|
1
|
Saez ME, Ramirez-Lorca R, Moron FJ and
Ruiz A: The therapeutic potential of the calpain family: New
aspects. Drug Discov Today. 11:917–923. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Perrin BJ and Huttenlocher A: Calpain. Int
J Biochem Cell Biol. 34:722–725. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Goll DE, Thompson VF, Li H, Wei W and Cong
J: The calpain system. Physiol Rev. 83:731–801. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Medzhitov R: Inflammation 2010: New
adventures of an old flame. Cell. 140:771–776. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Cuzzocrea S, McDonald MC, Mazzon E,
Siriwardena D, Serraino I, Dugo L, Britti D, Mazzullo G, Caputi AP
and Thiemermann C: Calpain inhibitor I reduces the development of
acute and chronic inflammation. Am J Pathol. 157:2065–2079. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ruetten H and Thiemermann C: Effect of
calpain inhibitor I, an inhibitor of the proteolysis of I kappa B,
on the circulatory failure and multiple organ dysfunction caused by
endotoxin in the rat. Br J Pharmacol. 121:695–704. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Shumway SD, Maki M and Miyamoto S: The
PEST domain of IkappaBalpha is necessary and sufficient for in
vitro degradation by mu-calpain. J Biol Chem. 274:30874–30881.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Sun Z and Andersson R: NF-kappaB
activation and inhibition: A review. Shock. 18:99–106. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Huang Z, Hoffmann FW, Norton RL, Hashimoto
AC and Hoffmann PR: Selenoprotein K is a novel target of m-calpain,
and cleavage is regulated by Toll-like receptor-induced calpastatin
in macrophages. J Biol Chem. 286:34830–34838. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Fettucciari K, Quotadamo F, Noce R,
Palumbo C, Modesti A, Rosati E, Mannucci R, Bartoli A and Marconi
P: Group B Streptococcus (GBS) disrupts by calpain activation the
actin and microtubule cytoskeleton of macrophages. Cell Microbiol.
13:859–884. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Fettucciari K, Fetriconi I, Mannucci R,
Nicoletti I, Bartoli A, Coaccioli S and Marconi P: Group B
Streptococcus induces macrophage apoptosis by calpain activation. J
Immunol. 176:7542–7556. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Goldmann O, Sastalla I, Wos-Oxley M, Rohde
M and Medina E: Streptococcus pyogenes induces oncosis in
macrophages through the activation of an inflammatory programmed
cell death pathway. Cell Microbiol. 11:138–155. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Lim YJ, Choi HH, Choi JA, Jeong JA, Cho
SN, Lee JH, Park JB, Kim HJ and Song CH: Mycobacterium
kansasii-induced death of murine macrophages involves endoplasmic
reticulum stress responses mediated by reactive oxygen species
generation or calpain activation. Apoptosis. 18:150–159. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Rana T, Misra S, Mittal MK, Farrow AL,
Wilson KT, Linton MF, Fazio S, Willis IM and Chaudhuri G: Mechanism
of down-regulation of RNA polymerase III-transcribed non-coding RNA
genes in macrophages by Leishmania. J Biol Chem. 286:6614–6626.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Lokuta MA, Nuzzi PA and Huttenlocher A:
Calpain regulates neutrophil chemotaxis. Proc Natl Acad Sci USA.
100:4006–4011. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Katsube M, Kato T, Kitagawa M, Noma H,
Fujita H and Kitagawa S: Calpain-mediated regulation of the
distinct signaling pathways and cell migration in human
neutrophils. J Leukoc Biol. 84:255–263. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Dewitt S, Francis RJ and Hallett MB:
Ca2+ and calpain control membrane expansion during the
rapid cell spreading of neutrophils. J. Cell Sci. 126:4627–4635.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Dewitt S and Hallett M: Leukocyte membrane
‘expansion’: A central mechanism for leukocyte extravasation. J
Leukoc Biol. 81:1160–1164. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Squier MK, Sehnert AJ, Sellins KS,
Malkinson AM, Takano E and Cohen JJ: Calpain and calpastatin
regulate neutrophil apoptosis. J Cell Physiol. 178:311–319. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Francis RJ, Kotecha S and Hallett MB:
Ca2+ activation of cytosolic calpain induces the
transition from apoptosis to necrosis in neutrophils with
externalized phosphatidylserine. J Leukoc Biol. 93:95–100. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Deshpande RV, Goust JM, Chakrabarti AK,
Barbosa E, Hogan EL and Banik NL: Calpain expression in lymphoid
cells. Increased mRNA and protein levels after cell activation. J
Biol Chem. 270:2497–2505. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Smith AW, Doonan BP, Tyor WR, Abou-Fayssal
N, Haque A and Banik NL: Regulation of Th1/Th17 cytokines and IDO
gene expression by inhibition of calpain in PBMCs from MS patients.
