|
1
|
Torre LA, Bray F, Siegel RL, Ferlay J,
Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA
Cancer J Clin. 65:87–108. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Lemjabbar-Alaoui H, Hassan OU, Yang YW and
Buchanan P: Lung cancer: Biology and treatment options. Biochim
Biophys Acta. 1856:189–210. 2015.PubMed/NCBI
|
|
3
|
Ferlay J, Soerjomataram I, Dikshit R, Eser
S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: Cancer
incidence and mortality worldwide: Sources, methods and major
patterns in GLOBOCAN 2012. Int J Cancer. 136:E359–E386. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hirsch FR, Scagliotti GV, Mulshine JL,
Kwon R, Curran WJ Jr, Wu YL and Paz-Ares L: Lung cancer: Current
therapies and new targeted treatments. Lancet. 389:299–311. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Coussens LM and Werb Z: Inflammation and
cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Broz P and Monack DM: Newly described
pattern recognition receptors team up against intracellular
pathogens. Nat Rev Immunol. 13:551–565. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Pinto A, Morello S and Sorrentino R: Lung
cancer and Toll-like receptors. Cancer Immunol Immunother.
60:1211–1220. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Pradere JP, Dapito DH and Schwabe RF: The
Yin and Yang of Toll-like receptors in cancer. Oncogene.
33:3485–3495. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Yang LS, Wu WS, Zhang F, Jiang Y, Fan Y,
Fang HX and Long J: Role of toll-like receptors in lung cancer. J
Recept Signal Transduct Res. 34:342–344. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Rakoff-Nahoum S and Medzhitov R: Toll-like
receptors and cancer. Nat Rev Cancer. 9:57–63. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kay E, Scotland RS and Whiteford JR:
Toll-like receptors: Role in inflammation and therapeutic
potential. Biofactors. 40:284–294. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kawai T and Akira S: The role of
pattern-recognition receptors in innate immunity: Update on
Toll-like receptors. Nat Immunol. 11:373–384. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Balkwill F and Mantovani A: Inflammation
and cancer: Back to Virchow? Lancet. 357:539–545. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Keibel A, Singh V and Sharma MC:
Inflammation, microenvironment, and the immune system in cancer
progression. Curr Pharm Des. 15:1949–1955. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hussain SP and Harris CC: Inflammation and
cancer: An ancient link with novel potentials. Int J Cancer.
121:2373–2380. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Yasmin R, Siraj S, Hassan A, Khan AR,
Abbasi R and Ahmad N: Epigenetic regulation of inflammatory
cytokines and associated genes in human malignancies. Mediators
Inflamm. 2015:2017032015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Payen VL, Porporato PE, Baselet B and
Sonveaux P: Metabolic changes associated with tumor metastasis,
part 1: Tumor pH, glycolysis and the pentose phosphate pathway.
Cell Mol Life Sci. 73:1333–1348. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Bartsch H and Nair J: Chronic inflammation
and oxidative stress in the genesis and perpetuation of cancer:
Role of lipid peroxidation, DNA damage, and repair. Langenbecks
Arch Surg. 391:499–510. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ameille J, Brochard P, Letourneux M, Paris
C and Pairon JC: Asbestos-related cancer risk in patients with
asbestosis or pleural plaques. Rev Mal Respir. 28:e11–e17. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Łagiedo M, Sikora J and Kaczmarek M:
Damage-associated molecular patterns in the course of lung cancer -
A review. Scand J Immunol. 82:95–101. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cherfils-Vicini J, Platonova S, Gillard M,
Laurans L, Validire P, Caliandro R, Magdeleinat P, Mami-Chouaib F,
Dieu-Nosjean MC, Fridman WH, et al: Triggering of TLR7 and TLR8
expressed by human lung cancer cells induces cell survival and
chemoresistance. J Clin Invest. 120:1285–1297. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Droemann D, Albrecht D, Gerdes J, Ulmer
AJ, Branscheid D, Vollmer E, Dalhoff K, Zabel P and Goldmann T:
Human lung cancer cells express functionally active Toll-like
receptor 9. Respir Res. 6:12005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Zhang YB, He FL, Fang M, Hua TF, Hu BD,
Zhang ZH, Cao Q and Liu RY: Increased expression of Toll-like
receptors 4 and 9 in human lung cancer. Mol Biol Rep. 36:1475–1481.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Zhou H, Chen JH, Hu J, Luo YZ, Li F, Xiao
L and Zhong MZ: High expression of Toll-like receptor 5 correlates
with better prognosis in non-small-cell lung cancer: An anti-tumor
effect of TLR5 signaling in non-small cell lung cancer. J Cancer
Res Clin Oncol. 140:633–643. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Li D, Jin Y, Sun Y, Lei J and Liu C:
Knockdown of toll-like receptor 4 inhibits human NSCLC cancer cell
growth and inflammatory cytokine secretion in vitro and in vivo.
