|
1
|
Güller I and Russell AP: MicroRNAs in
skeletal muscle: Their role and regulation in development, disease
and function. J Physiol. 588:4075–4087. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Drummond MJ, Glynn EL, Fry CS, Dhanani S,
Volpi E and Rasmussen BB: Essential amino acids increase
microRNA-499, −208b, and −23a and downregulate myostatin and
myocyte enhancer factor 2C mRNA expression in human skeletal
muscle. J Nutr. 139:2279–2284. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Allegra A, Alonci A, Campo S, Penna G,
Petrungaro A, Gerace D and Musolino C: Circulating microRNAs: New
biomarkers in diagnosis, prognosis and treatment of cancer
(Review). Int J Oncol. 41:1897–1912. 2012.PubMed/NCBI
|
|
4
|
Alexandrov PN, Dua P, Hill JM,
Bhattacharjee S, Zhao Y and Lukiw WJ: microRNA (miRNA) speciation
in Alzheimer's disease (AD) cerebrospinal fluid (CSF) and
extracellular fluid (ECF). Int J Biochem Mol Biol. 3:365–373.
2012.PubMed/NCBI
|
|
5
|
He WA, Calore F, Londhe P, Canella A,
Guttridge DC and Croce CM: Microvesicles containing miRNAs promote
muscle cell death in cancer cachexia via TLR7. Proc Natl Acad Sci
USA. 111:4525–4529. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Lo Cicero A, Delevoye C, Gilles-Marsens F,
Loew D, Dingli F, Guéré C, André N, Vié K, van Niel G and Raposo G:
Exosomes released by keratinocytes modulate melanocyte
pigmentation. Nat Commun. 6:75062015. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Al-Nedawi K, Szemraj J and Cierniewski CS:
Mast cell-derived exosomes activate endothelial cells to secrete
plasminogen activator inhibitor type 1. Arterioscler Thromb Vasc
Biol. 25:1744–1749. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Buschow SI, van Balkom BWM, Aalberts M,
Heck AJR, Wauben M and Stoorvogel W: MHC class II-associated
proteins in B-cell exosomes and potential functional implications
for exosome biogenesis. Immunol Cell Biol. 88:851–856. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Forterre A, Jalabert A, Chikh K, Pesenti
S, Euthine V, Granjon A, Errazuriz E, Lefai E, Vidal H and Rome S:
Myotube-derived exosomal miRNAs downregulate Sirtuin1 in myoblasts
during muscle cell differentiation. Cell Cycle. 13:78–89. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Guescini M, Guidolin D, Vallorani L,
Casadei L, Gioacchini AM, Tibollo P, Battistelli M, Falcieri E,
Battistin L, Agnati LF, et al: C2C12 myoblasts release
micro-vesicles containing mtDNA and proteins involved in signal
transduction. Exp Cell Res. 316:1977–1984. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Heijnen HFG, Schiel AE, Fijnheer R, Geuze
HJ and Sixma JJ: Activated platelets release two types of membrane
vesicles: microvesicles by surface shedding and exosomes derived
from exocytosis of multivesicular bodies and alpha-granules. Blood.
94:3791–3799. 1999.PubMed/NCBI
|
|
12
|
Rabesandratana H, Toutant JP, Reggio H and
Vidal M: Decay-accelerating factor (CD55) and membrane inhibitor of
reactive lysis (CD59) are released within exosomes during In vitro
maturation of reticulocytes. Blood. 91:2573–2580. 1998.PubMed/NCBI
|
|
13
|
Romancino DP, Paterniti G, Campos Y, De
Luca A, Di Felice V, d'Azzo A and Bongiovanni A: Identification and
characterization of the nano-sized vesicles released by muscle
cells. FEBS Lett. 587:1379–1384. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wolfers J, Lozier A, Raposo G, Regnault A,
Théry C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, et
al: Tumor-derived exosomes are a source of shared tumor rejection
antigens for CTL cross-priming. Nat Med. 7:297–303. 2001.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Yang Y, Xiu F, Cai Z, Wang J, Wang Q, Fu Y
and Cao X: Increased induction of antitumor response by exosomes
derived from interleukin-2 gene-modified tumor cells. J Cancer Res
Clin Oncol. 133:389–399. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yu X, Huang C, Song B, Xiao Y, Fang M,
Feng J and Wang P: CD4+CD25+ regulatory T
cells-derived exosomes prolonged kidney allograft survival in a rat
model. Cell Immunol. 285:62–68. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Matsuzaka Y and Hashido K: Roles of miR-1,
miR-133a, and miR-206 in calcium, oxidative stress, and NO
signaling involved in muscle diseases. RNA Dis. 2:558. 2015.
|
|
18
|
Peter ME: Targeting of mRNAs by multiple
miRNAs: the next step. Oncogene. 29:2161–2164. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Aoi W: Frontier impact of microRNAs in
skeletal muscle research: a future perspective. Front Physiol.
