|
1
|
Itoh N: Hormone-like (endocrine) Fgfs:
Their evolutionary history and roles in development, metabolism,
and disease. Cell Tissue Res. 342:1–11. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kelleher FC, O'Sullivan H, Smyth E, Mc
Dermott R and Viterbo A: Fibroblast growth factor receptors,
developmental corruption and malignant disease. Carcinogenesis.
34:2198–2205. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Evans SJ, Choudary PV, Neal CR, Li JZ,
Vawter MP, Tomita H, Lopez JF, Thompson RC, Meng F, Stead JD, et
al: Dysregulation of the fibroblast growth factor system in major
depression. Proc Natl Acad Sci USA. 101:15506–15511. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Hutley L, Shurety W, Newell F, Mc Geary R,
Pelton N, Grant J, Herington A, Cameron D, Whitehead J and Prins J:
Fibroblast growth factor 1: A key regulator of human adipogenesis.
Diabetes. 53:3097–3106. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Yamagata H, Chen Y, Akatsu H, Kamino K,
Ito J, Yokoyama S, Yamamoto T, Kosaka K, Miki T and Kondo I:
Promoter polymorphism in fibroblast growth factor 1 gene increases
risk of definite Alzheimer's disease. Biochem Biophys Res Commun.
321:320–323. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
van der Walt JM, Noureddine MA, Kittappa
R, Hauser MA, Scott WK, McKay R, Zhang F, Stajich JM, Fujiwara K,
Scott BL, et al: Fibroblast growth factor 20 polymorphisms and
haplotypes strongly influence risk of Parkinson disease. Am J Hum
Genet. 74:1121–1127. 2004. View
Article : Google Scholar : PubMed/NCBI
|
|
7
|
Nishimura T, Nakatake Y, Konishi M and
Itoh N: Identification of a novel FGF, FGF-21, preferentially
expressed in the liver. Biochim Biophys Acta. 1492:203–206. 2000.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Kharitonenkov A, Shiyanova TL, Koester A,
Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers
JS, Owens RA, et al: FGF-21 as a novel metabolic regulator. J Clin
Invest. 115:1627–1635. 2005. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Coskun T, Bina HA, Schneider MA, Dunbar
JD, Hu CC, Chen Y, Moller DE and Kharitonenkov A: Fibroblast growth
factor 21 corrects obesity in mice. Endocrinology. 149:6018–6027.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen
M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, et al:
Fibroblast growth factor 21 reverses hepatic steatosis, increases
energy expenditure, and improves insulin sensitivity in dietinduced
obese mice. Diabetes. 58:250–259. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Berglund ED, Li CY, Bina HA, Lynes SE,
Michael MD, Shanafelt AB, Kharitonenkov A and Wasserman DH:
Fibroblast growth factor 21 controls glycemia via regulation of
hepatic glucose flux and insulin sensitivity. Endocrinology.
150:4084–4093. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Xu J, Stanislaus S, Chinookoswong N, Lau
YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, et al:
Acute glucose-lowering and insulin-sensitizing action of FGF21 in
insulin-resistant mouse models-association with liver and adipose
tissue effects. Am J Physiol Endocrinol Metab. 297:E1105–E1114.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Kharitonenkov A, Wroblewski VJ, Koester A,
Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB and Etgen
GJ: The metabolic state of diabetic monkeys is regulated by
fibroblast growth factor-21. Endocrinology. 148:774–781. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Ogawa Y, Kurosu H, Yamamoto M, Nandi A,
Rosenblatt KP, Goetz R, Eliseenkova AV, Mohammadi M and Kuro-o M:
BetaKlotho is required for metabolic activity of fibroblast growth
factor 21. Proc Natl Acad Sci USA. 104:7432–7437. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Kharitonenkov A, Dunbar JD, Bina HA,
Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF,
Knierman MD, et al: FGF-21/FGF-21 receptor interaction and
activation is determined by betaKlotho. J Cell Physiol. 215:1–7.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Suzuki M, Uehara Y, Motomura-Matsuzaka K,
Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S and
Imamura T: betaKlotho is required for fibroblast growth factor
(FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol
Endocrinol. 22:1006–1014. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Moyers JS, Shiyanova TL, Mehrbod F, Dunbar
JD, Noblitt TW, Otto KA, Reifel-Miller A and Kharitonenkov A:
Molecular determinants of FGF-21 activitysynergy and cross-talk
with PPARgamma signaling. J Cell Physiol. 210:1–6. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Yie J, Hecht R, Patel J, Stevens J, Wang
W, Hawkins N, Steavenson S, Smith S, Winters D, Fisher S, et al:
FGF21 N- and C-termini play different roles in receptor interaction
and activation. FEBS Lett. 583:19–24. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Micanovic R, Raches DW, Dunbar JD, Driver
DA, Bina HA, Dickinson CD and Kharitonenkov A: Different roles of
N- and C- termini in the functional activity of FGF21. J Cell
Physiol. 219:227–234. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Tacer Fon K, Bookout AL, Ding X, Kurosu H,
John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ and
Kliewer SA: Research resource: Comprehensive expression atlas of
the fibroblast growth factor system in adult mouse. Mol Endocrinol.
