|
1
|
Kleinsmith LJ and GB Jr Pierce:
Multipotentiality of single embryonal carcinoma cells. Cancer Res.
24:1544–1551. 1964.PubMed/NCBI
|
|
2
|
Rosenthal MD, Wishnow RM and Sato GH: In
vitro growth and differetiation of clonal populations of
multipotential mouse clls derived from a transplantable testicular
teratocarcinoma. J Natl Cancer Inst. 44:1001–1014. 1970.PubMed/NCBI
|
|
3
|
Evans MJ and Kaufman MH: Establishment in
culture of pluripotential cells from mouse embryos. Nature.
292:154–156. 1981. View
Article : Google Scholar : PubMed/NCBI
|
|
4
|
Martin GR: Isolation of a pluripotent cell
line from early mouse embryos cultured in medium conditioned by
teratocarcinoma stem cells. Proc Natl Acad Sci USA. 78:7634–7638.
1981. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Thomson JA, Itskovitz-Eldor J, Shapiro SS,
et al: Embryonic stem cell lines derived from human blastocysts.
Science. 282:1145–1147. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mosher JT, Pemberton TJ, Harter K, Wang C,
Buzbas EO, Dvorak P, Simón C, Morrison SJ and Rosenberg NA: Lack of
population diversity in commonly used human embryonic stem-cell
lines. N Engl J Med. 362:183–185. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Tabar V, Tomishima M, Panagiotakos G,
Wakayama S, Menon J, Chan B, Mizutani E, Al-Shamy G, Ohta H,
Wakayama T and Studer L: Therapeutic cloning in individual
parkinsonian mice. Nat Med. 14:379–381. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Takahashi K and Yamanaka S: Induction of
pluripotent stem cells from mouse embryonic and adult fibroblast
cultures by defined factors. Cell. 126:663–676. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Palakkan AA, Hay DC, Kumar PR Anil, Kumary
TV and Ross JA: Liver tissue engineering and cell sources: Issues
and challenges. Liver Int. 33:666–676. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Park IH, Arora N, Huo H, Maherali N,
Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K and
Daley GQ: Disease-specific induced pluripotent stem cells. Cell.
134:877–886. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Kastenberg ZJ and Odorico JS: Alternative
sources of pluripotency: Science, ethics, and stem cells.
Transplant Rev (Orlando). 22:215–222. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Park IH, Zhao R, West JA, Yabuuchi A, Huo
H, Ince TA, Lerou PH, Lensch MW and Daley GQ: Reprogramming of
human somatic cells to pluripotency with defined factors. Nature.
451:141–146. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Montini E, Cesana D, Schmidt M, Sanvito F,
Ponzoni M, Bartholomae C, Sergi L Sergi, Benedicenti F, Ambrosi A,
Di Serio C, et al: Hematopoietic stem cell gene transfer in a
tumor-prone mouse model uncovers low genotoxicity of lentiviral
vector integration. Nat Biotechnol. 24:687–696. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Cattoglio C, Facchini G, Sartori D,
Antonelli A, Miccio A, Cassani B, Schmidt M, von Kalle C, Howe S,
Thrasher AJ, et al: Hot spots of retroviral integration in human
CD34+ hematopoietic cells. Blood. 110:1770–1778. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Okita K, Nakagawa M, Hyenjong H, Ichisaka
T and Yamanaka S: Generation of mouse induced pluripotent stem
cells without viral vectors. Science. 322:949–953. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Stadtfeld M, Nagaya M, Utikal J, Weir G
and Hochedlinger K: Induced pluripotent stem cells generated
without viral integration. Science. 322:945–949. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Sommer CA, Sommer AG, Longmire TA,
Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton
DN and Mostoslavsky G: Excision of reprogramming transgenes
improves the differentiation potential of iPS cells generated with
a single excisable vector. Stem Cells. 28:64–74. 2010.PubMed/NCBI
|
|
18
|
Karow M, Chavez CL, Farruggio AP,
Geisinger JM, Keravala A, Jung WE, Lan F, Wu JC, Chen-Tsai Y and
Calos MP: Site-specific recombinase strategy to create induced
pluripotent stem cells efficiently with plasmid DNA. Stem Cells.
29:1696–1704. 2011. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Loh YH, Yang JC, De Los, Angeles A, Guo C,
Cherry A, Rossi DJ, Park IH and Daley GQ: Excision of a viral
reprogramming cassette by delivery of synthetic Cre mRNA. Curr
Protoc Stem Cell Biol. 5:2012. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Solanki A and Lee KB: A step closer to
complete chemical reprogramming for generating iPS cells.
