|
1
|
Manning G, Whyte DB, Martinez R, Hunter T
and Sudarsanam S: The protein kinase complement of the human
genome. Science. 298:1912–1934. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Hunter T: A thousand and one protein
kinases. Cell. 50:823–829. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Cozza G, Meggio F and Moro S: The dark
side of protein kinase CK2 inhibition. Curr Med Chem. 18:2867–2884.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Wang G, Ahmad KA, Unger G, Slaton JW and
Ahmed K: CK2 signaling in androgen-dependent and -independent
prostate cancer. J Cell Biochem. 99:382–391. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
St-Denis NA and Litchfield DW: Protein
kinase CK2 in health and disease: From birth to death: the role of
protein kinase CK2 in the regulation of cell proliferation and
survival. Cell Mol Life Sci. 66:1817–1829. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ruzzene M and Pinna LA: Addiction to
protein kinase CK2: A common denominator of diverse cancer cells?
Biochim Biophys Acta. 1804:499–504. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Trembley JH, Wang G, Unger G, Slaton J and
Ahmed K: Protein kinase CK2 in health and disease: CK2: a key
player in cancer biology. Cell Mol Life Sci. 66:1858–1867. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Ahmad KA, Wang G, Unger G, Slaton J and
Ahmed K: Protein kinase CK2 - a key suppressor of apoptosis. Adv
Enzyme Regul. 48:179–187. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Montenarh M: Protein kinase CK2 and
angiogenesis. Adv Clin Exp Med. 23:153–158. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Montenarh M: Protein kinase CK2 in DNA
damage and repair. Transl Cancer Res. 5:49–63. 2016.
|
|
11
|
Götz C and Montenarh M: Protein kinase CK2
in the ER stress response. Adv Biol Chem 3A. 1–5. 2013. View Article : Google Scholar
|
|
12
|
Al Quobaili F and Montenarh M: CK2 and the
regulation of the carbohydrate metabolism. Metabolism.
61:1512–1517. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Blanquet PR: Casein kinase 2 as a
potentially important enzyme in the nervous system. Prog Neurobiol.
60:211–246. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Faust M and Montenarh M: Subcellular
localization of protein kinase CK2. A key to its function? Cell
Tissue Res. 301:329–340. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Raaf J, Brunstein E, Issinger OG and
Niefind K: The interaction of CK2alpha and CK2beta, the subunits of
protein kinase CK2, requires CK2beta in a preformed conformation
and is enthalpically driven. Protein Sci. 17:2180–2186. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Meggio F, Boldyreff BS, Marin O, Pinna LA
and Issinger OG: CK2: Role of the b- subunit on the stability and
specificity of the recombinant reconstituted holoenzyme. Eur J
Biochem. 204:293–297. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Meggio F, Boldyreff B, Marin O, Marchiori
F, Perich JW, Issinger OG and Pinna LA: The effect of polylysine on
casein-kinase-2 activity is influenced by both the structure of the
protein/peptide substrates and the subunit composition of the
enzyme. Eur J Biochem. 205:939–945. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Boldyreff B, Meggio F, Pinna LA and
Issinger OG: Casein kinase-2 structure-function relationship:
Creation of a set of mutants of the beta subunit that variably
surrogate the wildtype beta subunit function. Biochem Biophys Res
Commun. 188:228–234. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Rodriguez FA, Contreras C, BolanosGarcia V
and Allende JE: Protein kinase CK2 as an ectokinase: The role of
the regulatory CK2beta subunit. Proc Natl Acad Sci USA.
105:5693–5698. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Glover CV: A filamentous form of
Drosophila casein kinase II. J Biol Chem. 261:14349–14354.
1986.PubMed/NCBI
|
|
21
|
Mamrack MD: Stimulation of enzymatic
activity in filament preparations of casein kinase II by
polylysine, melittin, and spermine. Mol Cell Biochem. 85:147–157.
1989. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Valero E, De Bonis S, Filhol O, Wade RH,
Langowski J, Chambaz EM and Cochet C: Quaternary structure of
casein kinase 2. Characterization of multiple oligomeric states and
relation with its catalytic activity. J Biol Chem. 270:8345–8352.