24:2050–2064. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Adams AC, Coskun T, Rovira AR, Schneider
MA, Raches DW, Micanovic R, Bina HA, Dunbar JD and Kharitonenkov A:
Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLo
S One. 7:e384382012. View Article : Google Scholar
|
|
22
|
Markan KR, Naber MC, Ameka MK, Anderegg
MD, Mangelsdorf DJ, Kliewer SA, Mohammadi M and Potthoff MJ:
Circulating FGF21 is liver derived and enhances glucose uptake
during refeeding and overfeeding. Diabetes. 63:4057–4063. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Badman MK, Pissios P, Kennedy AR, Koukos
G, Flier JS and Maratos-Flier E: Hepatic fibroblast growth factor
21 is regulated by PPARalpha and is a key mediator of hepatic lipid
metabolism in ketotic states. Cell Metab. 5:426–437. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Inagaki T, Dutchak P, Zhao G, Ding X,
Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, et
al: Endocrine regulation of the fasting response by
PPARalpha-mediated induction of fibroblast growth factor 21. Cell
Metab. 5:415–425. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Potthoff MJ, Inagaki T, Satapati S, Ding
X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA
and Burgess SC: FGF21 induces PGC-1alpha and regulates carbohydrate
and fatty acid metabolism during the adaptive starvation response.
Proc Natl Acad Sci USA. 106:10853–10858. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Badman MK, Koester A, Flier JS,
Kharitonenkov A and Maratos-Flier E: Fibroblast growth factor
21-deficient mice demonstrate impaired adaptation to ketosis.
Endocrinology. 150:4931–4940. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li Y, Wong K, Walsh K, Gao B and Zang M:
Retinoic acid receptor β stimulates hepatic induction of fibroblast
growth factor 21 to promote fatty acid oxidation and control
whole-body energy homeostasis in mice. J Biol Chem.
288:10490–10504. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Li Y, Wong K, Giles A, Jiang J, Lee JW,
Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L and Zang M:
Hepatic SIRT1 attenuates hepatic steatosis and controls energy
balance in mice by inducing fibroblast growth factor 21.
Gastroenterology. 146:539–549.e7. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Purushotham A, Schug TT, Xu Q, Surapureddi
S, Guo X and Li X: Hepatocyte-specific deletion of SIRT1 alters
fatty acid metabolism and results in hepatic steatosis and
inflammation. Cell Metab. 9:327–338. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Kim H, Mendez R, Zheng Z, Chang L, Cai J,
Zhang R and Zhang K: Liver-enriched transcription factor CREBH
interacts with peroxisome proliferator-activated receptor α to
regulate metabolic hormone FGF21. Endocrinology. 155:769–782. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Estall JL, Ruas JL, Choi CS, Laznik D,
Badman M, Flier Maratos E, Shulman GI and Spiegelman BM: PGC-1alpha
negatively regulates hepatic FGF21 expression by modulating the
heme/Rev-Erb (alpha) axis. Proc Natl Acad Sci USA. 106:22510–22515.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang Y, Solt LA and Burris TP: Regulation
of FGF21 expression and secretion by retinoic acid receptor-related
orphan receptor alpha. J Biol Chem. 285:15668–15673. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Iizuka K, Takeda J and Horikawa Y: Glucose
induces FGF21 mRNA expression through ChREBP activation in rat
hepatocytes. FEBS Lett. 583:2882–2886. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Shao M, Shan B, Liu Y, Deng Y, Yan C, Wu
Y, Mao T, Qiu Y, Zhou Y, Jiang S, et al: Hepatic IRE1α regulates
fasting-induced metabolic adaptive programs through the
XBP1s-PPARalpha axis signalling. Nat Commun. 5:35282014. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Lin Z, Tian H, Lam KS, Lin S, Hoo RC,
Konishi M, Itoh N, Wang Y, Bornstein SR, Xu A and Li X: Adiponectin
mediates the metabolic effects of FGF21 on glucose homeostasis and
insulin sensitivity in mice. Cell Metab. 17:779–789. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Kurosu H, Choi M, Ogawa Y, Dickson AS,
Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA and
Kuro-o M: Tissue-specific expression of betaKlotho and fibroblast
growth factor (FGF) receptor isoforms determines metabolic activity
