|
1
|
Brambilla D, Le Droumaguet B, Nicolas J,
Hashemi SH, Wu LP, Moghimi SM, Couvreur P and Andrieux K:
Nanotechnologies for Alzheimer's disease: Diagnosis, therapy, and
safety issues. Nanomedicine. 7:521–540. 2011.PubMed/NCBI
|
|
2
|
Selkoe DJ and Hardy J: The amyloid
hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med.
8:595–608. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Oddo S, Caccamo A, Shepherd JD, Murphy MP,
Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y and LaFerla
FM: Triple-transgenic model of Alzheimer's disease with plaques and
tangles: Intracellular Abeta and synaptic dysfunction. Neuron.
39:409–421. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Glenner GG and Wong CW: Alzheimer's
disease: initial report of the purification ans characterization of
a novel cerebrovascular amyloidprotein. Biochem Biophys Res Commun.
425:534–539. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Selkoe DJ: Alzheimer's disease is a
synaptic failure. Science. 298:789–791. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Audrain M, Fol R, Dutar P, Potier B,
Billard JM, Flament J, Alves S, Burlot MA, Dufayet-Chaffaud G,
Bemelmans AP, et al: Alzheimer's disease-like APP processing in
wild-type mice identifies synaptic defects as initial steps of
disease progression. Mol Neurodegener. 11:52016. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Lacor PN: Advances on the understanding of
the origins of synaptic pathology in AD. Curr Genomics. 8:486–508.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Terry RD: Cell death or synaptic loss in
Alzheimer disease. J Neuropathol Exp Neurol. 59:1118–1119. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Scheff SW, Price DA, Schmitt FA, DeKosky
ST and Mufson EJ: Synaptic alterations in CA1 in mild Alzheimer
disease and mild cognitive impairment. Neurology. 68:1501–1508.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Jacobsen JS, Wu CC, Redwine JM, Comery TA,
Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart
PH, et al: Early-onset behavioral and synaptic deficits in a mouse
model of Alzheimer's disease. Proc Natl Acad Sci USA.
103:5161–5166. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ma T, Hoeffer CA, Capetillo-Zarate E, Yu
F, Wong H, Lin MT, Tampellini D, Klann E, Blitzer RD and Gouras GK:
Dysregulation of the mTOR pathway mediates impairment of synaptic
plasticity in a mouse model of Alzheimer's disease. PLoS One.
5:e128452010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ma T and Klann E: Amyloid β: Linking
synaptic plasticity failure to memory disruption in Alzheimer's
disease. J Neurochem. 120 Suppl 1:140–148. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Malenka RC: The long-term potential of
LTP. Nat Rev Neurosci. 4:923–926. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Kandel ER: The molecular biology of memory
storage: A dialog between genes and synapses. Biosci Rep.
21:565–611. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Esch FS, Keim PS, Beattie EC, Blacher RW,
Culwell AR, Oltersdorf T, McClure D and Ward PJ: Cleavage of
amyloid beta peptide during constitutive processing of its
precursor. Science. 248:1122–1124. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kang J, Lemaire HG, Unterbeck A, Salbaum
JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K and
Müller-Hill B: The precursor of Alzheimer's disease amyloid A4
protein resembles a cell-surface receptor. Nature. 325:733–736.
1987. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Selkoe DJ: The cell biology of
beta-amyloid precursor protein and presenilin in Alzheimer's
disease. Trends Cell Biol. 8:447–453. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Shankar GM, Li S, Mehta TH, Garcia-Munoz
A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere
CA, et al: Amyloid-beta protein dimers isolated directly from
Alzheimer's brains impair synaptic plasticity and memory. Nat Med.