1995. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Valero E, Chambaz EM and Cochet C:
Modulation of the protein kinase CK2 activity by a synthetic
peptide corresponding to the N-terminus of its beta regulatory
subunit. Biochem Biophys Res Commun. 232:178–182. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Niefind K and Issinger OG: Primary and
secondary interactions between CK2alpha and CK2beta lead to
ring-like structures in the crystals of the CK2 holoenzyme. Mol
Cell Biochem. 274:3–14. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Landesman-Bollag E, Belkina A, Hovey B,
Connors E, Cox C and Seldin DC: Developmental and growth defects in
mice with combined deficiency of CK2 catalytic genes. Mol Cell
Biochem. 356:227–231. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Filhol O, Nueda A, Martel V,
GerberScokaert D, Benitez MJ, Souchier C, Saoudi Y and Cochet C:
Live-cell fluorescence imaging reveals the dynamics of protein
kinase CK2 individual subunits. Mol Cell Biol. 23:975–987. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Filhol O, Martiel JL and Cochet C: Protein
kinase CK2: A new view of an old molecular complex. EMBO Rep.
5:351–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Bibby AC and Litchfield DW: The multiple
personalities of the regulatory subunit of protein kinase CK2: CK2
dependent and CK2 independent roles reveal a secret identity for
CK2beta. Int J Biol Sci. 1:67–79. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Bolanos-Garcia VM, FernandezRecio J,
Allende JE and Blundell TL: Identifying interaction motifs in
CK2beta - a ubiquitous kinase regulatory subunit. Trends Biochem
Sci. 31:654–661. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Montenarh M: Cellular regulators of
protein kinase CK2. Cell Tissue Res. 342:139–146. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Lou DY, Dominguez I, Toselli P,
LandesmanBollag E, O'Brien C and Seldin DC: The alpha catalytic
subunit of protein kinase CK2 is required for mouse embryonic
development. Mol Cell Biol. 28:131–139. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Dominguez I, Degano IR, Chea K, Cha J,
Toselli P and Seldin DC: CK2α is essential for embryonic
morphogenesis. Mol Cell Biochem. 356:209–216. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Buchou T, Vernet M, Blond O, Jensen HH,
Pointu H, Olsen BB, Cochet C, Issinger OG and Boldyreff B:
Disruption of the regulatory beta subunit of protein kinase CK2 in
mice leads to a cell-autonomous defect and early embryonic
lethality. Mol Cell Biol. 23:908–915. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Alvarez LM, RevueltaCervantes J and
Dominguez I: CK2 in embryonic development. in Protein kinase
CK2Pinna LA: John Wiley & Sons, Inc.; Ames, Chichester, Oxford:
pp. 129–168. 2013
|
|
35
|
Schneider HR, Reichert GH and Issinger OG:
Enhanced casein kinase II activity during mouse embryogenesis.
Identification of a 110-kDa phosphoprotein as the major
phosphorylation product in mouse embryos and Krebs II mouse ascites
tumor cells. Eur J Biochem. 161:733–738. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Perez M, Grande J and Itarte E:
Developmental changes in rat hepatic casein kinases 1 and 2. Eur J
Biochem. 170:493–498. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Maridor G, Park W, Krek W and Nigg EA:
Casein kinase II. cDNA sequences, developmental expression, and
tissue distribution of mRNAs for alpha, alpha', and beta subunits
of the chicken enzyme. J Biol Chem. 266:2362–2368. 1991.PubMed/NCBI
|
|
38
|
Mestres P, Boldyreff B, Ebensperger C,
Hameister H and Issinger OG: Expression of casein kinase 2 during
mouse embryogenesis. Acta Anat (Basel). 149:13–20. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Wirkner U and Pyerin W: CK2alpha loci in
the human genome: Structure and transcriptional activity. Mol Cell
Biochem. 191:59–64. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Escalier D, Silvius D and Xu X:
Spermatogenesis of mice lacking CK2alpha': Failure of germ cell
survival and characteristic modifications of the spermatid nucleus.
