Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
Biomedical Reports
Join Editorial Board Propose a Special Issue
Print ISSN: 2049-9434 Online ISSN: 2049-9442
Journal Cover
April-2017 Volume 6 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2017 Volume 6 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Pluripotent stem cells to hepatocytes, the journey so far (Review)

  • Authors:
    • Anwar A. Palakkan
    • Jyoti Nanda
    • James A. Ross
  • View Affiliations / Copyright

    Affiliations: Tissue Injury and Repair Group, Clinical Sciences, Edinburgh Medical School, University of Edinburgh, EH16 4SB Edinburgh, UK
  • Pages: 367-373
    |
    Published online on: March 1, 2017
       https://doi.org/10.3892/br.2017.867
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Over the past several years, there has been substantial progress in the field of regenerative medicine, which has enabled new possibilities for research and clinical application. For example, there are ongoing efforts directed at generating functional hepatocytes from adult‑derived pluripotent cells for toxicity screening, generating disease models or, in the longer term, for the treatment of liver failure. In the present review, the authors summarise recent developments in regenerative medicine and pluripotent stem cells, the methods and tissues used for reprogramming and the differentiation of induced pluripotent stem cells (iPSCs) into hepatocyte‑like cells. In addition, the hepatic disease models developed using iPSC technologies are discussed, as well as the potential for gene editing.
View Figures
View References

1 

Kleinsmith LJ and GB Jr Pierce: Multipotentiality of single embryonal carcinoma cells. Cancer Res. 24:1544–1551. 1964.PubMed/NCBI

2 

Rosenthal MD, Wishnow RM and Sato GH: In vitro growth and differetiation of clonal populations of multipotential mouse clls derived from a transplantable testicular teratocarcinoma. J Natl Cancer Inst. 44:1001–1014. 1970.PubMed/NCBI

3 

Evans MJ and Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature. 292:154–156. 1981. View Article : Google Scholar : PubMed/NCBI

4 

Martin GR: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA. 78:7634–7638. 1981. View Article : Google Scholar : PubMed/NCBI

5 

Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al: Embryonic stem cell lines derived from human blastocysts. Science. 282:1145–1147. 1998. View Article : Google Scholar : PubMed/NCBI

6 

Mosher JT, Pemberton TJ, Harter K, Wang C, Buzbas EO, Dvorak P, Simón C, Morrison SJ and Rosenberg NA: Lack of population diversity in commonly used human embryonic stem-cell lines. N Engl J Med. 362:183–185. 2010. View Article : Google Scholar : PubMed/NCBI

7 

Tabar V, Tomishima M, Panagiotakos G, Wakayama S, Menon J, Chan B, Mizutani E, Al-Shamy G, Ohta H, Wakayama T and Studer L: Therapeutic cloning in individual parkinsonian mice. Nat Med. 14:379–381. 2008. View Article : Google Scholar : PubMed/NCBI

8 

Takahashi K and Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI

9 

Palakkan AA, Hay DC, Kumar PR Anil, Kumary TV and Ross JA: Liver tissue engineering and cell sources: Issues and challenges. Liver Int. 33:666–676. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K and Daley GQ: Disease-specific induced pluripotent stem cells. Cell. 134:877–886. 2008. View Article : Google Scholar : PubMed/NCBI

11 

Kastenberg ZJ and Odorico JS: Alternative sources of pluripotency: Science, ethics, and stem cells. Transplant Rev (Orlando). 22:215–222. 2008. View Article : Google Scholar : PubMed/NCBI

12 

Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW and Daley GQ: Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 451:141–146. 2008. View Article : Google Scholar : PubMed/NCBI

13 

Montini E, Cesana D, Schmidt M, Sanvito F, Ponzoni M, Bartholomae C, Sergi L Sergi, Benedicenti F, Ambrosi A, Di Serio C, et al: Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol. 24:687–696. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Cattoglio C, Facchini G, Sartori D, Antonelli A, Miccio A, Cassani B, Schmidt M, von Kalle C, Howe S, Thrasher AJ, et al: Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood. 110:1770–1778. 2007. View Article : Google Scholar : PubMed/NCBI

15 

Okita K, Nakagawa M, Hyenjong H, Ichisaka T and Yamanaka S: Generation of mouse induced pluripotent stem cells without viral vectors. Science. 322:949–953. 2008. View Article : Google Scholar : PubMed/NCBI

16 

Stadtfeld M, Nagaya M, Utikal J, Weir G and Hochedlinger K: Induced pluripotent stem cells generated without viral integration. Science. 322:945–949. 2008. View Article : Google Scholar : PubMed/NCBI