5:4952015. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Chen JF, Mandel EM, Thomson JM, Wu Q,
Callis TE, Hammond SM, Conlon FL and Wang DZ: The role of
microRNA-1 and microRNA-133 in skeletal muscle proliferation and
differentiation. Nat Genet. 38:228–233. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kim HK, Lee YS, Sivaprasad U, Malhotra A
and Dutta A: Muscle-specific microRNA miR-206 promotes muscle
differentiation. J Cell Biol. 174:677–687. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Berardi E and Sampaolesi M: Novel
therapeutic approaches for skeletal muscle dystrophies. Muscle Cell
and Tissue. Sakuma K: InTechOpen. (Rijeka). 393–412. 2015.
|
|
23
|
Cheng G: Circulating miRNAs: Roles in
cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev.
81:75–93. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Consalvi S, Sandoná M and Saccone V:
Epigenetic reprogramming of muscle progenitors: inspiration for
clinical therapies. Stem Cells Int. 2016:60936012016. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lee Y, El Andaloussi S and Wood MJA:
Exosomes and microvesicles: extracellular vesicles for genetic
information transfer and gene therapy. Hum Mol Genet. 21(R1):
R125–R134. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Suzuki T, Yamashita K, Jomen W, Ueki S,
Aoyagi T, Fukai M, Furukawa H, Umezawa K, Ozaki M and Todo S: The
novel NF-kappaB inhibitor, dehydroxymethylepoxyquinomicin, prevents
local and remote organ injury following intestinal
ischemia/reperfusion in rats. J Surg Res. 149:69–75. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lai RC, Chen TS and Lim SK: Mesenchymal
stem cell exosome: a novel stem cell-based therapy for
cardiovascular disease. Regen Med. 6:481–492. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Jenjaroenpun P, Kremenska Y, Nair VM,
Kremenskoy M, Joseph B and Kurochkin IV: Characterization of RNA in
exosomes secreted by human breast cancer cell lines using
next-generation sequencing. PeerJ. 1:e2012013. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Huang L, Ma W, Ma Y, Feng D, Chen H and
Cai B: Exosomes in mesenchymal stem cells, a new therapeutic
strategy for cardiovascular diseases? Int J Biol Sci. 11:238–245.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Burke M, Choksawangkarn W, Edwards N,
Ostrand-Rosenberg S and Fenselau C: Exosomes from myeloid-derived
suppressor cells carry biologically active proteins. J Proteome
Res. 13:836–843. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pegtel DM, Cosmopoulos K, Thorley-Lawson
DA, van Eijndhoven MAJ, Hopmans ES, Lindenberg JL, de Gruijl TD,
Würdinger T and Middeldorp JM: Functional delivery of viral miRNAs
via exosomes. Proc Natl Acad Sci USA. 107:6328–6333. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Yoon YJ, Kim OY and Gho YS: Extracellular
vesicles as emerging intercellular communicasomes. BMB Rep.
47:531–539. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Yellon DM and Davidson SM: Exosomes:
Nanoparticles involved in cardioprotection? Circ Res. 114:325–332.
2014. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ban JJ, Lee M, Im W and Kim M: Low pH
increases the yield of exosome isolation. Biochem Biophys Res
Commun. 461:76–79. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Yang JC, Lin MW, Rau CS, Jeng SF, Lu TH,
Wu YC, Chen YC, Tzeng SL, Wu CJ and Hsieh CH: Altered exosomal
protein expression in the serum of NF-κB knockout mice following
skeletal muscle ischemia-reperfusion injury. J Biomed Sci.
22:402015. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Nakamura Y, Miyaki S, Ishitobi H,
Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y and Ochi M:
Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle
regeneration. FEBS Lett. 589:1257–1265. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Zablocki D and Sadoshima J: Inside-Out
Signaling: moving the AT1 Receptor in to Get the Message Out.