Mol Reprod Dev. 66:190–201. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Blond O, Jensen HH, Buchou T, Cochet C,
Issinger OG and Boldyreff B: Knocking out the regulatory beta
subunit of protein kinase CK2 in mice: Gene dosage effects in ES
cells and embryos. Mol Cell Biochem. 274:31–37. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Huillard E, Ziercher L, Blond O, Wong M,
Deloulme JC, Souchelnytskyi S, Baudier J, Cochet C and Buchou T:
Disruption of CK2beta in embryonic neural stem cells compromises
proliferation and oligodendrogenesis in the mouse telencephalon.
Mol Cell Biol. 30:2737–2749. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Ziercher L, Filhol O, Laudet B, Prudent R,
Cochet C and Buchou T: Structure-function analysis of the beta
regulatory subunit of protein kinase CK2 by targeting embryonic
stem cell. Mol Cell Biochem. 356:75–81. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Díaz-Nido J, Mizuno K, Nawa H and Marshak
DR: Regulation of protein kinase CK2 isoform expression during rat
brain development. Cell Mol Biol Res. 40:581–585. 1994.PubMed/NCBI
|
|
45
|
Avila J, Ulloa L, González J, Moreno F and
Díaz-Nido J: Phosphorylation of microtubule-associated proteins by
protein kinase CK2 in neuritogenesis. Cell Mol Biol Res.
40:573–579. 1994.PubMed/NCBI
|
|
46
|
Moreno FJ, Díaz-Nido J, Jiménez JS and
Avila J: Distribution of CK2, its substrate MAP1B and phosphatases
in neuronal cells. Mol Cell Biochem. 191:201–205. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Nuthall HN, Husain J, McLarren KW and
Stifani S: Role for Hes1-induced phosphorylation in
Groucho-mediated transcriptional repression. Mol Cell Biol.
22:389–399. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gratton MO, Torban E, Jasmin SB, Theriault
FM, German MS and Stifani S: Hes6 promotes cortical neurogenesis
and inhibits Hes1 transcription repression activity by multiple
mechanisms. Mol Cell Biol. 23:6922–6935. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Nuthall HN, Joachim K and Stifani S:
Phosphorylation of serine 239 of Groucho/TLE1 by protein kinase CK2
is important for inhibition of neuronal differentiation. Mol Cell
Biol. 24:8395–8407. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Jans DA, Xiao CY and Lam MH: Nuclear
targeting signal recognition: A key control point in nuclear
transport? BioEssays. 22:532–544. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Kuhn HG, Winkler J, Kempermann G, Thal LJ
and Gage FH: Epidermal growth factor and fibroblast growth factor-2
have different effects on neural progenitors in the adult rat
brain. J Neurosci. 17:5820–5829. 1997.PubMed/NCBI
|
|
52
|
Bonnet H, Filhol O, Truchet I, Brethenou
P, Cochet C, Amalric F and Bouche G: Fibroblast growth factor-2
binds to the regulatory beta subunit of CK2 and directly stimulates
CK2 activity toward nucleolin. J Biol Chem. 271:24781–24787. 1996.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jessberger S, Gage FH, Eisch AJ and Lagace
DC: Making a neuron: Cdk5 in embryonic and adult neurogenesis.
Trends Neurosci. 32:575–582. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Lim ACB, Hou Z, Goh CP and Qi RZ: Protein
kinase CK2 is an inhibitor of the neuronal Cdk5 kinase. J Biol
Chem. 279:46668–46673. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Viñals F, Reiriz J, Ambrosio S, Bartrons
R, Rosa JL and Ventura F: BMP-2 decreases Mash1 stability by
increasing Id1 expression. EMBO J. 23:3527–3537. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Karakas E, Regan MC and Furukawa H:
Emerging structural insights into the function of ionotropic
glutamate receptors. Trends Biochem Sci. 40:328–337. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Cull-Candy SG and Leszkiewicz DN: Role of
distinct NMDA receptor subtypes at central synapses. Sci STKE.
2004:re16–re2004. 2004.PubMed/NCBI
|
|
58
|
Chung HJ, Huang YH, Lau LF and Huganir RL:
Regulation of the NMDA receptor complex and trafficking by
activity-dependent phosphorylation of the NR2B subunit PDZ ligand.