17 

Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN and Mostoslavsky G: Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells. 28:64–74. 2010.PubMed/NCBI

18 

Karow M, Chavez CL, Farruggio AP, Geisinger JM, Keravala A, Jung WE, Lan F, Wu JC, Chen-Tsai Y and Calos MP: Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA. Stem Cells. 29:1696–1704. 2011. View Article : Google Scholar : PubMed/NCBI

19 

Loh YH, Yang JC, De Los, Angeles A, Guo C, Cherry A, Rossi DJ, Park IH and Daley GQ: Excision of a viral reprogramming cassette by delivery of synthetic Cre mRNA. Curr Protoc Stem Cell Biol. 5:2012. View Article : Google Scholar : PubMed/NCBI

20 

Solanki A and Lee KB: A step closer to complete chemical reprogramming for generating iPS cells. ChemBioChem. 11:755–757. 2010. View Article : Google Scholar : PubMed/NCBI

21 

Liu J, Brzeszczynska J, Samuel K, Black J, Palakkan A, Anderson RA, Gallagher R and Ross JA: Efficient episomal reprogramming of blood mononuclear cells and differentiation to hepatocytes with functional drug metabolism. Exp Cell Res. 338:203–213. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R and Kim KS: Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 4:472–476. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Miyoshi N, Ishii H, Nagano H, Haraguchi N, Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, et al: Reprogramming of mouse and human cells to pluripotency using mature microRNAs. Cell Stem Cell. 8:633–638. 2011. View Article : Google Scholar : PubMed/NCBI

24 

Warren L, Manos PD, Ahfeldt T, Loh YH, Li H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, et al: Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 7:618–630. 2010. View Article : Google Scholar : PubMed/NCBI

25 

Piao Y, Hung SS, Lim SY, Wong RC and Ko MS: Efficient generation of integration-free human induced pluripotent stem cells from keratinocytes by simple transfection of episomal vectors. Stem Cells Transl Med. 3:787–791. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Diederichs S and Tuan RS: Functional comparison of human-induced pluripotent stem cell-derived mesenchymal cells and bone marrow-derived mesenchymal stromal cells from the same donor. Stem Cells Dev. 23:1594–1610. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Chen MJ, Lu Y, Hamazaki T, Tsai HY, Erger K, Conlon T, Elshikha AS, Li H, Srivastava A, Yao C, et al: Reprogramming adipose tissue-derived mesenchymal stem cells into pluripotent stem cells by a mutant adeno-associated viral vector. Hum Gene Ther Methods. 25:72–82. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Wang Y, Liu J, Tan X, Li G, Gao Y, Liu X, Zhang L and Li Y: Induced pluripotent stem cells from human hair follicle mesenchymal stem cells. Stem Cell Rev. 9:451–460. 2013. View Article : Google Scholar : PubMed/NCBI

29 

Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Araúzo-Bravo MJ, Ruau D, Han DW, Zenke M and Schöler HR: Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature. 454:646–650. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, et al: Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 7:2080–2089. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, et al: Epigenetic memory in induced pluripotent stem cells. Nature. 467:285–290. 2010. View Article : Google Scholar : PubMed/NCBI

32 

Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, et al: Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 13:541–549. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Bilic J and Belmonte JC Izpisua: Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart? Stem Cells. 30:33–41. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Kim K, Zhao R, Doi A, Ng K, Unternaehrer J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, et al: Donor cell type can influence the epigenome and differentiation potential of human induced pluripotent stem cells. Nat Biotechnol. 29:1117–1119. 2011. View Article : Google Scholar : PubMed/NCBI

35 

Blauwkamp TA, Nigam S, Ardehali R, Weissman IL and Nusse R: Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat Commun. 3:10702012. View Article : Google Scholar : PubMed/NCBI

36 

Choi J, Lee S, Mallard W, Clement K, Tagliazucchi GM, Lim H, Choi IY, Ferrari F, Tsankov AM, Pop R, et al: A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nat Biotechnol. 33:1173–1181. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Palakkan AA, Drummond R, Anderson RA, Greenhough S, Tv K, Hay DC and Ross JA: Polarisation and functional characterisation of hepatocytes derived from human embryonic and mesenchymal stem cells. Biomed Rep. 3:626–636. 2015.PubMed/NCBI

38 

Zhao R and Duncan SA: Embryonic development of the liver. Hepatology. 41:956–967. 2005. View Article : Google Scholar : PubMed/NCBI