Int J Oncol. 45:813–821. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chatterjee S, Crozet L, Damotte D,
Iribarren K, Schramm C, Alifano M, Lupo A, Cherfils-Vicini J, Goc
J, Katsahian S, et al: TLR7 promotes tumor progression,
chemotherapy resistance, and poor clinical outcomes in non-small
cell lung cancer. Cancer Res. 74:5008–5018. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen YC, Hsiao CC, Chen CJ, Chao TY, Leung
SY, Liu SF, Wang CC, Wang TY, Chang JC, Wu CC, et al: Aberrant
Toll-like receptor 2 promoter methylation in blood cells from
patients with pulmonary tuberculosis. J Infect. 69:546–557. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shuto T, Furuta T, Oba M, Xu H, Li JD,
Cheung J, Gruenert DC, Uehara A, Suico MA, Okiyoneda T, et al:
Promoter hypomethylation of Toll-like receptor-2 gene is associated
with increased proinflammatory response toward bacterial
peptidoglycan in cystic fibrosis bronchial epithelial cells. FASEB
J. 20:782–784. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Benakanakere M, Abdolhosseini M, Hosur K,
Finoti LS and Kinane DF: TLR2 promoter hypermethylation creates
innate immune dysbiosis. J Dent Res. 94:183–191. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Porrás A, Kozar S, Russanova V, Salpea P,
Hirai T, Sammons N, Mittal P, Kim JY, Ozato K, Romero R, et al:
Developmental and epigenetic regulation of the human TLR3 gene. Mol
Immunol. 46:27–36. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Takahashi K, Sugi Y, Hosono A and
Kaminogawa S: Epigenetic regulation of TLR4 gene expression in
intestinal epithelial cells for the maintenance of intestinal
homeostasis. J Immunol. 183:6522–6529. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kim TW, Lee SJ, Oh BM, Lee H, Uhm TG, Min
JK, Park YJ, Yoon SR, Kim BY, Kim JW, et al: Epigenetic
modification of TLR4 promotes activation of NF-κB by regulating
methyl-CpG-binding domain protein 2 and Sp1 in gastric cancer.
Oncotarget. 7:4195–4209. 2016.PubMed/NCBI
|
|
33
|
Calin GA and Croce CM: MicroRNA signatures
in human cancers. Nat Rev Cancer. 6:857–866. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Cho WC: OncomiRs: The discovery and
progress of microRNAs in cancers. Mol Cancer. 6:602007. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lu TX, Munitz A and Rothenberg ME:
MicroRNA-21 is up-regulated in allergic airway inflammation and
regulates IL-12p35 expression. J Immunol. 182:4994–5002. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Moschos SA, Williams AE, Perry MM, Birrell
MA, Belvisi MG and Lindsay MA: Expression profiling in vivo
demonstrates rapid changes in lung microRNA levels following
lipopolysaccharide-induced inflammation but not in the
anti-inflammatory action of glucocorticoids. BMC Genomics.