14:837–842. 2008. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Walsh DM, Klyubin I, Shankar GM, Townsend
M, Fadeeva JV, Betts V, Podlisny MB, Cleary JP, Ashe KH, Rowan MJ,
et al: The role of cell-derived oligomers of Abeta in Alzheimer's
disease and avenues for therapeutic intervention. Biochem Soc
Trans. 33:1087–1090. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Hardy J and Selkoe DJ: The amyloid
hypothesis of Alzheimer's disease: Progress and problems on the
road to therapeutics. Science. 297:353–356. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Cheng X, Wu J, Geng M and Xiong J: Role of
synaptic activity in the regulation of amyloid beta levels in
Alzheimer's disease. Neurobiol Aging. 35:1217–1232. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Stéphan A and Phillips AG: A case for a
non-transgenic animal model of Alzheimer's disease. Genes Brain
Behav. 4:157–172. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Lesné S, Koh MT, Kotilinek L, Kayed R,
Glabe CG, Yang A, Gallagher M and Ashe KH: A specific amyloid-beta
protein assembly in the brain impairs memory. Nature. 440:352–357.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Cleary JP, Walsh DM, Hofmeister JJ,
Shankar GM, Kuskowski MA, Selkoe DJ and Ashe KH: Natural oligomers
of the amyloid-beta protein specifically disrupt cognitive
function. Nat Neurosci. 8:79–84. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shankar GM, Bloodgood BL, Townsend M,
Walsh DM, Selkoe DJ and Sabatini BL: Natural oligomers of the
Alzheimer amyloid-beta protein induce reversible synapse loss by
modulating an NMDA-type glutamate receptor-dependent signaling
pathway. J Neurosci. 27:2866–2875. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Selkoe DJ: Soluble oligomers of the
amyloid beta-protein impair synaptic plasticity and behavior. Behav
Brain Res. 192:106–113. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Townsend M, Shankar GM, Mehta T, Walsh DM
and Selkoe DJ: Effects of secreted oligomers of amyloid
beta-protein on hippocampal synaptic plasticity: A potent role for
trimers. J Physiol. 572:477–492. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Hsieh H, Boehm J, Sato C, Iwatsubo T,
Tomita T, Sisodia S and Malinow R: AMPAR removal underlies
Abeta-induced synaptic depression and dendritic spine loss. Neuron.
52:831–843. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Hanson JE, Pare JF, Deng L, Smith Y and
Zhou Q: Altered GluN2B NMDA receptor function and synaptic
plasticity during early pathology in the PS2APP mouse model of
Alzheimer's disease. Neurobiol Dis. 74:254–262. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Jarosz-Griffiths HH, Noble E, Rushworth JV
and Hooper NM: Amyloid-β Receptors: The Good, the Bad, and the
Prion Protein. J Biol Chem. 291:3174–3183. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Xia M, Cheng X, Yi R, Gao D and Xiong J:
The Binding Receptors of Aβ: An Alternative Therapeutic Target for
Alzheimer's Disease. Mol Neurobiol. 53:455–471. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Carrell RW and Gooptu B: Conformational
changes and disease - serpins, prions and Alzheimer's. Curr Opin
Struct Biol. 8:799–809. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Caiati MD, Safiulina VF, Fattorini G,
Sivakumaran S, Legname G and Cherubini E: PrPC controls via protein
kinase A the direction of synaptic plasticity in the immature
hippocampus. J Neurosci. 33:2973–2983. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Glatzel M, Abela E, Maissen M and Aguzzi
A: Extraneural pathologic prion protein in sporadic
Creutzfeldt-Jakob disease. N Engl J Med. 349:1812–1820. 2003.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Laurén J, Gimbel DA, Nygaard HB, Gilbert
JW and Strittmatter SM: Cellular prion protein mediates impairment
of synaptic plasticity by amyloid-beta oligomers. Nature.
457:1128–1132. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Balducci C, Beeg M, Stravalaci M, Bastone
A, Sclip A, Biasini E, Tapella L, Colombo L, Manzoni C, Borsello T,
et al: Synthetic amyloid-beta oligomers impair long-term memory
independently of cellular prion protein. Proc Natl Acad Sci USA.