Circulation. 131:2097–2100. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
O'Rourke JR, Georges SA, Seay HR, Tapscott
SJ, McManus MT, Goldhamer DJ, Swanson MS and Harfe BD: Essential
role for Dicer during skeletal muscle development. Dev Biol.
311:359–368. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
McCarthy JJ, Esser KA and Andrade FH:
MicroRNA-206 is overexpressed in the diaphragm but not the hindlimb
muscle of mdx mouse. Am J Physiol Cell Physiol. 293:C451–C457.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Forterre A, Jalabert A, Berger E, Baudet
M, Chikh K, Errazuriz E, De Larichaudy J, Chanon S, Weiss-Gayet M,
Hesse AM, et al: Proteomic analysis of C2C12 myoblast and myotube
exosome-like vesicles: a new paradigm for myoblast-myotube cross
talk? PLoS One. 9:e841532014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hudson MB, Woodworth-Hobbs ME, Zheng B,
Rahnert JA, Blount MA, Gooch JL, Searles CD and Price SR: miR-23a
is decreased during muscle atrophy by a mechanism that includes
calcineurin signaling and exosome-mediated export. Am J Physiol
Cell Physiol. 306:C551–C558. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hudson MB, Rahnert JA, Zheng B,
Woodworth-Hobbs ME, Franch HA and Price SR: miR-182 attenuates
atrophy-related gene expression by targeting FoxO3 in skeletal
muscle. Am J Physiol Cell Physiol. 307:C314–C319. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Quattrocelli M and Sampaolesi M: The
mesmiRizing complexity of microRNAs for striated muscle tissue
engineering. Adv Drug Deliv Rev. 88:37–52. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Safdar A, Abadi A, Akhtar M, Hettinga BP
and Tarnopolsky MA: miRNA in the regulation of skeletal muscle
adaptation to acute endurance exercise in C57Bl/6J male mice. PLoS
One. 4:e56102009. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Muroya S, Ogasawara H and Hojito M:
Grazing affects exosomal circulating microRNAs in cattle. PLoS One.
10:e01364752015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Atay S and Godwin AK: Tumor-derived
exosomes: A message delivery system for tumor progression. Commun
Integr Biol. 7:e282312014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
De Guire V, Robitaille R, Tétreault N,
Guérin R, Ménard C, Bambace N and Sapieha P: Circulating miRNAs as
sensitive and specific biomarkers for the diagnosis and monitoring
of human diseases: promises and challenges. Clin Biochem.
46:846–860. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Van Roosbroeck K, Pollet J and Calin GA:
miRNAs and long noncoding RNAs as biomarkers in human diseases.
Expert Rev Mol Diagn. 13:183–204. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Bloch SA, Donaldson AV, Lewis A, Banya WA,
Polkey MI, Griffiths MJ and Kemp PR: miR-181a: a potential
biomarker of acute muscle wasting following elective high-risk
cardiothoracic surgery. Crit Care. 19:1472015. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Chen JF, Callis TE and Wang DZ: MicroRNAs
and muscle disorders. J Cell Sci. 122:13–20. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Donaldson A, Natanek SA, Lewis A, Man WDC,
Hopkinson NS, Polkey MI and Kemp PR: Increased skeletal
muscle-specific microRNA in the blood of patients with COPD.
Thorax. 68:1140–1149. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Lewis A, Riddoch-Contreras J, Natanek SA,
Donaldson A, Man WDC, Moxham J, Hopkinson NS, Polkey MI and Kemp
PR: Downregulation of the serum response factor/miR-1 axis in the
quadriceps of patients with COPD. Thorax. 67:26–34. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Naguibneva I, Ameyar-Zazoua M, Polesskaya
A, Ait-Si-Ali S, Groisman R, Souidi M, Cuvellier S and Harel-Bellan
A: The microRNA miR-181 targets the homeobox protein Hox-A11 during
mammalian myoblast differentiation. Nat Cell Biol. 8:278–284. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Croce CM: Novel function of microRNAs.
Clin Cancer Res. 21:2015. View Article : Google Scholar
|
|
55
|
Camargo RG, Quintas Teixeira Ribeiro H,
Geraldo MV, Matos-Neto E, Neves RX, Carnevali LC Jr, Donatto FF,
Alcântara PS, Ottoch JP and Seelaender M: Cancer Cachexia and
MicroRNAs. Mediators Inflamm. 2015:3675612015. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Xu J, Li R, Workeneh B, Dong Y, Wang X and
Hu Z: Transcription factor FoxO1, the dominant mediator of muscle
wasting in chronic kidney disease, is inhibited by microRNA-486.