J Neurosci. 24:10248–10259. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sanz-Clemente A, Matta JA, Isaac JT and
Roche KW: Casein kinase 2 regulates the NR2 subunit composition of
synaptic NMDA receptors. Neuron. 67:984–996. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Sommercorn J and Krebs EG: Induction of
casein kinase II during differentiation of 3T3-L1 cells. J Biol
Chem. 262:3839–3843. 1987.PubMed/NCBI
|
|
61
|
Wilhelm N, Kostelnik K, Götz C and
Montenarh M: Protein kinase CK2 is implicated in early steps of the
differentiation of pre-adipocytes into adipocytes. Mol Cell
Biochem. 365:37–45. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Schwind L, Wilhelm N, Kartarius S,
Montenarh M, Gorjup E and Götz C: Protein kinase CK2 is necessary
for the adipogenic differentiation of human mesenchymal stem cells.
Biochim Biophys Acta 1853 (10 Pt A). 2207–2216. 2015.
|
|
63
|
Schwind L, Zimmer AD, Götz C and Montenarh
M: CK2 phosphorylation of C/EBPδ regulates its transcription factor
activity. Int J Biochem Cell Biol. 61:81–89. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Meruvu S, Hugendubler L and Mueller E:
Regulation of adipocyte differentiation by the zinc finger protein
ZNF638. J Biol Chem. 286:26516–26523. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Almalki SG and Agrawal DK: Key
transcription factors in the differentiation of mesenchymal stem
cells. Differentiation. 92:41–51. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Miller PJ, Dietz KN and Hollenbach AD:
Identification of serine 205 as a site of phosphorylation on Pax3
in proliferating but not differentiating primary myoblasts. Protein
Sci. 17:1979–1986. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Dietz KN, Miller PJ and Hollenbach AD:
Phosphorylation of serine 205 by the protein kinase CK2 persists on
Pax3-FOXO1, but not Pax3, throughout early myogenic
differentiation. Biochemistry. 48:11786–11795. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Iyengar AS, Loupe JM, Miller PJ and
Hollenbach AD: Identification of CK2 as the kinase that
phosphorylates Pax3 at Ser209 in early myogenic differentiation.
Biochem Biophys Res Commun. 428:24–30. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Johnson SE, Wang X, Hardy S, Taparowsky EJ
and Konieczny SF: Casein kinase II increases the transcriptional
activities of MRF4 and MyoD independently of their direct
phosphorylation. Mol Cell Biol. 16:1604–1613. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Winter B, Kautzner I, Issinger OG and
Arnold HH: Two putative protein kinase CK2 phosphorylation sites
are important for Myf-5 activity. Biol Chem. 378:1445–1456. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Dick SA, Chang NC, Dumont NA, Bell RA,
Putinski C, Kawabe Y, Litchfield DW, Rudnicki MA and Megeney LA:
Caspase 3 cleavage of Pax7 inhibits self-renewal of satellite
cells. Proc Natl Acad Sci USA. 112:E5246–E5252. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Turowec JP, Duncan JS, Gloor GB and
Litchfield DW: Regulation of caspase pathways by protein kinase
CK2: Identification of proteins with overlapping CK2 and caspase
consensus motifs. Mol Cell Biochem. 356:159–167. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Kathrein KL, Lorenz R, Innes AM, Griffiths
E and Winandy S: Ikaros induces quiescence and T-cell
differentiation in a leukemia cell line. Mol Cell Biol.
25:1645–1654. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Gómez-del Arco P, Maki K and Georgopoulos
K: Phosphorylation controls Ikaros's ability to negatively regulate
the G(1)-S transition. Mol Cell Biol. 24:2797–2807. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Son E, Do H, Joo HM and Pyo S: Induction
of alkaline phosphatase activity by L-ascorbic acid in human
osteoblastic cells: A potential role for CK2 and Ikaros. Nutrition.