J Neuroimmunol. 232:179–185. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Iguchi-Hashimoto M, Usui T, Yoshifuji H,
Shimizu M, Kobayashi S, Ito Y, Murakami K, Shiomi A, Yukawa N,
Kawabata D, et al: Overexpression of a minimal domain of
calpastatin suppresses IL-6 production and Th17 development via
reduced NF-κB and increased STAT5 signals. PLoS One. 6:e270202011.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Stewart MP, McDowall A and Hogg N:
LFA-1-mediated adhesion is regulated by cytoskeletal restraint and
by a Ca2+-dependent protease, calpain. J Cell Biol.
140:699–707. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Svensson L, McDowall A, Giles KM, Stanley
P, Feske S and Hogg N: Calpain 2 controls turnover of LFA-1
adhesions on migrating T lymphocytes. PLoS One. 5:e150902010.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hussain AM, Zhang QX and Murray AG:
Endothelial cell calpain activity facilitates lymphocyte
diapedesis. Am J Transplant. 5:2640–2648. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Mikosik A, Foerster J, Jasiulewicz A,
Frąckowiak J, Colonna-Romano G, Bulati M, Buffa S, Martorana A,
Caruso C, Bryl E, et al: Expression of calpain-calpastatin system
(CCS) member proteins in human lymphocytes of young and elderly
individuals; pilot baseline data for the CALPACENT project. Immun
Ageing. 10:272013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Kobayashi Y, Yamamoto K, Saido T, Kawasaki
H, Oppenheim JJ and Matsushima K: Identification of
calcium-activated neutral protease as a processing enzyme of human
interleukin 1 alpha. Proc Natl Acad Sci USA. 87:5548–5552. 1990.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zheng Y, Humphry M, Maguire JJ, Bennett MR
and Clarke MCH: Intracellular interleukin-1 receptor 2 binding
prevents cleavage and activity of interleukin-1α, controlling
necrosis-induced sterile inflammation. Immunity. 38:285–295. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
McCarthy DA, Ranganathan A, Subbaram S,
Flaherty NL, Patel N, Trebak M, Hempel N and Melendez JA:
Redox-control of the alarmin, Interleukin-1α. Redox Biol.
1:218–225. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pan HC, Yang CN, Hung YW, Lee WJ, Tien HR,
Shen CC, Sheehan J, Chou CT and Sheu ML: Reciprocal modulation of
C/EBP-α and C/EBP-β by IL-13 in activated microglia prevents
neuronal death. Eur J Immunol. 43:2854–2865. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Han Y, Weinman S, Boldogh I, Walker RK and
Brasier AR: Tumor necrosis factor-alpha-inducible IkappaBalpha
proteolysis mediated by cytosolic m-calpain. A mechanism parallel
to the ubiquitin-proteasome pathway for nuclear factor-kappab
activation. J Biol Chem. 274:787–794. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Averna M, Stifanese R, De Tullio R,
Salamino F, Bertuccio M, Pontremoli S and Melloni E: Proteolytic
degradation of nitric oxide synthase isoforms by calpain is
modulated by the expression levels of HSP90. FEBS J. 274:6116–6127.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Bellocq A, Doublier S, Suberville S, Perez
J, Escoubet B, Fouqueray B, Puyol DR and Baud L: Somatostatin
increases glucocorticoid binding and signaling in macrophages by
blocking the calpain-specific cleavage of Hsp 90. J Biol Chem.
274:36891–36896. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Li X, Luo R, Jiang R, Meng X, Wu X, Zhang
S and Hua W: The role of the Hsp90/Akt pathway in myocardial
calpain-induced caspase-3 activation and apoptosis during sepsis.
BMC Cardiovasc Disord. 13:82013. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Stalker TJ, Gong Y and Scalia R: The
calcium-dependent protease calpain causes endothelial dysfunction
in type 2 diabetes. Diabetes. 54:1132–1140. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Letavernier E, Perez J, Bellocq A, Mesnard
L, de Castro Keller A, Haymann JP and Baud L: Targeting the
calpain/calpastatin system as a new strategy to prevent
cardiovascular remodeling in angiotensin II-induced hypertension.
