|
1
|
Arnold M, Sierra MS, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global patterns and trends in
colorectal cancer incidence and mortality. Gut. Jan 27–2016.(Epub
ahead of print). doi: 10.1136/gutjnl-2015-310912. View Article : Google Scholar
|
|
2
|
Cerella C, Gaigneaux A, Dicato M and
Diederich M: Antagonistic role of natural compounds in
mTOR-mediated metabolic reprogramming. Cancer Lett. 356:251–262.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cerella C, Radogna F, Dicato M and
Diederich M: Natural compounds as regulators of the cancer cell
metabolism. Int J Cell Biol. 2013:6394012013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Cerella C, Michiels C, Dashwood RH, Surh
YJ and Diederich M: Metabolism and cancer: old and new players. Int
J Cell Biol. 2013:2932012013. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cairns RA, Harris IS and Mak TW:
Regulation of cancer cell metabolism. Nat Rev Cancer. 11:85–95.
2011. View
Article : Google Scholar : PubMed/NCBI
|
|
6
|
Rasheed S, Harris AL, Tekkis PP, Turley H,
Silver A, McDonald PJ, Talbot IC, Glynne-Jones R, Northover JM and
Guenther T: Hypoxia-inducible factor-1alpha and −2alpha are
expressed in most rectal cancers but only hypoxia-inducible
factor-1alpha is associated with prognosis. Br J Cancer.
100:1666–1673. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yoshimura H, Dhar DK, Kohno H, Kubota H,
Fujii T, Ueda S, Kinugasa S, Tachibana M and Nagasue N: Prognostic
impact of hypoxia-inducible factors 1alpha and 2alpha in colorectal
cancer patients: correlation with tumor angiogenesis and
cyclooxygenase-2 expression. Clin Cancer Res. 10:8554–8560. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Schmitz KJ, Müller CI, Reis H, Alakus H,
Winde G, Baba HA, Wohlschlaeger J, Jasani B, Fandrey J and Schmid
KW: Combined analysis of hypoxia-inducible factor 1 alpha and
metallothionein indicates an aggressive subtype of colorectal
carcinoma. Int J Colorectal Dis. 24:1287–1296. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Rajaganeshan R, Prasad R, Guillou PJ,
Scott N, Poston G and Jayne DG: Expression patterns of hypoxic
markers at the invasive margin of colorectal cancers and liver
metastases. Eur J Surg Oncol. 35:1286–1294. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kuwai T, Kitadai Y, Tanaka S, Onogawa S,
Matsutani N, Kaio E, Ito M and Chayama K: Expression of
hypoxia-inducible factor-1alpha is associated with tumor
vascularization in human colorectal carcinoma. Int J Cancer.
105:176–181. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Furlan D, Sahnane N, Carnevali I, Cerutti
R, Bertoni F, Kwee I, Uccella S, Bertolini V, Chiaravalli AM and
Capella C: Up-regulation of the hypoxia-inducible factor-1
transcriptional pathway in colorectal carcinomas. Hum Pathol.
39:1483–1494. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Baba Y, Nosho K, Shima K, Irahara N, Chan
AT, Meyerhardt JA, Chung DC, Giovannucci EL, Fuchs CS and Ogino S:
HIF1A overexpression is associated with poor prognosis in a cohort
of 731 colorectal cancers. Am J Pathol. 176:2292–2301. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Wang H, Zhao L, Zhu LT, Wang Y, Pan D, Yao
J, You QD and Guo QL: Wogonin reverses hypoxia resistance of human
colon cancer HCT116 cells via downregulation of HIF-1α and
glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog.
53(Suppl 1): E107–E118. 2014. View
Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kozutsumi Y, Segal M, Normington K,
Gething MJ and Sambrook J: The presence of malfolded proteins in
the endoplasmic reticulum signals the induction of
glucose-regulated proteins. Nature. 332:462–464. 1988. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xing X, Lai M, Wang Y, Xu E and Huang Q:
Overexpression of glucose-regulated protein 78 in colon cancer.
Clin Chim Acta. 364:308–315. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Takahashi H, Wang JP, Zheng HC, Masuda S
and Takano Y: Overexpression of GRP78 and GRP94 is involved in
colorectal carcinogenesis. Histol Histopathol. 26:663–671.