ChemBioChem. 11:755–757. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Liu J, Brzeszczynska J, Samuel K, Black J,
Palakkan A, Anderson RA, Gallagher R and Ross JA: Efficient
episomal reprogramming of blood mononuclear cells and
differentiation to hepatocytes with functional drug metabolism. Exp
Cell Res. 338:203–213. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kim D, Kim CH, Moon JI, Chung YG, Chang
MY, Han BS, Ko S, Yang E, Cha KY, Lanza R and Kim KS: Generation of
human induced pluripotent stem cells by direct delivery of
reprogramming proteins. Cell Stem Cell. 4:472–476. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Miyoshi N, Ishii H, Nagano H, Haraguchi N,
Dewi DL, Kano Y, Nishikawa S, Tanemura M, Mimori K, Tanaka F, et
al: Reprogramming of mouse and human cells to pluripotency using
mature microRNAs. Cell Stem Cell. 8:633–638. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Warren L, Manos PD, Ahfeldt T, Loh YH, Li
H, Lau F, Ebina W, Mandal PK, Smith ZD, Meissner A, et al: Highly
efficient reprogramming to pluripotency and directed
differentiation of human cells with synthetic modified mRNA. Cell
Stem Cell. 7:618–630. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Piao Y, Hung SS, Lim SY, Wong RC and Ko
MS: Efficient generation of integration-free human induced
pluripotent stem cells from keratinocytes by simple transfection of
episomal vectors. Stem Cells Transl Med. 3:787–791. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Diederichs S and Tuan RS: Functional
comparison of human-induced pluripotent stem cell-derived
mesenchymal cells and bone marrow-derived mesenchymal stromal cells
from the same donor. Stem Cells Dev. 23:1594–1610. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Chen MJ, Lu Y, Hamazaki T, Tsai HY, Erger
K, Conlon T, Elshikha AS, Li H, Srivastava A, Yao C, et al:
Reprogramming adipose tissue-derived mesenchymal stem cells into
pluripotent stem cells by a mutant adeno-associated viral vector.
Hum Gene Ther Methods. 25:72–82. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang Y, Liu J, Tan X, Li G, Gao Y, Liu X,
Zhang L and Li Y: Induced pluripotent stem cells from human hair
follicle mesenchymal stem cells. Stem Cell Rev. 9:451–460. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Kim JB, Zaehres H, Wu G, Gentile L, Ko K,
Sebastiano V, Araúzo-Bravo MJ, Ruau D, Han DW, Zenke M and Schöler
HR: Pluripotent stem cells induced from adult neural stem cells by
reprogramming with two factors. Nature. 454:646–650. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhou T, Benda C, Dunzinger S, Huang Y, Ho
JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, et al: Generation of
human induced pluripotent stem cells from urine samples. Nat
Protoc. 7:2080–2089. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan
P, Kim J, Aryee MJ, Ji H, Ehrlich LI, et al: Epigenetic memory in
induced pluripotent stem cells. Nature. 467:285–290. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Ohi Y, Qin H, Hong C, Blouin L, Polo JM,
Guo T, Qi Z, Downey SL, Manos PD, Rossi DJ, et al: Incomplete DNA
methylation underlies a transcriptional memory of somatic cells in
human iPS cells. Nat Cell Biol. 13:541–549. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bilic J and Belmonte JC Izpisua: Concise
review: Induced pluripotent stem cells versus embryonic stem cells:
close enough or yet too far apart? Stem Cells. 30:33–41. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kim K, Zhao R, Doi A, Ng K, Unternaehrer
J, Cahan P, Huo H, Loh YH, Aryee MJ, Lensch MW, et al: Donor cell
type can influence the epigenome and differentiation potential of
human induced pluripotent stem cells. Nat Biotechnol. 29:1117–1119.
2011. View
Article : Google Scholar : PubMed/NCBI
|
|
35
|
Blauwkamp TA, Nigam S, Ardehali R,
Weissman IL and Nusse R: Endogenous Wnt signalling in human
embryonic stem cells generates an equilibrium of distinct
lineage-specified progenitors. Nat Commun. 3:10702012. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Choi J, Lee S, Mallard W, Clement K,
Tagliazucchi GM, Lim H, Choi IY, Ferrari F, Tsankov AM, Pop R, et
al: A comparison of genetically matched cell lines reveals the
equivalence of human iPSCs and ESCs. Nat Biotechnol. 33:1173–1181.