Circ Res. 102:720–728. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhao Y, Malinin NL, Meller J, Ma Y, West
XZ, Bledzka K, Qin J, Podrez EA and Byzova TV: Regulation of cell
adhesion and migration by Kindlin-3 cleavage by calpain. J Biol
Chem. 287:40012–40020. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Franco SJ and Huttenlocher A: Regulating
cell migration: Calpains make the cut. J Cell Sci. 118:3829–3838.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cortesio CL, Boateng LR, Piazza TM, Bennin
DA and Huttenlocher A: Calpain-mediated proteolysis of paxillin
negatively regulates focal adhesion dynamics and cell migration. J
Biol Chem. 286:9998–10006. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cui Z, Han Z, Li Z, Hu H, Patel JM, Antony
V, Block ER and Su Y: Involvement of calpain-calpastatin in
cigarette smoke-induced inhibition of lung endothelial nitric oxide
synthase. Am J Respir Cell Mol Biol. 33:513–520. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Dong Y, Wu Y, Wu M, Wang S, Zhang J, Xie
Z, Xu J, Song P, Wilson K, Zhao Z, et al: Activation of protease
calpain by oxidized and glycated LDL increases the degradation of
endothelial nitric oxide synthase. J Cell Mol Med 13 (no. 9A).
2899–2910. 2009. View Article : Google Scholar
|
|
43
|
Wang S, Peng Q, Zhang J and Liu L:
Na+/H+ exchanger is required for
hyperglycaemia-induced endothelial dysfunction via
calcium-dependent calpain. Cardiovasc Res. 80:255–262. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Nathan C and Ding A: Nonresolving
inflammation. Cell. 140:871–882. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Bergounioux J, Elisee R, Prunier A-L,
Donnadieu F, Sperandio B, Sansonetti P and Arbibe L: Calpain
activation by the Shigella flexneri effector VirA regulates key
steps in the formation and life of the bacterium's epithelial
niche. Cell Host Microbe. 11:240–252. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Smani Y, Docobo-Pérez F, McConnell MJ and
Pachón J: Acinetobacter baumannii-induced lung cell death: Role of
inflammation, oxidative stress and cytosolic calcium. Microb
Pathog. 50:224–232. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Li M, Wang X, Yu Y, Yu Y, Xie Y, Zou Y, Ge
J, Peng T and Chen R: Coxsackievirus B3-induced calpain activation
facilitates the progeny virus replication via a likely mechanism
related with both autophagy enhancement and apoptosis inhibition in
the early phase of infection: An in vitro study in H9c2 cells.
Virus Res. 179:177–186. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Liu D, Yan Z, Minshall RD, Schwartz DE,
Chen Y and Hu G: Activation of calpains mediates early lung
neutrophilic inflammation in ventilator-induced lung injury. Am J
Physiol Lung Cell Mol Physiol. 302:L370–L379. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Celes MRN, Malvestio LM, Suadicani SO,
Prado CM, Figueiredo MJ, Campos EC, Freitas ACS, Spray DC, Tanowitz
HB, da Silva JS, et al: Disruption of calcium homeostasis in
cardiomyocytes underlies cardiac structural and functional changes
in severe sepsis. PLoS One. 8:e688092013. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Li X, Li Y, Shan L, Shen E, Chen R and
Peng T: Over-expression of calpastatin inhibits calpain activation
and attenuates myocardial dysfunction during endotoxaemia.
Cardiovasc Res. 83:72–79. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Smith IJ, Lecker SH and Hasselgren P-O:
Calpain activity and muscle wasting in sepsis. Am J Physiol
Endocrinol Metab. 295:E762–E771. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hu H, Li X, Li Y, Wang L, Mehta S, Feng Q,
Chen R and Peng T: Calpain-1 induces apoptosis in pulmonary
microvascular endothelial cells under septic conditions. Microvasc
Res. 78:33–39. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Supinski GS, Wang W and Callahan LA:
Caspase and calpain activation both contribute to sepsis-induced
diaphragmatic weakness. J Appl Physiol. 107:1389–1396. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wei W, Fareed MU, Evenson A, Menconi MJ,
Yang H, Petkova V and Hasselgren PO: Sepsis stimulates calpain
activity in skeletal muscle by decreasing calpastatin activity but
does not activate caspase-3. Am J Physiol Regul Integr Comp
Physiol. 288:R580–R590. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kraemer BF, Campbell RA, Schwertz H,
Franks ZG, de Abreu A Vieira, Grundler K, Kile BT, Dhakal BK,
Rondina MT, Kahr WHA, et al: Bacteria differentially induce
degradation of Bcl-xL, a survival protein, by human platelets.