2011.PubMed/NCBI
|
|
17
|
Huang CY, Kuo WT, Huang YC, Lee TC and Yu
LC: Resistance to hypoxia-induced necroptosis is conferred by
glycolytic pyruvate scavenging of mitochondrial superoxide in
colorectal cancer cells. Cell Death Dis. 4:e6222013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Younes M, Lechago LV and Lechago J:
Overexpression of the human erythrocyte glucose transporter occurs
as a late event in human colorectal carcinogenesis and is
associated with an increased incidence of lymph node metastases.
Clin Cancer Res. 2:1151–1154. 1996.PubMed/NCBI
|
|
19
|
Haber RS, Rathan A, Weiser KR, Pritsker A,
Itzkowitz SH, Bodian C, Slater G, Weiss A and Burstein DE: GLUT1
glucose transporter expression in colorectal carcinoma: A marker
for poor prognosis. Cancer. 83:34–40. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Korkeila E, Jaakkola PM, Syrjänen K,
Pyrhönen S and Sundström J: Pronounced tumour regression after
radiotherapy is associated with negative/weak glucose transporter-1
expression in rectal cancer. Anticancer Res. 31:311–315.
2011.PubMed/NCBI
|
|
21
|
Wang W, Xiao ZD, Li X, Aziz KE, Gan B,
Johnson RL and Chen J: AMPK modulates Hippo pathway activity to
regulate energy homeostasis. Nat Cell Biol. 17:490–499. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li QQ, Sun YP, Ruan CP, Xu XY, Ge JH, He
J, Xu ZD, Wang Q and Gao WC: Cellular prion protein promotes
glucose uptake through the Fyn-HIF-2α-Glut1 pathway to support
colorectal cancer cell survival. Cancer Sci. 102:400–406. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Song HT, Qin Y, Yao GD, Tian ZN, Fu SB and
Geng JS: Astrocyte elevated gene-1 mediates glycolysis and
tumorigenesis in colorectal carcinoma cells via AMPK signaling.
Mediators Inflamm. 2014:2873812014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Qiu SL, Xiao ZC, Piao CM, Xian YL, Jia LX,
Qi YF, Han JH, Zhang YY and Du J: AMP-activated protein kinase α2
protects against liver injury from metastasized tumors via reduced
glucose deprivation-induced oxidative stress. J Biol Chem.
289:9449–9459. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Nam SO, Yotsumoto F, Miyata K, Fukagawa S,
Yamada H, Kuroki M and Miyamoto S: Warburg effect regulated by
amphiregulin in the development of colorectal cancer. Cancer Med.
4:575–587. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Tambe Y, Hasebe M, Kim CJ, Yamamoto A and
Inoue H: The drs tumor suppressor regulates glucose metabolism via
lactate dehydrogenase-B. Mol Carcinog. 55:52–63. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Bernatchez G, Giroux V, Lassalle T,
Carpentier AC, Rivard N and Carrier JC: ERRα metabolic nuclear
receptor controls growth of colon cancer cells. Carcinogenesis.
34:2253–2261. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Pate KT, Stringari C, Sprowl-Tanio S, Wang
K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell
MA, et al: Wnt signaling directs a metabolic program of glycolysis
and angiogenesis in colon cancer. EMBO J. 33:1454–1473.
2014.PubMed/NCBI
|
|
29
|
Diaz-Moralli S, Tarrado-Castellarnau M,
Alenda C, Castells A and Cascante M: Transketolase-like 1
expression is modulated during colorectal cancer progression and
metastasis formation. PLoS One. 6:e253232011. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Harrison RA: The detection of hexokinase,
glucosephosphate isomerase and phosphoglucomutase activities in
polyacrylamide gels after electrophoresis: a novel method using
immobilized glucose 6-phosphate dehydrogenase. Anal Biochem.
61:500–507. 1974. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tsutsumi S, Fukasawa T, Yamauchi H, Kato
T, Kigure W, Morita H, Asao T and Kuwano H: Phosphoglucose
isomerase enhances colorectal cancer metastasis. Int J Oncol.