2015. View
Article : Google Scholar : PubMed/NCBI
|
|
37
|
Palakkan AA, Drummond R, Anderson RA,
Greenhough S, Tv K, Hay DC and Ross JA: Polarisation and functional
characterisation of hepatocytes derived from human embryonic and
mesenchymal stem cells. Biomed Rep. 3:626–636. 2015.PubMed/NCBI
|
|
38
|
Zhao R and Duncan SA: Embryonic
development of the liver. Hepatology. 41:956–967. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Zorn AM: Liver development. Stembook.
2008.https://doi.org/10.3824/stembook.1.25.1
View Article : Google Scholar
|
|
40
|
Schwartz RE, Linehan JL, Painschab MS, Hu
WS, Verfaillie CM and Kaufman DS: Defined conditions for
development of functional hepatic cells from human embryonic stem
cells. Stem Cells Dev. 14:643–655. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Greenhough S, Bradburn H, Gardner J and
Hay DC: Development of an embryoid body-based screening strategy
for assessing the hepatocyte differentiation potential of human
embryonic stem cells following single-cell dissociation. Cell
Reprogram. 15:9–14. 2013.PubMed/NCBI
|
|
42
|
Asahina K, Fujimori H, Shimizu-Saito K,
Kumashiro Y, Okamura K, Tanaka Y, Teramoto K, Arii S and Teraoka H:
Expression of the liver-specific gene Cyp7a1 reveals hepatic
differentiation in embryoid bodies derived from mouse embryonic
stem cells. Genes Cells. 9:1297–1308. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Carpenedo RL, Seaman SA and McDevitt TC:
Microsphere size effects on embryoid body incorporation and
embryonic stem cell differentiation. J Biomed Mater Res A.
94:466–475. 2010.PubMed/NCBI
|
|
44
|
Cameron K, Lucendo-Villarin B, Szkolnicka
D and Hay DC: Serum-free directed differentiation of human
embryonic stem cells to hepatocytes. Methods Mol Biol.
1250:105–111. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Villarin BL, Cameron K, Szkolnicka D,
Rashidi H, Bates N, Kimber SJ, Flint O, Forbes SJ, Iredale JP,
Bradley M and Hay DC: Polyurethane: Stable cell phenotype requires
plasticity: Polymer supported directed differentiation reveals a
unique gene signature predicting stable hepatocyte performance. Adv
Healthc Mater. 4:1820–1825. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cameron K, Tan R, Schmidt-Heck W, Campos
G, Lyall MJ, Wang Y, Lucendo-Villarin B, Szkolnicka D, Bates N,
Kimber SJ, et al: Recombinant laminins drive the differentiation
and self-organization of hESC-derived hepatocytes. Stem Cell
Reports. 5:1250–1262. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
D'Amour KA, Agulnick AD, Eliazer S, Kelly
OG, Kroon E and Baetge EE: Efficient differentiation of human
embryonic stem cells to definitive endoderm. Nat Biotechnol.
23:1534–1541. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hay DC, Fletcher J, Payne C, Terrace JD,
Gallagher RC, Snoeys J, Black JR, Wojtacha D, Samuel K, Hannoun Z,
et al: Highly efficient differentiation of hESCs to functional
hepatic endoderm requires ActivinA and Wnt3a signaling. Proc Natl
Acad Sci USA. 105:12301–12306. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Leclerc E, Kimura K, Shinohara M, Danoy M,
Le Gall M, Kido T, Miyajima A, Fujii T and Sakai Y: Comparison of
the transcriptomic profile of hepatic human induced pluripotent
stem like cells cultured in plates and in a 3D microscale dynamic
environment. Genomics. 109:16–26. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Godoy P, Schmidt-Heck W, Natarajan K,
Lucendo-Villarin B, Szkolnicka D, Asplund A, Björquist P, Widera A,
Stöber R, Campos G, et al: Gene networks and transcription factor
motifs defining the differentiation of stem cells into
hepatocyte-like cells. J Hepatol. 63:934–942. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Osafune K, Caron L, Borowiak M, Martinez
RJ, Fitz-Gerald CS, Sato Y, Cowan CA, Chien KR and Melton DA:
Marked differences in differentiation propensity among human
embryonic stem cell lines. Nat Biotechnol. 26:313–315. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Chang KH, Nelson AM, Fields PA, Hesson JL,
Ulyanova T, Cao H, Nakamoto B, Ware CB and Papayannopoulou T:
Diverse hematopoietic potentials of five human embryonic stem cell
lines. Exp Cell Res. 314:2930–2940. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Tasnim F, Phan D, Toh YC and Yu H:
Cost-effective differentiation of hepatocyte-like cells from human
pluripotent stem cells using small molecules. Biomaterials.