39 

Zorn AM: Liver development. Stembook. 2008.https://doi.org/10.3824/stembook.1.25.1 View Article : Google Scholar

40 

Schwartz RE, Linehan JL, Painschab MS, Hu WS, Verfaillie CM and Kaufman DS: Defined conditions for development of functional hepatic cells from human embryonic stem cells. Stem Cells Dev. 14:643–655. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Greenhough S, Bradburn H, Gardner J and Hay DC: Development of an embryoid body-based screening strategy for assessing the hepatocyte differentiation potential of human embryonic stem cells following single-cell dissociation. Cell Reprogram. 15:9–14. 2013.PubMed/NCBI

42 

Asahina K, Fujimori H, Shimizu-Saito K, Kumashiro Y, Okamura K, Tanaka Y, Teramoto K, Arii S and Teraoka H: Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells. 9:1297–1308. 2004. View Article : Google Scholar : PubMed/NCBI

43 

Carpenedo RL, Seaman SA and McDevitt TC: Microsphere size effects on embryoid body incorporation and embryonic stem cell differentiation. J Biomed Mater Res A. 94:466–475. 2010.PubMed/NCBI

44 

Cameron K, Lucendo-Villarin B, Szkolnicka D and Hay DC: Serum-free directed differentiation of human embryonic stem cells to hepatocytes. Methods Mol Biol. 1250:105–111. 2015. View Article : Google Scholar : PubMed/NCBI

45 

Villarin BL, Cameron K, Szkolnicka D, Rashidi H, Bates N, Kimber SJ, Flint O, Forbes SJ, Iredale JP, Bradley M and Hay DC: Polyurethane: Stable cell phenotype requires plasticity: Polymer supported directed differentiation reveals a unique gene signature predicting stable hepatocyte performance. Adv Healthc Mater. 4:1820–1825. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Cameron K, Tan R, Schmidt-Heck W, Campos G, Lyall MJ, Wang Y, Lucendo-Villarin B, Szkolnicka D, Bates N, Kimber SJ, et al: Recombinant laminins drive the differentiation and self-organization of hESC-derived hepatocytes. Stem Cell Reports. 5:1250–1262. 2015. View Article : Google Scholar : PubMed/NCBI

47 

D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E and Baetge EE: Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 23:1534–1541. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RC, Snoeys J, Black JR, Wojtacha D, Samuel K, Hannoun Z, et al: Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl Acad Sci USA. 105:12301–12306. 2008. View Article : Google Scholar : PubMed/NCBI

49 

Leclerc E, Kimura K, Shinohara M, Danoy M, Le Gall M, Kido T, Miyajima A, Fujii T and Sakai Y: Comparison of the transcriptomic profile of hepatic human induced pluripotent stem like cells cultured in plates and in a 3D microscale dynamic environment. Genomics. 109:16–26. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Godoy P, Schmidt-Heck W, Natarajan K, Lucendo-Villarin B, Szkolnicka D, Asplund A, Björquist P, Widera A, Stöber R, Campos G, et al: Gene networks and transcription factor motifs defining the differentiation of stem cells into hepatocyte-like cells. J Hepatol. 63:934–942. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Osafune K, Caron L, Borowiak M, Martinez RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR and Melton DA: Marked differences in differentiation propensity among human embryonic stem cell lines. Nat Biotechnol. 26:313–315. 2008. View Article : Google Scholar : PubMed/NCBI

52 

Chang KH, Nelson AM, Fields PA, Hesson JL, Ulyanova T, Cao H, Nakamoto B, Ware CB and Papayannopoulou T: Diverse hematopoietic potentials of five human embryonic stem cell lines. Exp Cell Res. 314:2930–2940. 2008. View Article : Google Scholar : PubMed/NCBI

53 

Tasnim F, Phan D, Toh YC and Yu H: Cost-effective differentiation of hepatocyte-like cells from human pluripotent stem cells using small molecules. Biomaterials. 70:115–125. 2015. View Article : Google Scholar : PubMed/NCBI

54 

Roelandt P, Pauwelyn KA, Sancho-Bru P, Subramanian K, Bose B, Ordovas L, Vanuytsel K, Geraerts M, Firpo M, De Vos R, et al: Human embryonic and rat adult stem cells with primitive endoderm-like phenotype can be fated to definitive endoderm, and finally hepatocyte-like cells. PLoS One. 5:e121012010. View Article : Google Scholar : PubMed/NCBI