35:1117–1121. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ha TK and Chi SG: CAV1/caveolin 1 enhances
aerobic glycolysis in colon cancer cells via activation of
SLC2A3/GLUT3 transcription. Autophagy. 8:1684–1685. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Tong X, Zhao F, Mancuso A, Gruber JJ and
Thompson CB: The glucose-responsive transcription factor ChREBP
contributes to glucose-dependent anabolic synthesis and cell
proliferation. Proc Natl Acad Sci USA. 106:21660–21665. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ericson NG, Kulawiec M, Vermulst M,
Sheahan K, O'Sullivan J, Salk JJ and Bielas JH: Decreased
mitochondrial DNA mutagenesis in human colorectal cancer. PLoS
Genet. 8:e10026892012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yun J, Rago C, Cheong I, Pagliarini R,
Angenendt P, Rajagopalan H, Schmidt K, Willson JK, Markowitz S,
Zhou S, et al: Glucose deprivation contributes to the development
of KRAS pathway mutations in tumor cells. Science. 325:1555–1559.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Straus DS: TNFα and IL-17 cooperatively
stimulate glucose metabolism and growth factor production in human
colorectal cancer cells. Mol Cancer. 12:782013. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Mauro C, Leow SC, Anso E, Rocha S,
Thotakura AK, Tornatore L, Moretti M, De Smaele E, Beg AA,
Tergaonkar V, et al: NF-κB controls energy homeostasis and
metabolic adaptation by upregulating mitochondrial respiration. Nat
Cell Biol. 13:1272–1279. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Pucci S and Mazzarelli P: MicroRNA
dysregulation in colon cancer microenvironment interactions: the
importance of small things in metastases. Cancer Microenviron.
4:155–162. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Fang R, Xiao T, Fang Z, Sun Y, Li F, Gao
Y, Feng Y, Li L, Wang Y, Liu X, et al: MicroRNA-143 (miR-143)
regulates cancer glycolysis via targeting hexokinase 2 gene. J Biol
Chem. 287:23227–23235. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Singh PK, Brand RE and Mehla K: MicroRNAs
in pancreatic cancer metabolism. Nat Rev Gastroenterol Hepatol.
9:334–344. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Chen B, Liu Y, Jin X, Lu W, Liu J, Xia Z,
Yuan Q, Zhao X, Xu N and Liang S: MicroRNA-26a regulates glucose
metabolism by direct targeting PDHX in colorectal cancer cells. BMC
Cancer. 14:4432014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gregersen LH, Jacobsen A, Frankel LB, Wen
J, Krogh A and Lund AH: MicroRNA-143 down-regulates Hexokinase 2 in
colon cancer cells. BMC Cancer. 12:2322012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Sun Y, Zhao X, Luo M, Zhou Y, Ren W, Wu K,
Li X, Shen J and Hu Y: The pro-apoptotic role of the regulatory
feedback loop between miR-124 and PKM1/HNF4α in colorectal cancer
cells. Int J Mol Sci. 15:4318–4332. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Sun Y, Zhao X, Zhou Y and Hu Y: miR-124,
miR-137 and miR-340 regulate colorectal cancer growth via
inhibition of the Warburg effect. Oncol Rep. 28:1346–1352.
2012.PubMed/NCBI
|
|
45
|
Wang J, Wang H, Liu A, Fang C, Hao J and
Wang Z: Lactate dehydrogenase A negatively regulated by miRNAs
promotes aerobic glycolysis and is increased in colorectal cancer.
Oncotarget. 6:19456–19468. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
He J, Xie G, Tong J, Peng Y, Huang H, Li
J, Wang N and Liang H: Overexpression of microRNA-122 re-sensitizes
5-FU-resistant colon cancer cells to 5-FU through the inhibition of
PKM2 in vitro and in vivo. Cell Biochem Biophys. 70:1343–1350.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li X, Zhao H, Zhou X and Song L:
Inhibition of lactate dehydrogenase A by microRNA-34a resensitizes
colon cancer cells to 5-fluorouracil. Mol Med Rep. 11:577–582.
2015.PubMed/NCBI
|
|
48
|
Ellis BC, Graham LD and Molloy PL: CRNDE,
a long non-coding RNA responsive to insulin/IGF signaling,
regulates genes involved in central metabolism. Biochim Biophys
Acta. 1843:372–386. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Taniguchi K, Sugito N, Kumazaki M,
Shinohara H, Yamada N, Nakagawa Y, Ito Y, Otsuki Y, Uno B, Uchiyama
K, et al: MicroRNA-124 inhibits cancer cell growth through
PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Lett.