70:115–125. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Roelandt P, Pauwelyn KA, Sancho-Bru P,
Subramanian K, Bose B, Ordovas L, Vanuytsel K, Geraerts M, Firpo M,
De Vos R, et al: Human embryonic and rat adult stem cells with
primitive endoderm-like phenotype can be fated to definitive
endoderm, and finally hepatocyte-like cells. PLoS One.
5:e121012010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Siller R, Greenhough S, Naumovska E and
Sullivan GJ: Small-molecule-driven hepatocyte differentiation of
human pluripotent stem cells. Stem Cell Reports. 4:939–952. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hannan NR, Segeritz CP, Touboul T and
Vallier L: Production of hepatocyte-like cells from human
pluripotent stem cells. Nat Protoc. 8:430–437. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Wilson AA, Ying L, Liesa M, Segeritz CP,
Mills JA, Shen SS, Jean J, Lonza GC, Liberti DC, Lang AH, et al:
Emergence of a stage-dependent human liver disease signature with
directed differentiation of alpha-1 antitrypsin-deficient iPS
cells. Stem Cell Reports. 4:873–885. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Kanninen LK, Harjumäki R, Peltoniemi P,
Bogacheva MS, Salmi T, Porola P, Niklander J, Smutný T, Urtti A,
Yliperttula ML and Lou YR: Laminin-511 and laminin-521-based
matrices for efficient hepatic specification of human pluripotent
stem cells. Biomaterials. 103:86–100. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Si-Tayeb K, Noto FK, Nagaoka M, Li J,
Battle MA, Duris C, North PE, Dalton S and Duncan SA: Highly
efficient generation of human hepatocyte-like cells from induced
pluripotent stem cells. Hepatology. 51:297–305. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Pietrangelo A: Inherited metabolic disease
of the liver. Curr Opin Gastroenterol. 25:209–214. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Rashid ST, Corbineau S, Hannan N,
Marciniak SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J,
Ahrlund-Richter L, Skepper J, et al: Modeling inherited metabolic
disorders of the liver using human induced pluripotent stem cells.
J Clin Invest. 120:3127–3136. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Yusa K, Rashid ST, Strick-Marchand H,
Varela I, Liu PQ, Paschon DE, Miranda E, Ordóñez A, Hannan NR,
Rouhani FJ, et al: Targeted gene correction of α1-antitrypsin
deficiency in induced pluripotent stem cells. Nature. 478:391–394.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Ghodsizadeh A, Taei A, Totonchi M,
Seifinejad A, Gourabi H, Pournasr B, Aghdami N, Malekzadeh R,
Almadani N, Salekdeh GH, et al: Generation of liver
disease-specific induced pluripotent stem cells along with
efficient differentiation to functional hepatocyte-like cells. Stem
Cell Rev. 6:622–632. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Zhang S, Chen S, Li W, Guo X, Zhao P, Xu
J, Chen Y, Pan Q, Liu X, Zychlinski D, et al: Rescue of ATP7B
function in hepatocyte-like cells from Wilson's disease induced
pluripotent stem cells using gene therapy or the chaperone drug
curcumin. Hum Mol Genet. 20:3176–3187. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Goldring C, Antoine DJ, Bonner F, Crozier
J, Denning C, Fontana RJ, Hanley NA, Hay DC, Ingelman-Sundberg M,
Juhila S, et al: Stem cell-derived models to improve mechanistic
understanding and prediction of human drug-induced liver injury.
Hepatology. 65:710–721. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Baxter M, Withey S, Harrison S, Segeritz
CP, Zhang F, Atkinson-Dell R, Rowe C, Gerrard DT, Sison-Young R,
Jenkins R, et al: Phenotypic and functional analyses show stem
cell-derived hepatocyte-like cells better mimic fetal rather than
adult hepatocytes. J Hepatol. 62:581–589. 2015. View Article : Google Scholar : PubMed/NCBI
|