of FGF19 and FGF21. J Biol Chem. 282:26687–26695. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Fisher FM, Kleiner S, Douris N, Fox EC,
Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS,
Maratos-Flier E and Spiegelman BM: FGF21 regulates PGC-1α and
browning of white adipose tissues in adaptive thermogenesis. Genes
Dev. 26:271–281. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Holland WL, Adams AC, Brozinick JT, Bui
HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E, Cheng
CC, et al: An FGF21-adiponectin-ceramide axis controls energy
expenditure and insulin action in mice. Cell Metab. 17:790–797.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hondares E, Iglesias R, Giralt A, Gonzalez
FJ, Giralt M, Mampel T and Villarroya F: Thermogenic activation
induces FGF21 expression and release in brown adipose tissue. J
Biol Chem. 286:12983–12990. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ding X, Boney-Montoya J, Owen BM, Bookout
AL, Coate KC, Mangelsdorf DJ and Kliewer SA: βKlotho is required
for fibroblast growth factor 21 effects on growth and metabolism.
Cell Metab. 16:387–393. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Muise ES, Azzolina B, Kuo DW, El-Sherbeini
M, Tan Y, Yuan X, Mu J, Thompson JR, Berger JP and Wong KK: Adipose
fibroblast growth factor 21 is up-regulated by peroxisome
proliferator-activated receptor gamma and altered metabolic states.
Mol Pharmacol. 74:403–412. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang H, Qiang L and Farmer SR:
Identification of a domain within peroxisome proliferator-activated
receptor gamma regulating expression of a group of genes containing
fibroblast growth factor 21 that are selectively repressed by SIRT1
in adipocytes. Mol Cell Biol. 28:188–200. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Zhang X, Yeung DC, Karpisek M, Stejskal D,
Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS and Xu A: Serum
FGF21 levels are increased in obesity and are independently
associated with the metabolic syndrome in humans. Diabetes.
57:1246–1253. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Dutchak PA, Katafuchi T, Bookout AL, Choi
JH, Yu RT, Mangelsdorf DJ and Kliewer SA: Fibroblast growth
factor-21 regulate PPARγ activity and the antidiabetic actions of
thiazolidinediones. Cell. 148:556–567. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chartoumpekis DV, Habeos IG, Ziros PG,
Psyrogiannis AI, Kyriazopoulou VE and Papavassiliou AG: Brown
adipose tissue responds to cold and adrenergic stimulation by
induction of FGF21. Mol Med. 17:736–740. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wu AL, Kolumam G, Stawicki S, Chen Y, Li
J, Zavala-Solorio J, Phamluong K, Feng B, Li L, Marsters S, et al:
Amelioration of type 2 diabetes by antibody-mediated activation of
fibroblast growth factor receptor 1. Sci Transl Med.
3:113ra1262011. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Adams AC, Yang C, Coskun T, Cheng CC,
Gimeno RE, Luo Y and Kharitonenkov A: The breadth of FGF21's
metabolic actions are governed by FGFR1 in adipose tissue. Mol
Metab. 2:31–37. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tan BK, Hallschmid M, Adya R, Kern W,
Lehnert H and Randeva HS: Fibroblast growth factor 21 (FGF21) in
human cerebrospinal fluid: Relationship with plasma FGF21 and body
adiposity. Diabetes. 60:2758–2762. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Liang Q, Zhong L, Zhang J, Wang Y,
Bornstein SR, Triggle CR, Ding H, Lam KS and Xu A: FGF21 maintains
glucose homeostasis by mediating the cross talk between liver and
brain during prolonged fasting. Diabetes. 63:4064–4075. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yang C, Jin C, Li X, Wang F, Mc Keehan WL
and Luo Y: Differential specificity of endocrine FGF19 and FGF21 to
FGFR1 and FGFR4 in complex with KLB. PLoS One. 7:e338702012.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Sarruf DA, Thaler JP, Morton GJ, German J,
Fischer JD, Ogimoto K and Schwartz MW: Fibroblast growth factor 21
action in the brain increases energy expenditure and insulin
sensitivity in obese rats. Diabetes. 59:1817–1824. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hsuchou H, Pan W and Kastin AJ: The
fasting polypeptide FGF21 can enter brain from blood. Peptides.