107:2295–2300. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Raeber AJ, Sailer A, Hegyi I, Klein MA,
Rülicke T, Fischer M, Brandner S, Aguzzi A and Weissmann C: Ectopic
expression of prion protein (PrP) in T lymphocytes or hepatocytes
of PrP knockout mice is insufficient to sustain prion replication.
Proc Natl Acad Sci USA. 96:3987–3992. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kessels HW, Nguyen LN, Nabavi S and
Malinow R: The prion protein as a receptor for amyloid beta.
Nature. 466:E3–E4. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Gimbel DA, Nygaard HB, Coffey EE, Gunther
EC, Laurén J, Gimbel ZA and Strittmatter SM: Memory impairment in
transgenic Alzheimer mice requires cellular prion protein. J
Neurosci. 30:6367–6374. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Benilova I and De Strooper B: Prion
protein in Alzheimer's pathogenesis: A hot and controversial issue.
EMBO Mol Med. 2:289–290. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
An K, Klyubin I, Kim Y, Jung JH, Mably AJ,
O'Dowd ST, Lynch T, Kanmert D, Lemere CA, Finan GM, et al: Exosomes
neutralize synaptic-plasticity-disrupting activity of Aβ assemblies
in vivo. Mol Brain. 6:472013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hu NW, Nicoll AJ, Zhang D, Mably AJ,
O'Malley T, Purro SA, Terry C, Collinge J, Walsh DM and Rowan MJ:
mGlu5 receptors and cellular prion protein mediate
amyloid-β-facilitated synaptic long-term depression in vivo. Nat
Commun. 5:33742014. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Bitel CL, Feng Y, Souayah N and Frederikse
PH: Increased expression and local accumulation of the prion
protein, Alzheimer Aβ peptides, superoxide dismutase 1, and nitric
oxide synthases 1 & 2 in muscle in a rabbit model of diabetes.
BMC Physiol. 10:182010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Um JW, Nygaard HB, Heiss JK, Kostylev MA,
Stagi M, Vortmeyer A, Wisniewski T, Gunther EC and Strittmatter SM:
Alzheimer amyloid-β oligomer bound to postsynaptic prion protein
activates Fyn to impair neurons. Nat Neurosci. 15:1227–1235. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Sivanesan S, Tan A and Rajadas J:
Pathogenesis of Abeta oligomers in synaptic failure. Curr Alzheimer
Res. 10:316–323. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gerlai R: Eph receptors and neural
plasticity. Nat Rev Neurosci. 2:205–209. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Cissé M, Halabisky B, Harris J, Devidze N,
Dubal DB, Sun B, Orr A, Lotz G, Kim DH, Hamto P, et al: Reversing
EphB2 depletion rescues cognitive functions in Alzheimer model.
Nature. 469:47–52. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Kullander K and Klein R: Mechanisms and
functions of Eph and ephrin signalling. Nat Rev Mol Cell Biol.
3:475–486. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
49
|
Yamaguchi Y and Pasquale EB: Eph receptors
in the adult brain. Curr Opin Neurobiol. 14:288–296. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Bliss TV and Collingridge GL: A synaptic
model of memory: Long-term potentiation in the hippocampus. Nature.
361:31–39. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Dalva MB, Takasu MA, Lin MZ, Shamah SM, Hu
L, Gale NW and Greenberg ME: EphB receptors interact with NMDA
receptors and regulate excitatory synapse formation. Cell.
103:945–956. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Drescher U: Excitation at the synapse: Eph
receptors team up with NMDA receptors. Cell. 103:1005–1008. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Henkemeyer M, Orioli D, Henderson JT,
Saxton TM, Roder J, Pawson T and Klein R: Nuk controls pathfinding
of commissural axons in the mammalian central nervous system. Cell.