Blood. 120:5014–5020. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zafrani L, Gerotziafas G, Byrnes C, Hu X,
Perez J, Lévi C, Placier S, Letavernier E, Leelahavanichkul A,
Haymann JP, et al: Calpastatin controls polymicrobial sepsis by
limiting procoagulant microparticle release. Am J Respir Crit Care
Med. 185:744–755. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Kumar V, Everingham S, Hall C, Greer PA
and Craig AWB: Calpains promote neutrophil recruitment and
bacterial clearance in an acute bacterial peritonitis model. Eur J
Immunol. 44:831–841. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Samantaray S, Knaryan VH, Shields DC and
Banik NL: Critical role of calpain in spinal cord degeneration in
Parkinson's disease. J Neurochem. 127:880–890. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Smolock AR, Mishra G, Eguchi K, Eguchi S
and Scalia R: Protein kinase C upregulates intercellular adhesion
molecule-1 and leukocyte-endothelium interactions in hyperglycemia
via activation of endothelial expressed calpain. Arterioscler
Thromb Vasc Biol. 31:289–296. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Loot AE, Pierson I, Syzonenko T,
Elgheznawy A, Randriamboavonjy V, Zivković A, Stark H and Fleming
I: Ca2+-sensing receptor cleavage by calpain partially
accounts for altered vascular reactivity in mice fed a high-fat
diet. J Cardiovasc Pharmacol. 61:528–535. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Chen B, Zhao Q, Ni R, Tang F, Shan L,
Cepinskas I, Cepinskas G, Wang W, Schiller PW and Peng T:
Inhibition of calpain reduces oxidative stress and attenuates
endothelial dysfunction in diabetes. Cardiovasc Diabetol.
13:882014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li Y, Arnold JMO, Pampillo M, Babwah AV
and Peng T: Taurine prevents cardiomyocyte death by inhibiting
NADPH oxidase-mediated calpain activation. Free Radic Biol Med.
46:51–61. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Shan L, Li J, Wei M, Ma J, Wan L, Zhu W,
Li Y, Zhu H, Arnold JMO and Peng T: Disruption of Rac1 signaling
reduces ischemia-reperfusion injury in the diabetic heart by
inhibiting calpain. Free Radic Biol Med. 49:1804–1814. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Li Y, Li Y, Feng Q, Arnold M and Peng T:
Calpain activation contributes to hyperglycaemia-induced apoptosis
in cardiomyocytes. Cardiovasc Res. 84:100–110. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Scalia R, Gong Y, Berzins B, Freund B,
Feather D, Landesberg G and Mishra G: A novel role for calpain in
the endothelial dysfunction induced by activation of angiotensin II
type 1 receptor signaling. Circ Res. 108:1102–1111. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Ma J, Wei M, Wang Q, Li J, Wang H, Liu W,
Lacefield JC, Greer PA, Karmazyn M, Fan GC, et al: Deficiency of
Capn4 gene inhibits nuclear factor-κB (NF-κB) protein
signaling/inflammation and reduces remodeling after myocardial
infarction. J Biol Chem. 287:27480–27489. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Li Y, Ma J, Zhu H, Singh M, Hill D, Greer
PA, Arnold JM, Abel ED and Peng T: Targeted inhibition of calpain
reduces myocardial hypertrophy and fibrosis in mouse models of type
1 diabetes. Diabetes. 60:2985–2994. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Aich J, Mabalirajan U, Ahmad T, Agrawal A
and Ghosh B: Loss-of-function of inositol
polyphosphate-4-phosphatase reversibly increases the severity of
allergic airway inflammation. Nat Commun. 3:8772012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Morita M, Banno Y, Dohjima T, Nozawa S,
Fushimi K, Fan DG, Ohno T, Miyazawa K, Liu N and Shimizu K:
Mu-calpain is involved in the regulation of TNF-alpha-induced
matrix metalloproteinase-3 release in a rheumatoid synovial cell
line. Biochem Biophys Res Commun. 343:937–942. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chakrabarti S, Rizvi M, Morin K, Garg R
and Freedman JE: The role of CD40L and VEGF in the modulation of
angiogenesis and inflammation. Vascul Pharmacol. 53:130–137. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Wang Y, Zheng D, Wei M, Ma J, Yu Y, Chen
R, Lacefield JC, Xu H and Peng T: Over-expression of calpastatin
aggravates cardiotoxicity induced by doxorubicin. Cardiovasc Res.
98:381–390. 2013. View Article : Google Scholar : PubMed/NCBI
|