28:2382–2386. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Owen BM, Ding X, Morgan DA, Coate KC,
Bookout AL, Rahmouni K, Kliewer SA and Mangelsdorf DJ: FGF21 acts
centrally to induce sympathetic nerve activity, energy expenditure,
and weight loss. Cell Metab. 20:670–677. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Owen BM, Bookout AL, Ding X, Lin VY, Atkin
SD, Gautron L, Kliewer SA and Mangelsdorf DJ: FGF21 contributes to
neuroendocrine control of female reproduction. Nat Med.
19:1153–1156. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bookout AL, de Groot MH, Owen BM, Lee S,
Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS,
Mangelsdorf DJ and Kliewer SA: FGF21 regulates metabolism and
circadian behavior by acting on the nervous system. Nat Med.
19:1147–1152. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Arase K, York DA, Shimizu H, Shargill N
and Bray GA: Effects of corticotropin-releasing factor on food
intake and brown adipose tissue thermogenesis in rats. Am J
Physiol. 255:e255–e259. 1988.PubMed/NCBI
|
|
57
|
Adams AC, Cheng CC, Coskun T and
Kharitonenkov A: FGF21 requires βklotho to act in vivo. PLoS One.
7:e499772012. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Johnson CL, Weston JY, Chadi SA, Fazio EN,
Huff MW, Kharitonenkov A, Köester A and Pin CL: Fibroblast growth
factor 21 reduces the severity of cerulein-induced pancreatitis in
mice. Gastroenterology. 137:1795–1804. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Johnson CL, Mehmood R, Laing SW, Stepniak
CV, Kharitonenkov A and Pin CL: Silencing of the fibroblast growth
factor 21 gene is an underlying cause of acinar cell injury in mice
lacking MIST1. Am J Physiol Endocrinol Metab. 306:E916–E928. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Uonaga T, Toyoda K, Okitsu T, Zhuang X,
Yamane S, Uemoto S and Inagaki N: FGF-21 enhances islet engraftment
in mouse syngeneic islet transplantation model. Islets. 2:247–251.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Kharitonenkov A and Adams AC: Inventing
new medicines: The FGF21 story. Mol Metab. 3:221–229. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xu J, Stanislaus S, Chinookoswong N, Lau
YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, et al:
Acute glucose-lowering and insulin-sensitizing action of FGF21 in
insulin resistant mouse models-association with liver and adipose
tissue effects. Am J Physiol Endocrinol Metab. 297:E1105–E1114.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
So WY, Cheng Q, Chen L, Evans-Molina C, Xu
A, Lam KS and Leung PS: High glucose represses β-klotho expression
and impairs fibroblast growth factor 21 action in mouse pancreatic
islets: Involvement of peroxisome proliferator-activated receptor γ
signaling. Diabetes. 62:3751–3759. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tyynismaa H, Carroll CJ, Raimundo N,
Ahola-Erkkilä S, Wenz T, Ruhanen H, Guse K, Hemminki A,
Peltola-Mjøsund KE, Tulkki V, et al: Mitochondrial myopathy induces
a starvationlike response. Hum Mol Genet. 19:3948–3958. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Kim KH, Jeong YT, Oh H, Kim SH, Cho JM,
Kim YN, Kim SS, Kim DH, Hur KY, Kim HK, et al: Autophagy deficiency
leads to protection from obesity and insulin resistance by inducing
Fgf21 as a mitokine. Nat Med. 19:83–92. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Gälman C, Lundåsen T, Kharitonenkov A,
Bina HA, Eriksson M, Hafström I, Dahlin M, Amark P, Angelin B and
Rudling M: The circulating metabolic regulator FGF21 is induced by
prolonged fasting and PPARalpha activation in man. Cell Metab.