86:35–46. 1996. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Birgbauer E, Cowan CA, Sretavan DW and
Henkemeyer M: Kinase independent function of EphB receptors in
retinal axon pathfinding to the optic disc from dorsal but not
ventral retina. Development. 127:1231–1241. 2000.PubMed/NCBI
|
|
55
|
Cowan CA, Yokoyama N, Bianchi LM,
Henkemeyer M and Fritzsch B: EphB2 guides axons at the midline and
is necessary for normal vestibular function. Neuron. 26:417–430.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Adams RH, Wilkinson GA, Weiss C, Diella F,
Gale NW, Deutsch U, Risau W and Klein R: Roles of ephrinB ligands
and EphB receptors in cardiovascular development: Demarcation of
arterial/venous domains, vascular morphogenesis, and sprouting
angiogenesis. Genes Dev. 13:295–306. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Grunwald IC, Korte M, Wolfer D, Wilkinson
GA, Unsicker K, Lipp HP, Bonhoeffer T and Klein R:
Kinase-independent requirement of EphB2 receptors in hippocampal
synaptic plasticity. Neuron. 32:1027–1040. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Henderson JT, Georgiou J, Jia Z, Robertson
J, Elowe S, Roder JC and Pawson T: The receptor tyrosine kinase
EphB2 regulates NMDA-dependent synaptic function. Neuron.
32:1041–1056. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Takasu MA, Dalva MB, Zigmond RE and
Greenberg ME: Modulation of NMDA receptor-dependent calcium influx
and gene expression through EphB receptors. Science. 295:491–495.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Walsh DM and Selkoe DJ: Deciphering the
molecular basis of memory failure in Alzheimer's disease. Neuron.
44:181–193. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kamenetz F, Tomita T, Hsieh H, Seabrook G,
Borchelt D, Iwatsubo T, Sisodia S and Malinow R: APP processing and
synaptic function. Neuron. 37:925–937. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Kubagawa H, Burrows PD and Cooper MD: A
novel pair of immunoglobulin-like receptors expressed by B cells
and myeloid cells. Proc Natl Acad Sci USA. 94:5261–5266. 1997.
View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Atwal JK, Pinkston-Gosse J, Syken J,
Stawicki S, Wu Y, Shatz C and Tessier-Lavigne M: PirB is a
functional receptor for myelin inhibitors of axonal regeneration.
Science. 322:967–970. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Takai T: Paired immunoglobulin-like
receptors and their MHC class I recognition. Immunology.
115:433–440. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim T, Vidal GS, Djurisic M, William CM,
Birnbaum ME, Garcia KC, Hyman BT and Shatz CJ: Human LilrB2 is a
β-amyloid receptor and its murine homolog PirB regulates synaptic
plasticity in an Alzheimer's model. Science. 341:1399–1404. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Wang X, Takata T, Bai X, Ou F, Yokono K
and Sakurai T: Pyruvate prevents the inhibition of the long-term
potentiation induced by amyloid-β through protein phosphatase 2A
inactivation. J Alzheimers Dis. 30:665–673. 2012.PubMed/NCBI
|
|
67
|
Lehmann B, Schwab I, Böhm S, Lux A,
Biburger M and Nimmerjahn F: FcγRIIB: A modulator of cell
activation and humoral tolerance. Expert Rev Clin Immunol.