8:2402007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sheedy FJ, Palsson-McDermott E, Hennessy
EJ, Martin C, OLeary JJ, Ruan Q, Johnson DS, Chen Y and ONeill LA:
Negative regulation of TLR4 via targeting of the proinflammatory
tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol.
11:141–147. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Chen XM, Splinter PL, OHara SP and LaRusso
NF: A cellular micro-RNA, let-7i, regulates Toll-like receptor 4
expression and contributes to cholangiocyte immune responses
against Cryptosporidium parvum infection. J Biol Chem.
282:28929–28938. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Li Y, Yang W, Wu B, Liu Y, Li D, Guo Y, Fu
H and Li Y: KDM3A promotes inhibitory cytokines secretion by
participating in TLR4 regulation of Foxp3 transcription in lung
adenocarcinoma cells. Oncol Lett. 13:3529–3537. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Cotter TG: Apoptosis and cancer: The
genesis of a research field. Nat Rev Cancer. 9:501–507. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Hanahan D and Weinberg RA: Hallmarks of
cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hattar K, Savai R, Subtil FS, Wilhelm J,
Schmall A, Lang DS, Goldmann T, Eul B, Dahlem G, Fink L, et al:
Endotoxin induces proliferation of NSCLC in vitro and in vivo: Role
of COX-2 and EGFR activation. Cancer Immunol Immunother.
62:309–320. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang X, Wang C, Shan S, Liu X, Jiang Z
and Ren T: TLR4/ROS/miRNA-21 pathway underlies lipopolysaccharide
instructed primary tumor outgrowth in lung cancer patients.
Oncotarget. 7:42172–42182. 2016.PubMed/NCBI
|
|
44
|
Xu X, Zhu H, Wang T, Sun Y, Ni P, Liu Y,
Tian S, Amoah Barnie P, Shen H, Xu W, et al: Exogenous
high-mobility group box 1 inhibits apoptosis and promotes the
proliferation of lewis cells via RAGE/TLR4-dependent signal
pathways. Scand J Immunol. 79:386–394. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
He W, Liu Q, Wang L, Chen W, Li N and Cao
X: TLR4 signaling promotes immune escape of human lung cancer cells
by inducing immunosuppressive cytokines and apoptosis resistance.
Mol Immunol. 44:2850–2859. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Huang B, Zhao J, Li H, He KL, Chen Y, Chen
SH, Mayer L, Unkeless JC and Xiong H: Toll-like receptors on tumor
cells facilitate evasion of immune surveillance. Cancer Res.
65:5009–5014. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Hattar K, Reinert CP, Sibelius U,
Gökyildirim MY, Subtil FSB, Wilhelm J, Eul B, Dahlem G, Grimminger
F, Seeger W, et al: Lipoteichoic acids from Staphylococcus aureus
stimulate proliferation of human non-small-cell lung cancer cells
in vitro. Cancer Immunol Immunother. 66:799–809. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Xu L, Wang C, Wen Z, Yao X, Liu Z, Li Q,
Wu Z, Xu Z, Liang Y and Ren T: Selective up-regulation of CDK2 is
critical for TLR9 signaling stimulated proliferation of human lung
cancer cell. Immunol Lett. 127:93–99. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Zhou SX, Li FS, Qiao YL, Zhang XQ and Wang
ZD: Toll-like receptor 5 agonist inhibition of growth of A549 lung
cancer cells in vivo in a Myd88 dependent manner. Asian Pac J
Cancer Prev. 13:2807–2812. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Pandya NM, Dhalla NS and Santani DD:
Angiogenesis - a new target for future therapy. Vascul Pharmacol.
