|
1
|
Gardet A, Zheng TS and Viney JL: Genetic
architecture of human fibrotic diseases: Disease risk and disease
progression. Front Pharmacol. 4:1592013. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Vassiliadis E, Veidal SS, Barascuk N,
Mullick JB, Clausen RE, Larsen L, Simonsen H, Larsen DV, Bay-Jensen
AC, Segovia-Silvestre T, et al: Measurement of matrix
metalloproteinase 9-mediated collagen type III degradation fragment
as a marker of skin fibrosis. BMC Dermatol. 11:62011. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Babalola O, Mamalis A, Lev-Tov H and
Jagdeo J: The role of microRNAs in skin fibrosis. Arch Dermatol
Res. 305:763–776. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Jinnin M: Various applications of
microRNAs in skin diseases. J Dermatol Sci. 74:3–8. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Karsdal MA, Manon-Jensen T, Genovese F,
Kristensen JH, Nielsen MJ, Sand JM, Hansen NU, Bay-Jensen AC, Bager
CL, Krag A, et al: Novel insights into the function and dynamics of
extracellular matrix in liver fibrosis. Am J Physiol Gastrointest
Liver Physiol. 308:G807–G830. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Jiang X, Tsitsiou E, Herrick SE and
Lindsay MA: MicroRNAs and the regulation of fibrosis. FEBS J.
277:2015–2021. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Jinnin M: Mechanisms of skin fibrosis in
systemic sclerosis. J Dermatol. 37:11–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Vettori S, Gay S and Distler O: Role of
microRNAs in fibrosis. Open Rheumatol J. 6:130–139. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Villarreal G Jr, Oh DJ, Kang MH and Rhee
DJ: Coordinated regulation of extracellular matrix synthesis by the
microRNA-29 family in the trabecular meshwork. Invest Ophthalmol
Vis Sci. 52:3391–3397. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Wynn TA: Cellular and molecular mechanisms
of fibrosis. J Pathol. 214:199–210. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Almeida MI, Reis RM and Calin GA: MicroRNA
history: Discovery, recent applications, and next frontiers. Mutat
Res. 717:1–8. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Bhaskaran M and Mohan M: MicroRNAs:
History, biogenesis, and their evolving role in animal development
and disease. Vet Pathol. 51:759–774. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Bartel DP: MicroRNAs: Target recognition
and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bushati N and Cohen SM: MicroRNA
functions. Annu Rev Cell Dev Biol. 23:175–205. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Erkan EP, Breakefield XO and Saydam O:
miRNA signature of schwannomas: Possible role(s) of ‘tumor
suppressor’ miRNAs in benign tumors. Oncotarget. 2:265–270. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Senol O, Schaaij-Visser TB, Erkan EP,
Dorfer C, Lewandrowski G, Pham TV, Piersma SR, Peerdeman SM,
Ströbel T, Tannous B, et al: miR-200a-mediated suppression of
non-muscle heavy chain IIb inhibits meningioma cell migration and
tumor growth in vivo. Oncogene. 34:1790–1798. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Li Y, Huang J, Guo M and Zuo X: MicroRNAs
Regulating Signaling Pathways: Potential Biomarkers in Systemic
Sclerosis. Genomics Proteomics Bioinformatics. 13:234–241. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Noetel A, Kwiecinski M, Elfimova N, Huang
J and Odenthal M: microRNA are Central Players in Anti- and
Profibrotic Gene Regulation during Liver Fibrosis. Front Physiol.
3:492012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Cushing L, Kuang PP, Qian J, Shao F, Wu J,
Little F, Thannickal VJ, Cardoso WV and Lü J: miR-29 is a major
regulator of genes associated with pulmonary fibrosis. Am J Respir
Cell Mol Biol. 45:287–294. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kapinas K, Kessler C, Ricks T, Gronowicz G
and Delany AM: miR-29 modulates Wnt signaling in human osteoblasts
through a positive feedback loop. J Biol Chem. 285:25221–25231.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kapinas K, Kessler CB and Delany AM:
miR-29 suppression of osteonectin in osteoblasts: Regulation during
differentiation and by canonical Wnt signaling. J Cell Biochem.
108:216–224. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kriegel AJ, Liu Y, Fang Y, Ding X and
Liang M: The miR-29 family: Genomics, cell biology, and relevance
to renal and cardiovascular injury. Physiol Genomics. 44:237–244.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Maurer B, Stanczyk J, Jüngel A,
Akhmetshina A, Trenkmann M, Brock M, Kowal-Bielecka O, Gay RE,
Michel BA, Distler JH, et al: MicroRNA-29, a key regulator of
collagen expression in systemic sclerosis. Arthritis Rheum.