8:243–254. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Baerenwaldt A and Nimmerjahn F: Immune
regulation: FcgammaRIIB - regulating the balance between protective
and autoreactive immune responses. Immunol Cell Biol. 86:482–484.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Bolland S and Ravetch JV: Spontaneous
autoimmune disease in Fc(gamma)RIIB-deficient mice results from
strain-specific epistasis. Immunity. 13:277–285. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Kam TI, Song S, Gwon Y, Park H, Yan JJ, Im
I, Choi JW, Choi TY, Kim J, Song DK, et al: FcγRIIb mediates
amyloid-β neurotoxicity and memory impairment in Alzheimer's
disease. J Clin Invest. 123:2791–2802. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Fearon DT: The complement system and
adaptive immunity. Semin Immunol. 10:355–361. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Adolfsson O, Pihlgren M, Toni N, Varisco
Y, Buccarello AL, Antoniello K, Lohmann S, Piorkowska K, Gafner V,
Atwal JK, et al: An effector-reduced anti-β-amyloid (Aβ) antibody
with unique aβ binding properties promotes neuroprotection and
glial engulfment of Aβ. J Neurosci. 32:9677–9689. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chen Y, Zeng J, Cen L, Chen Y, Wang X, Yao
G, Wang W, Qi W and Kong K: Multiple roles of the p75 neurotrophin
receptor in the nervous system. J Int Med Res. 37:281–288. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Roux PP, Bhakar AL, Kennedy TE and Barker
PA: The p75 neurotrophin receptor activates Akt (protein kinase B)
through a phosphatidylinositol 3-kinase-dependent pathway. J Biol
Chem. 276:23097–23104. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
La Rosa LR, Matrone C, Ferraina C, Panico
MB, Piccirilli S, Di Certo MG, Strimpakos G, Mercuri NB, Calissano
P, D'Amelio M, et al: Age-related changes of hippocampal synaptic
plasticity in AβPP-null mice are restored by NGF through p75NTR. J
Alzheimers Dis. 33:265–272. 2013.PubMed/NCBI
|
|
76
|
Yaar M, Zhai S, Panova I, Fine RE,
Eisenhauer PB, Blusztajn JK and Lopez-Coviella I and Gilchrest BA:
A cyclic peptide that binds p75(NTR) protects neurones from beta
amyloid (1–40)-induced cell death. Neuropathol Appl Neurobiol.
33:533–543. 2007.PubMed/NCBI
|
|
77
|
Yaar M, Arble BL, Stewart KB, Qureshi NH,
Kowall NW and Gilchrest BA: p75NTR antagonistic cyclic peptide
decreases the size of beta amyloid-induced brain inflammation. Cell
Mol Neurobiol. 28:1027–1031. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Chakravarthy B, Gaudet C, Ménard M,
Atkinson T, Brown L, Laferla FM, Armato U and Whitfield J:
Amyloid-beta peptides stimulate the expression of the p75(NTR)
neurotrophin receptor in SHSY5Y human neuroblastoma cells and AD
transgenic mice. J Alzheimers Dis. 19:915–925. 2010.PubMed/NCBI
|
|
79
|
Perez SE, He B, Muhammad N, Oh KJ,
Fahnestock M, Ikonomovic MD and Mufson EJ: Cholinotrophic basal
forebrain system alterations in 3xTg-AD transgenic mice. Neurobiol
Dis. 41:338–352. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zeng F, Lu JJ, Zhou XF and Wang YJ: Roles
of p75NTR in the pathogenesis of Alzheimer's disease: A novel
therapeutic target. Biochem Pharmacol. 82:1500–1509. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Wang YJ, Wang X, Lu JJ, Li QX, Gao CY, Liu
XH, Sun Y, Yang M, Lim Y, Evin G, et al: p75NTR regulates Abeta
deposition by increasing Abeta production but inhibiting Abeta
aggregation with its extracellular domain. J Neurosci.
31:2292–2304. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhou XF and Wang YJ: The p75NTR
extracellular domain: A potential molecule regulating the
solubility and removal of amyloid-β. Prion. 5:161–163. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Costantini C, Rossi F, Formaggio E,
Bernardoni R, Cecconi D and Della-Bianca V: Characterization of the
signaling pathway downstream p75 neurotrophin receptor involved in
beta-amyloid peptide-dependent cell death. J Mol Neurosci.
25:141–156. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Knowles JK, Rajadas J, Nguyen TV, Yang T,
LeMieux MC, Griend L Vander, Ishikawa C, Massa SM, Wyss-Coray T and
Longo FM: The p75 neurotrophin receptor promotes
amyloid-beta(1–42)-induced neuritic dystrophy in vitro and in vivo.