363:17–27. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Taniguchi K, Sugito N, Kumazaki M,
Shinohara H, Yamada N, Matsuhashi N, Futamura M, Ito Y, Otsuki Y,
Yoshida K, et al: Positive feedback of DDX6/c-Myc/PTB1 regulated by
miR-124 contributes to maintenance of the Warburg effect in colon
cancer cells. Biochim Biophys Acta. 1852:1971–1980. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Xu X, Zur Hausen A, Coy JF and Löchelt M:
Transketolase-like protein 1 (TKTL1) is required for rapid cell
growth and full viability of human tumor cells. Int J Cancer.
124:1330–1337. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Shibuya N, Inoue K, Tanaka G, Akimoto K
and Kubota K: Augmented pentose phosphate pathway plays critical
roles in colorectal carcinomas. Oncology. 88:309–319. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Ma L, Tao Y, Duran A, Llado V, Galvez A,
Barger JF, Castilla EA, Chen J, Yajima T, Porollo A, et al: Control
of nutrient stress-induced metabolic reprogramming by PKCζ in
tumorigenesis. Cell. 152:599–611. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Duffy MJ: Carcinoembryonic antigen as a
marker for colorectal cancer: Is it clinically useful? Clin Chem.
47:624–630. 2001.PubMed/NCBI
|
|
55
|
Culverwell AD, Chowdhury FU and Scarsbrook
AF: Optimizing the role of FDG PET-CT for potentially operable
metastatic colorectal cancer. Abdom Imaging. 37:1021–1031. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xing X, Zhang B, Wang X, Liu F, Shi D and
Cheng Y: An ‘imaging-biopsy’ strategy for colorectal tumor
reconfirmation by multipurpose paramagnetic quantum dots.
Biomaterials. 48:16–25. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Sánchez-Aragó M and Cuezva JM: The
bioenergetic signature of isogenic colon cancer cells predicts the
cell death response to treatment with 3-bromopyruvate, iodoacetate
or 5-fluorouracil. J Transl Med. 9:192011. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Omar HA, Berman-Booty L and Weng JR:
Energy restriction: stepping stones towards cancer therapy. Future
Oncol. 8:1503–1506. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hursting SD, Dunlap SM, Ford NA, Hursting
MJ and Lashinger LM: Calorie restriction and cancer prevention: Α
mechanistic perspective. Cancer Metab. 1:102013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Chen GQ, Tang CF, Shi XK, Lin CY, Fatima
S, Pan XH, Yang DJ, Zhang G, Lu AP, Lin SH, et al: Halofuginone
inhibits colorectal cancer growth through suppression of Akt/mTORC1
signaling and glucose metabolism. Oncotarget. 6:24148–24162. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Arafa SA, Abdelazeem AH, Arab HH and Omar
HA: OSU-CG5, a novel energy restriction mimetic agent, targets
human colorectal cancer cells in vitro. Acta Pharmacol Sin.
35:394–400. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zwicker F, Kirsner A, Peschke P, Roeder F,
Debus J, Huber PE and Weber KJ: Dichloroacetate induces
tumor-specific radiosensitivity in vitro but attenuates
radiation-induced tumor growth delay in vivo. Strahlenther Onkol.
189:684–692. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Fath MA, Diers AR, Aykin-Burns N, Simons
AL, Hua L and Spitz DR: Mitochondrial electron transport chain
blockers enhance 2-deoxy-D-glucose induced oxidative stress and
cell killing in human colon carcinoma cells. Cancer Biol Ther.
8:1228–1236. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Ying Q, Ansong E, Diamond AM, Lu Z, Yang W
and Bie X: Quantitative proteomic analysis reveals that anti-cancer
effects of selenium-binding protein 1 in vivo are associated with
metabolic pathways. PLoS One. 10:e01262852015. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Marimuthu S, Chivukula RS, Alfonso LF,
Moridani M, Hagen FK and Bhat GJ: Aspirin acetylates multiple
cellular proteins in HCT-116 colon cancer cells: identification of
novel targets. Int J Oncol. 39:1273–1283. 2011.PubMed/NCBI
|