44:265–274. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zhao Y and Adjei AA: Targeting
angiogenesis in cancer therapy: Moving beyond vascular endothelial
growth factor. Oncologist. 20:660–673. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Dey G, Bharti R, Ojha PK, Pal I, Rajesh Y,
Banerjee I, Banik P, Parida S, Parekh A, Sen R, et al: Therapeutic
implication of ‘Iturin A’ for targeting MD-2/TLR4 complex to
overcome angiogenesis and invasion. Cell Signal. 35:24–36. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Shin JM, Park JH, Kim HJ, Park IH and Lee
HM: Cigarette smoke extract increases vascular endothelial growth
factor production via TLR4/ROS/MAPKs/NF-kappaB pathway in nasal
fibroblast. Am J Rhinol Allergy. 31:78–84. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Harmey JH, Bucana CD, Lu W, Byrne AM,
McDonnell S, Lynch C, Bouchier-Hayes D and Dong Z:
Lipopolysaccharide-induced metastatic growth is associated with
increased angiogenesis, vascular permeability and tumor cell
invasion. Int J Cancer. 101:415–422. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ren T, Xu L, Jiao S, Wang Y, Cai Y, Liang
Y, Zhou Y, Zhou H and Wen Z: TLR9 signaling promotes tumor
progression of human lung cancer cell in vivo. Pathol Oncol Res.
15:623–630. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hatanaka H, Abe Y, Naruke M, Tokunaga T,
Oshika Y, Kawakami T, Osada H, Nagata J, Kamochi J, Tsuchida T, et
al: Significant correlation between interleukin 10 expression and
vascularization through angiopoietin/TIE2 networks in non-small
cell lung cancer. Clin Cancer Res. 7:1287–1292. 2001.PubMed/NCBI
|
|
57
|
Damiano V, Caputo R, Bianco R, DArmiento
FP, Leonardi A, De Placido S, Bianco AR, Agrawal S, Ciardiello F
and Tortora G: Novel toll-like receptor 9 agonist induces epidermal
growth factor receptor (EGFR) inhibition and synergistic antitumor
activity with EGFR inhibitors. Clin Cancer Res. 12:577–583. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhan Z, Xie X, Cao H, Zhou X, Zhang XD,
Fan H and Liu Z: Autophagy facilitates TLR4- and TLR3-triggered
migration and invasion of lung cancer cells through the promotion
of TRAF6 ubiquitination. Autophagy. 10:257–268. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Chow SC, Gowing SD, Cools-Lartigue JJ,
Chen CB, Berube J, Yoon HW, Chan CH, Rousseau MC, Bourdeau F,
Giannias B, et al: Gram negative bacteria increase non-small cell
lung cancer metastasis via Toll-like receptor 4 activation and
mitogen-activated protein kinase phosphorylation. Int J Cancer.
136:1341–1350. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Li C, Li H, Jiang K, Li J and Gai X: TLR4
signaling pathway in mouse Lewis lung cancer cells promotes the
expression of TGF-β1 and IL-10 and tumor cells migration. Biomed
Mater Eng. 24:869–875. 2014.PubMed/NCBI
|
|
61
|
Zhu J, Luo J, Li Y, Jia M, Wang Y, Huang Y
and Ke S: HMGB1 induces human non-small cell lung cancer cell
motility by activating integrin αvβ3/FAK through TLR4/NF-κB
signaling pathway. Biochem Biophys Res Commun. 480:522–527. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Ren T, Wen ZK, Liu ZM, Liang YJ, Guo ZL
and Xu L: Functional expression of TLR9 is associated to the
metastatic potential of human lung cancer cell: Functional active
role of TLR9 on tumor metastasis. Cancer Biol Ther. 6:1704–1709.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Jiang DS, Wang YW, Jiang J, Li SM, Liang
SZ and Fang HY: MicroRNA-26a involved in Toll-like receptor 9
mediated lung cancer growth and migration. Int J Mol Med.
34:307–312. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xu L, Wen Z, Zhou Y, Liu Z, Li Q, Fei G,
Luo J and Ren T: MicroRNA-7-regulated TLR9 signaling-enhanced
growth and metastatic potential of human lung cancer cells by
altering the phosphoinositide-3-kinase, regulatory subunit 3/Akt
pathway. Mol Biol Cell. 24:42–55. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Magee JA, Piskounova E and Morrison SJ:
Cancer stem cells: Impact, heterogeneity, and uncertainty. Cancer
Cell. 21:283–296. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Visvader JE and Lindeman GJ: Cancer stem
cells in solid tumours: Accumulating evidence and unresolved
questions. Nat Rev Cancer. 8:755–768. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Yeh DW, Huang LR, Chen YW, Huang CF and
Chuang TH: Interplay between inflammation and stemness in cancer
cells: The role of Toll-like receptor signaling. J Immunol Res.
