa I, Ishikawa M, Takahashi K,
Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S
and Ohta S: Hydrogen acts as a therapeutic antioxidant by
selectively reducing cytotoxic oxygen radicals. Nat Med.
13:688–694. 2007. View
Article : Google Scholar : PubMed/NCBI
|
|
106
|
Hayashida K, Sano M, Kamimura N, Yokota T,
Suzuki M, Maekawa Y, Kawamura A, Abe T, Ohta S, Fukuda K, et al:
H(2) gas improves functional outcome after cardiac arrest to an
extent comparable to therapeutic hypothermia in a rat model. J Am
Heart Assoc. 1:e0034592012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Huang G, Zhou J, Zhan W, Xiong Y, Hu C, Li
X, Li X, Li Y and Liao X: The neuroprotective effects of
intraperitoneal injection of hydrogen in rabbits with cardiac
arrest. Resuscitation. 84:690–695. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Vaughan CJ and Delanty N: Neuroprotective
properties of statins in cerebral ischemia and stroke. Stroke.
30:1969–1973. 1999. View Article : Google Scholar : PubMed/NCBI
|