62:1733–1743. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wang Y, Zhang X, Li H, Yu J and Ren X: The
role of miRNA-29 family in cancer. Eur J Cell Biol. 92:123–128.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhang Y, Ghazwani M, Li J, Sun M, Stolz
DB, He F, Fan J, Xie W and Li S: miR-29b inhibits collagen
maturation in hepatic stellate cells through down-regulating the
expression of HSP47 and lysyl oxidase. Biochem Biophys Res Commun.
446:940–944. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Ruvkun G: Molecular biology. Glimpses of a
tiny RNA world. Science. 294:797–799. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Lee RC, Feinbaum RL and Ambros V: The C.
elegans heterochronic gene lin-4 encodes small RNAs with antisense
complementarity to lin-14. Cell. 75:843–854. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Reinhart BJ, Slack FJ, Basson M,
Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR and Ruvkun G:
The 21-nucleotide let-7 RNA regulates developmental timing in
Caenorhabditis elegans. Nature. 403:901–906. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Carthew RW and Sontheimer EJ: Origins and
mechanisms of miRNAs and siRNAs. Cell. 136:642–655. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Ameres SL and Zamore PD: Diversifying
microRNA sequence and function. Nat Rev Mol Cell Biol. 14:475–488.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Mott JL, Kurita S, Cazanave SC, Bronk SF,
Werneburg NW and Fernandez-Zapico ME: Transcriptional suppression
of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J
Cell Biochem. 110:1155–1164. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Kole AJ, Swahari V, Hammond SM and
Deshmukh M: miR-29b is activated during neuronal maturation and
targets BH3-only genes to restrict apoptosis. Genes Dev.
25:125–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Mott JL, Kobayashi S, Bronk SF and Gores
GJ: mir-29 regulates Mcl-1 protein expression and apoptosis.
Oncogene. 26:6133–6140. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wei W, He HB, Zhang WY, Zhang HX, Bai JB,
Liu HZ, Cao JH, Chang KC, Li XY and Zhao SH: miR-29 targets Akt3 to
reduce proliferation and facilitate differentiation of myoblasts in
skeletal muscle development. Cell Death Dis. 4:e6682013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhu K, Liu L, Zhang J, Wang Y, Liang H,
Fan G, Jiang Z, Zhang CY, Chen X and Zhou G: MiR-29b suppresses the
proliferation and migration of osteosarcoma cells by targeting
CDK6. Protein Cell. 7:434–444. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Roderburg C and Luedde T: Circulating
microRNAs as markers of liver inflammation, fibrosis and cancer. J
Hepatol. 61:1434–1437. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Roderburg C, Urban GW, Bettermann K, Vucur
M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi
M, et al: Micro-RNA profiling reveals a role for miR-29 in human
and murine liver fibrosis. Hepatology. 53:209–218. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Cushing L, Kuang P and Lü J: The role of
miR-29 in pulmonary fibrosis. Biochem Cell Biol. 93:109–118. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Yang T, Liang Y, Lin Q, Liu J, Luo F, Li
X, Zhou H, Zhuang S and Zhang H: miR-29 mediates TGFβ1-induced
extracellular matrix synthesis through activation of PI3K-AKT
pathway in human lung fibroblasts. J Cell Biochem. 114:1336–1342.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Maegdefessel L, Azuma J and Tsao PS:
MicroRNA-29b regulation of abdominal aortic aneurysm development.
Trends Cardiovasc Med. 24:1–6. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
van Rooij E, Sutherland LB, Thatcher JE,
DiMaio JM, Naseem RH, Marshall WS, Hill JA and Olson EN:
Dysregulation of microRNAs after myocardial infarction reveals a
role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci USA. 105:pp.
13027–13032. 2008; View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Wang G, Kwan BC, Lai FM, Chow KM, Li PK
and Szeto CC: Urinary miR-21, miR-29, and miR-93: Novel biomarkers
of fibrosis. Am J Nephrol. 36:412–418. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Kawashita Y, Jinnin M, Makino T, Kajihara
I, Makino K, Honda N, Masuguchi S, Fukushima S, Inoue Y and Ihn H:
Circulating miR-29a levels in patients with scleroderma spectrum
disorder. J Dermatol Sci. 61:67–69. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
O'Reilly S: miRNA-29a in systemic
sclerosis: A valid target. Autoimmunity. 48:511–512. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Peng WJ, Tao JH, Mei B, Chen B, Li BZ,
Yang GJ, Zhang Q, Yao H, Wang BX, He Q, et al: MicroRNA-29: A
potential therapeutic target for systemic sclerosis. Expert Opin
Ther Targets. 16:875–879. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kapinas K and Delany AM: MicroRNA
biogenesis and regulation of bone remodeling. Arthritis Res Ther.