2016:43681012016. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Birnie R, Bryce SD, Roome C, Dussupt V,
Droop A, Lang SH, Berry PA, Hyde CF, Lewis JL, Stower MJ, et al:
Gene expression profiling of human prostate cancer stem cells
reveals a pro-inflammatory phenotype and the importance of
extracellular matrix interactions. Genome Biol. 9:R832008.
View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Garner JM, Fan M, Yang CH, Du Z, Sims M,
Davidoff AM and Pfeffer LM: Constitutive activation of signal
transducer and activator of transcription 3 (STAT3) and nuclear
factor κB signaling in glioblastoma cancer stem cells regulates the
Notch pathway. J Biol Chem. 288:26167–26176. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Rajasekhar VK, Studer L, Gerald W, Socci
ND and Scher HI: Tumour-initiating stem-like cells in human
prostate cancer exhibit increased NF-κB signalling. Nat Commun.
2:1622011. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S,
Chi L, Filion LG, Figeys D and Wang L: β-Catenin and NF-κB
co-activation triggered by TLR3 stimulation facilitates stem
cell-like phenotypes in breast cancer. Cell Death Differ.
22:298–310. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Zhao XL, Lin Y, Jiang J, Tang Z, Yang S,
Lu L, Liang Y, Liu X, Tan J, Hu XG, et al: High-mobility group box
1 released by autophagic cancer-associated fibroblasts maintains
the stemness of luminal breast cancer cells. J Pathol. 243:376–389.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Ren X, Wang F, Ji B and Gao C: TLR7
agonist induced repression of hepatocellular carcinoma via the
TLR7-IKK-NF-κB-IL6 signaling pathway. Oncol Lett. 11:2965–2970.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Sahu U, Choudhury A, Parvez S, Biswas S
and Kar S: Induction of intestinal stemness and tumorigenicity by
aberrant internalization of commensal non-pathogenic E. coli. Cell
Death Dis. 8:e26672017. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Alvarado AG, Thiagarajan PS,
Mulkearns-Hubert EE, Silver DJ, Hale JS, Alban TJ, Turaga SM,
Jarrar A, Reizes O, Longworth MS, et al: Glioblastoma cancer stem
cells evade innate immune suppression of self-renewal through
reduced TLR4 expression. Cell stem cell. 20:450–461. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Finocchiaro G: TLRgeting evasion of immune
pathways in glioblastoma. Cell Stem Cell. 20:422–424. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Herr HW and Morales A: History of bacillus
Calmette-Guerin and bladder cancer: An immunotherapy success story.
J Urol. 179:53–56. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Paavonen J, Naud P, Salmerón J, Wheeler
CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC,
Skinner SR, et al HPV PATRICIA Study Group, : Efficacy of human
papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical
infection and precancer caused by oncogenic HPV types (PATRICIA):
Final analysis of a double-blind, randomised study in young women.
Lancet. 374:301–314. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chang YC, Madkan V, Cook-Norris R, Sra K
and Tyring S: Current and potential uses of imiquimod. South Med J.
98:914–920. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Kanzler H, Barrat FJ, Hessel EM and
Coffman RL: Therapeutic targeting of innate immunity with Toll-like
receptor agonists and antagonists. Nat Med. 13:552–559. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Vacchelli E, Eggermont A, Sautès-Fridman
C, Galon J, Zitvogel L, Kroemer G and Galluzzi L: Trial Watch:
Toll-like receptor agonists for cancer therapy. OncoImmunology.
2:e252382013. View Article : Google Scholar : PubMed/NCBI
|