23:745–753. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Son YH, Moon SH and Kim J: The protein
kinase 2 inhibitor CX-4945 regulates osteoclast and osteoblast
differentiation in vitro. Mol Cells. 36:417–423. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Siddiqui-Jain A, Drygin D, Streiner N,
Chua P, Pierre F, O'Brien SE, Bliesath J, Omori M, Huser N, Ho C,
et al: CX-4945, an orally bioavailable selective inhibitor of
protein kinase CK2, inhibits prosurvival and angiogenic signaling
and exhibits antitumor efficacy. Cancer Res. 70:10288–10298. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bragdon B, Thinakaran S, Moseychuk O, King
D, Young K, Litchfield DW, Petersen NO and Nohe A: Casein kinase 2
beta-subunit is a regulator of bone morphogenetic protein 2
signaling. Biophys J. 99:897–904. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Bragdon B, Thinakaran S, Moseychuk O,
Gurski L, Bonor J, Price C, Wang L, Beamer WG and Nohe A: Casein
kinase 2 regulates in vivo bone formation through its interaction
with bone morphogenetic protein receptor type Ia. Bone. 49:944–954.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Moseychuk O, Akkiraju H, Dutta J, D'Angelo
A, Bragdon B, Duncan RL and Nohe A: Inhibition of CK2 binding to
BMPRIa induces C2C12 differentiation into osteoblasts and
adipocytes. J Cell Commun Signal. 7:265–278. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Akkiraju H, Bonor J and Nohe A: CK2.1, a
novel peptide, induces articular cartilage formation in vivo. J
Orthop Res. Jun 17–2016.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Akkiraju H, Bonor J, Olli K, Bowen C,
Bragdon B, Coombs H, Donahue LR, Duncan R and Nohe A: Systemic
injection of CK2.3, a novel peptide acting downstream of bone
morphogenetic protein receptor BMPRIa, leads to increased
trabecular bone mass. J Orthop Res. 33:208–215. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Franceschi RT and Iyer BS: Relationship
between collagen synthesis and expression of the osteoblast
phenotype in MC3T3-E1 cells. J Bone Miner Res. 7:235–246. 1992.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Georgopoulos K, Winandy S and Avitahl N:
The role of the Ikaros gene in lymphocyte development and
homeostasis. Annu Rev Immunol. 15:155–176. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Dovat S, Song C, Payne KJ and Li Z:
Ikaros, CK2 kinase, and the road to leukemia. Mol Cell Biochem.
356:201–207. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Song C, Li Z, Erbe AK, Savic A and Dovat
S: Regulation of Ikaros function by casein kinase 2 and protein
phosphatase 1. World J Biol Chem. 2:126–131. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Channavajhala P and Seldin DC: Functional
interaction of protein kinase CK2 and c-Myc in lymphomagenesis.
Oncogene. 21:5280–5288. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kelliher MA, Seldin DC and Leder P: Tal-1
induces T cell acute lymphoblastic leukemia accelerated by casein
kinase IIalpha. EMBO J. 15:5160–5166. 1996.PubMed/NCBI
|
|
89
|
Landesman-Bollag E, Channavajhala PL,
Cardiff RD and Seldin DC: p53 deficiency and misexpression of
protein kinase CK2alpha collaborate in the development of thymic
lymphomas in mice. Oncogene. 16:2965–2974. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Seldin DC and Leder P: Casein kinase II
alpha transgene-induced murine lymphoma: Relation to theileriosis
in cattle. Science. 267:894–897. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Avitahl N, Winandy S, Friedrich C, Jones
B, Ge Y and Georgopoulos K: Ikaros sets thresholds for T cell
activation and regulates chromosome propagation. Immunity.
10:333–343. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ulges A, Klein M, Reuter S, Gerlitzki B,
Hoffmann M, Grebe N, Staudt V, Stergiou N, Bohn T, Brühl TJ, et al:
Protein kinase CK2 enables regulatory T cells to suppress excessive
TH2 responses in vivo. Nat Immunol. 16:267–275. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Ulges A, Witsch EJ, Pramanik G, Klein M,
Birkner K, Bühler U, Wasser B, Luessi F, Stergiou N, Dietzen S, et
al: Protein kinase CK2 governs the molecular decision between
encephalitogenic TH17 cell and Treg cell
development. Proc Natl Acad Sci USA. 113:10145–10150. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Intemann J, Saidu NEB, Schwind L and
Montenarh M: ER stress signaling in ARPE-19 cells after inhibition
of protein kinase CK2 by CX-4945. Cell Signal. 26:1567–1575. 2014.
View Article : Google Scholar : PubMed/NCBI
|