55 

Siller R, Greenhough S, Naumovska E and Sullivan GJ: Small-molecule-driven hepatocyte differentiation of human pluripotent stem cells. Stem Cell Reports. 4:939–952. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Hannan NR, Segeritz CP, Touboul T and Vallier L: Production of hepatocyte-like cells from human pluripotent stem cells. Nat Protoc. 8:430–437. 2013. View Article : Google Scholar : PubMed/NCBI

57 

Wilson AA, Ying L, Liesa M, Segeritz CP, Mills JA, Shen SS, Jean J, Lonza GC, Liberti DC, Lang AH, et al: Emergence of a stage-dependent human liver disease signature with directed differentiation of alpha-1 antitrypsin-deficient iPS cells. Stem Cell Reports. 4:873–885. 2015. View Article : Google Scholar : PubMed/NCBI

58 

Kanninen LK, Harjumäki R, Peltoniemi P, Bogacheva MS, Salmi T, Porola P, Niklander J, Smutný T, Urtti A, Yliperttula ML and Lou YR: Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. Biomaterials. 103:86–100. 2016. View Article : Google Scholar : PubMed/NCBI

59 

Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S and Duncan SA: Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 51:297–305. 2010. View Article : Google Scholar : PubMed/NCBI

60 

Pietrangelo A: Inherited metabolic disease of the liver. Curr Opin Gastroenterol. 25:209–214. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J, et al: Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 120:3127–3136. 2010. View Article : Google Scholar : PubMed/NCBI

62 

Yusa K, Rashid ST, Strick-Marchand H, Varela I, Liu PQ, Paschon DE, Miranda E, Ordóñez A, Hannan NR, Rouhani FJ, et al: Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature. 478:391–394. 2011. View Article : Google Scholar : PubMed/NCBI

63 

Ghodsizadeh A, Taei A, Totonchi M, Seifinejad A, Gourabi H, Pournasr B, Aghdami N, Malekzadeh R, Almadani N, Salekdeh GH, et al: Generation of liver disease-specific induced pluripotent stem cells along with efficient differentiation to functional hepatocyte-like cells. Stem Cell Rev. 6:622–632. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Zhang S, Chen S, Li W, Guo X, Zhao P, Xu J, Chen Y, Pan Q, Liu X, Zychlinski D, et al: Rescue of ATP7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet. 20:3176–3187. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Goldring C, Antoine DJ, Bonner F, Crozier J, Denning C, Fontana RJ, Hanley NA, Hay DC, Ingelman-Sundberg M, Juhila S, et al: Stem cell-derived models to improve mechanistic understanding and prediction of human drug-induced liver injury. Hepatology. 65:710–721. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Baxter M, Withey S, Harrison S, Segeritz CP, Zhang F, Atkinson-Dell R, Rowe C, Gerrard DT, Sison-Young R, Jenkins R, et al: Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes. J Hepatol. 62:581–589. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Palakkan AA, Nanda J and Ross JA: Pluripotent stem cells to hepatocytes, the journey so far (Review). Biomed Rep 6: 367-373, 2017.
APA
Palakkan, A.A., Nanda, J., & Ross, J.A. (2017). Pluripotent stem cells to hepatocytes, the journey so far (Review). Biomedical Reports, 6, 367-373. https://doi.org/10.3892/br.2017.867
MLA
Palakkan, A. A., Nanda, J., Ross, J. A."Pluripotent stem cells to hepatocytes, the journey so far (Review)". Biomedical Reports 6.4 (2017): 367-373.
Chicago
Palakkan, A. A., Nanda, J., Ross, J. A."Pluripotent stem cells to hepatocytes, the journey so far (Review)". Biomedical Reports 6, no. 4 (2017): 367-373. https://doi.org/10.3892/br.2017.867
Copy and paste a formatted citation
x
Spandidos Publications style
Palakkan AA, Nanda J and Ross JA: Pluripotent stem cells to hepatocytes, the journey so far (Review). Biomed Rep 6: 367-373, 2017.
APA
Palakkan, A.A., Nanda, J., & Ross, J.A. (2017). Pluripotent stem cells to hepatocytes, the journey so far (Review). Biomedical Reports, 6, 367-373. https://doi.org/10.3892/br.2017.867
MLA
Palakkan, A. A., Nanda, J., Ross, J. A."Pluripotent stem cells to hepatocytes, the journey so far (Review)". Biomedical Reports 6.4 (2017): 367-373.
Chicago
Palakkan, A. A., Nanda, J., Ross, J. A."Pluripotent stem cells to hepatocytes, the journey so far (Review)". Biomedical Reports 6, no. 4 (2017): 367-373. https://doi.org/10.3892/br.2017.867
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team