Kidney Int. 82:401–411. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Soares RJ, Cagnin S, Chemello F,
Silvestrin M, Musaro A, De Pitta C, Lanfranchi G and Sandri M:
Involvement of microRNAs in the regulation of muscle wasting during
catabolic conditions. J Biol Chem. 289:21909–21925. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yamaguchi T, Izumi Y, Nakamura Y, Yamazaki
T, Shiota M, Sano S, Tanaka M, Osada-Oka M, Shimada K, Miura K, et
al: Repeated remote ischemic conditioning attenuates left
ventricular remodeling via exosome-mediated intercellular
communication on chronic heart failure after myocardial infarction.
Int J Cardiol. 178:239–246. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Hu Z, Klein JD, Mitch WE, Zhang L,
Martinez I and Wang XH: MicroRNA-29 induces cellular senescence in
aging muscle through multiple signaling pathways. Aging (Albany
NY). 6:160–175. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Hu J, Du J, Zhang L, Price SR, Klein JD
and Wang XH: XIAP reduces muscle proteolysis induced by CKD. J Am
Soc Nephrol. 21:1174–1183. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Russell AP and Lamon S: Exercise, skeletal
muscle and circulating microRNAs. Prog Mol Biol Transl Sci.
135:471–496. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Mooren FC, Viereck J, Krüger K and Thum T:
Circulating microRNAs as potential biomarkers of aerobic exercise
capacity. Am J Physiol Heart Circ Physiol. 306:H557–H563. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Baggish AL, Hale A, Weiner RB, Lewis GD,
Systrom D, Wang F, Wang TJ and Chan SY: Dynamic regulation of
circulating microRNA during acute exhaustive exercise and sustained
aerobic exercise training. J Physiol. 589:3983–3994. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Uhlemann M, Möbius-Winkler S, Fikenzer S,
Adam J, Redlich M, Möhlenkamp S, Hilberg T, Schuler GC and Adams V:
Circulating microRNA-126 increases after different forms of
endurance exercise in healthy adults. Eur J Prev Cardiol.
21:484–491. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Nielsen S, Åkerström T, Rinnov A, Yfanti
C, Scheele C, Pedersen BK and Laye MJ: The miRNA plasma signature
in response to acute aerobic exercise and endurance training. PLoS
One. 9:e873082014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Guescini M, Canonico B, Lucertini F,
Maggio S, Annibalini G, Barbieri E, Luchetti F, Papa S and Stocchi
V: Muscle releases alpha-sarcoglycan positive extracellular
vesicles carrying miRNAs in the bloodstream. PLoS One.
10:e01250942015. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zierath JR and Wallberg-Henriksson H:
Looking ahead perspective: where will the future of exercise
biology take us? Cell Metab. 22:25–30. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Valadi H, Ekström K, Bossios A, Sjöstrand
M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Hamrick MW: The skeletal muscle secretome:
an emerging player in muscle-bone crosstalk. Bonekey Rep. 1:602012.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Rondon-Berrios H, Wang Y and Mitch WE: Can
muscle-kidney crosstalk slow progression of CKD? J Am Soc Nephrol.
25:2681–2683. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Zhu YG, Feng XM, Abbott J, Fang XH, Hao Q,
Monsel A, Qu JM, Matthay MA and Lee JW: Human mesenchymal stem cell
microvesicles for treatment of Escherichia coli
endotoxin-induced acute lung injury in mice. Stem Cells.
32:116–125. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tran L, Campbell L, Coletta D, Mandarino L
and Katsanos C: Skeletal muscle β-F1-ATPase translation is
inhibited by hyperlipidemia-induced miR-127-5p expression in human
obesity. FASEB J. 29(Suppl 1): 974–976. 2015.
|
|
73
|
Nolta JA: New advances in understanding
stem cell fate and function. Stem Cells. 33:313–315. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Hanatani S, Izumiya Y, Araki S, Rokutanda
T, Kimura Y, Walsh K and Ogawa H: Akt1-mediated fast/glycolytic
skeletal muscle growth attenuates renal damage in experimental
kidney disease. J Am Soc Nephrol. 25:2800–2811. 2014. View Article : Google Scholar : PubMed/NCBI
|