J Neurosci. 29:10627–10637. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Frade JM and López-Sánchez N: A novel
hypothesis for Alzheimer disease based on neuronal tetraploidy
induced by p75 (NTR). Cell Cycle. 9:1934–1941. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Le Novere N and Changeux JP: Molecular
evolution of the nicotinic acetylcholine receptor: an example of
multigene family in excitable cells. J Mol Evol. 40:155–172. 1995.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Nai Q, McIntosh JM and Margiotta JF:
Relating neuronal nicotinic acetylcholine receptor subtypes defined
by subunit composition and channel function. Mol Pharmacol.
63:311–324. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Hogg RC, Raggenbass M and Bertrand D:
Nicotinic acetylcholine receptors: From structure to brain
function. Rev Physiol Biochem Pharmacol. 147:1–46. 2003.PubMed/NCBI
|
|
89
|
Albuquerque EX, Pereira EF, Alkondon M and
Rogers SW: Mammalian nicotinic acetylcholine receptors: From
structure to function. Physiol Rev. 89:73–120. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Perry EK, Morris CM, Court JA, Cheng A,
Fairbairn AF, McKeith IG, Irving D, Brown A and Perry RH:
Alteration in nicotine binding sites in Parkinson's disease, Lewy
body dementia and Alzheimer's disease: Possible index of early
neuropathology. Neuroscience. 64:385–395. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Frazier CJ, Rollins YD, Breese CR, Leonard
S, Freedman R and Dunwiddie TV: Acetylcholine activates an
alpha-bungarotoxin-sensitive nicotinic current in rat hippocampal
interneurons, but not pyramidal cells. J Neurosci. 18:1187–1195.
1998.PubMed/NCBI
|
|
92
|
McQuiston AR and Madison DV: Nicotinic
receptor activation excites distinct subtypes of interneurons in
the rat hippocampus. J Neurosci. 19:2887–2896. 1999.PubMed/NCBI
|
|
93
|
Blum S, Moore AN, Adams F and Dash PK: A
mitogen-activated protein kinase cascade in the CA1/CA2 subfield of
the dorsal hippocampus is essential for long-term spatial memory. J
Neurosci. 19:3535–3544. 1999.PubMed/NCBI
|
|
94
|
Selcher JC, Atkins CM, Trzaskos JM, Paylor
R and Sweatt JD: A necessity for MAP kinase activation in mammalian
spatial learning. Learn Mem. 6:478–490. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Schafe GE, Nadel NV, Sullivan GM, Harris A
and LeDoux JE: Memory consolidation for contextual and auditory
fear conditioning is dependent on protein synthesis, PKA, and MAP
kinase. Learn Mem. 6:97–110. 1999.PubMed/NCBI
|
|
96
|
Atkins CM, Selcher JC, Petraitis JJ,
Trzaskos JM and Sweatt JD: The MAPK cascade is required for
mammalian associative learning. Nat Neurosci. 1:602–609. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bourtchuladze R, Frenguelli B, Blendy J,
Cioffi D, Schutz G and Silva AJ: Deficient long-term memory in mice
with a targeted mutation of the cAMP-responsive element-binding
protein. Cell. 79:59–68. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Mills J, Charest D Laurent, Lam F,
Beyreuther K, Ida N, Pelech SL and Reiner PB: Regulation of amyloid
precursor protein catabolism involves the mitogen-activated protein
kinase signal transduction pathway. J Neurosci. 17:9415–9422.
1997.PubMed/NCBI
|
|
99
|
Criscuolo C, Accorroni A, Domenici L and
Origlia N: Impaired synaptic plasticity in the visual cortex of
mice lacking α7-nicotinic receptor subunit. Neuroscience.
294:166–171. 2015. View Article : Google Scholar : PubMed/NCBI
|