8:169–174. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Christodoulides C, Dyson P, Sprecher D,
Tsintzas K and Karpe F: Circulating fibroblast growth factor 21 is
induced by peroxisome proliferator-activated receptor agonists but
not ketosis in man. J Clin Endocrinol Metab. 94:3594–3601. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mráz M, Lacinová Z, Kaválková P,
Haluzíková D, Trachta P, Drápalová J, Hanušová V and Haluzík M:
Serum concentrations of fibroblast growth factor 19 in patients
with obesity and type 2 diabetes mellitus: The influence of acute
hyperinsulinemia, very-low calorie diet and PPAR-α agonist
treatment. Physiol Res. 60:627–636. 2011.PubMed/NCBI
|
|
69
|
Dushay J, Chui PC, Gopalakrishnan GS,
Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML
and Maratos-Flier E: Increased fibroblast growth factor 21 in
obesity and nonalcoholic fatty liver disease. Gastroenterology.
139:456–463. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Laeger T, Henagan TM, Albarado DC, Redman
LM, Bray GA, Noland RC, Münzberg H, Hutson SM, Gettys TW, Schwartz
MW and Morrison CD: FGF21 is an endocrine signal of protein
restriction. J Clin Invest. 124:3913–3922. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Mraz M, Bartlova M, Lacinova Z, Michalsky
D, Kasalicky M, Haluzikova D, Matoulek M, Dostalova I, Humenanska V
and Haluzik M: Serum concentrations and tissue expression of a
novel endocrine regulator fibroblast growth factor-21 in patients
with type 2 diabetes and obesity. Clin Endocrinol (Oxf).
71:369–375. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Chen WW, Li L, Yang GY, Li K, Qi XY, Zhu
W, Tang Y, Liu H and Boden G: Circulating FGF-21 levels in normal
subjects and in newly diagnose patients with type 2 diabetes
mellitus. Exp Clin Endocrinol Diabetes. 116:65–68. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Chavez AO, Molina-Carrion M, Abdul-Ghani
MA, Folli F, Defronzo RA and Tripathy D: Circulating fibroblast
growth factor-21 is elevated in impaired glucose tolerance and type
2 diabetes and correlates with muscle and hepatic insulin
resistance. Diabetes Care. 32:1542–1546. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Fisher FM, Chui PC, Antonellis PJ, Bina
HA, Kharitonenkov A, Flier JS and Maratos-Flier E: Obesity is a
fibroblast growth factor 21 (FGF21) resistant state. Diabetes.
59:2781–2789. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lundasen T, Hunt MC, Nilsson LM, Sanyal S,
Angelin B, Alexson SE and Rudling M: PPARalpha is a key regulator
of hepatic FGF21. Biochem Biophys Res Commun. 360:437–440. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Hale C, Chen MM, Stanislaus S,
Chinookoswong N, Hager T, Wang M, Véniant MM and Xu J: Lack of
overt FGF21 resistance in two mouse models of obesity and insulin
resistance. Endocrinology. 153:69–80. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Maruthur NM: The growing prevalence of
type 2 diabetes: Increased incidence or improved survival? Curr
Diab Rep. 13:786–794. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kharitonenkov A, Beals JM, Micanovic R,
Strifler BA, Rathnachalam R, Wroblewski VJ, Li S, Koester A, Ford
AM, Coskun T, et al: Rational design of a fibroblast growth factor
21-based clinical candidate, LY2405319. PLoS One. 8:e585752013.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Gaich G, Chien JY, Fu H, Glass LC, Deeg
MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK and Moller
DE: The effects of LY2405319, an FGF21 analog, in obese human
subjects with type 2 diabetes. Cell Metab. 18:333–340. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Fisher FM, Estall JL, Adams AC, Antonellis
PJ, Bina HA, Flier JS, Kharitonenkov A, Spiegelman BM and
Maratos-Flier E: Integrated regulation of hepatic metabolism by
fibroblast growth factor 21 (FGF21) in vivo. Endocrinology.
152:2996–3004. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Mai K, Bobbert T, Groth C, Assmann A,
Meinus S, Kraatz J, Andres J, Arafat AM, Pfeiffer AF, Möhlig M and
Spranger J: Physiological modulation of circulating FGF21:
Relevance of free fatty acids and insulin. Am J Physiol Endocrinol
Metab. 299:E126–E130. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Adams AC, Halstead CA, Hansen BC, Irizarry
AR, Martin JA, Myers SR, Reynolds VL, Smith HW, Wroblewski VJ and
Kharitonenkov A: LY2405319, an engineered FGF21 variant, improves
the metabolic status of diabetic monkeys. PLoS One. 8:e657632013.
View Article : Google Scholar : PubMed/NCBI
|