13:2202011. View
Article : Google Scholar : PubMed/NCBI
|
|
47
|
Knabel MK, Ramachandran K, Karhadkar S,
Hwang HW, Creamer TJ, Chivukula RR, Sheikh F, Clark KR, Torbenson
M, Montgomery RA, et al: Systemic Delivery of scAAV8-Encoded
MiR-29a Ameliorates Hepatic Fibrosis in Carbon
Tetrachloride-Treated Mice. PLoS One. 10:e01244112015. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Wang J, Chu ES, Chen HY, Man K, Go MY,
Huang XR, Lan HY, Sung JJ and Yu J: microRNA-29b prevents liver
fibrosis by attenuating hepatic stellate cell activation and
inducing apoptosis through targeting PI3K/AKT pathway. Oncotarget.
6:7325–7338. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Xiao J, Meng XM, Huang XR, Chung AC, Feng
YL, Hui DS, Yu CM, Sung JJ and Lan HY: miR-29 inhibits
bleomycin-induced pulmonary fibrosis in mice. Mol Ther.
20:1251–1260. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Fang Y, Yu X, Liu Y, Kriegel AJ, Heng Y,
Xu X, Liang M and Ding X: miR-29c is downregulated in renal
interstitial fibrosis in humans and rats and restored by HIF-α
activation. Am J Physiol Renal Physiol. 304:F1274–F1282. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Qin W, Chung AC, Huang XR, Meng XM, Hui
DS, Yu CM, Sung JJ and Lan HY: TGF-β/Smad3 signaling promotes renal
fibrosis by inhibiting miR-29. J Am Soc Nephrol. 22:1462–1474.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ciechomska M, O'Reilly S, Suwara M,
Bogunia-Kubik K and van Laar JM: miR-29a reduces TIMP-1 production
by dermal fibroblasts via targeting TGF-β activated kinase 1
binding protein 1, implications for systemic sclerosis. PLoS One.
9:e1155962014. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Jafarinejad-Farsangi S, Farazmand A,
Mahmoudi M, Gharibdoost F, Karimizadeh E, Noorbakhsh F, Faridani H
and Jamshidi AR: MicroRNA-29a induces apoptosis via increasing the
Bax: Bcl-2 ratio in dermal fibroblasts of patients with systemic
sclerosis. Autoimmunity. 48:369–378. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Steele R, Mott JL and Ray RB: MBP-1
upregulates miR-29b that represses Mcl-1, collagens, and
matrix-metalloproteinase-2 in prostate cancer cells. Genes Cancer.
1:381–387. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Takemoto R, Jinnin M, Wang Z, Kudo H,
Inoue K, Nakayama W, Ichihara A, Igata T, Kajihara I, Fukushima S,
et al: Hair miR-29a levels are decreased in patients with
scleroderma. Exp Dermatol. 22:832–833. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zhu H, Luo H and Zuo X: MicroRNAs: Their
involvement in fibrosis pathogenesis and use as diagnostic
biomarkers in scleroderma. Exp Mol Med. 45:e412013. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Pavletic SZ and Fowler DH: Are we making
progress in GVHD prophylaxis and treatment? Hematology Am Soc
Hematol Educ Program. 2012:251–264. 2012.PubMed/NCBI
|
|
58
|
Paczesny S, Raiker N, Brooks S and Mumaw
C: Graft-versus-host disease biomarkers: Omics and personalized
medicine. Int J Hematol. 98:275–292. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Xiao B, Wang Y, Li W, Baker M, Guo J,
Corbet K, Tsalik EL, Li QJ, Palmer SM, Woods CW, et al: Plasma
microRNA signature as a noninvasive biomarker for acute
graft-versus-host disease. Blood. 122:3365–3375. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Atarod S and Dickinson AM: MicroRNAs: The
Missing Link in the Biology of Graft-Versus-Host Disease? Front
Immunol. 4:4202013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hahn JM, McFarland KL, Combs KA and Supp
DM: Partial epithelial-mesenchymal transition in keloid scars:
Regulation of keloid keratinocyte gene expression by transforming
growth factor-β1. Burns Trauma. 4:302016. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang GY, Wu LC, Liao T, Chen GC, Chen YH,
Zhao YX, Chen SY, Wang AY, Lin K, Lin DM, et al: A novel regulatory
function for miR-29a in keloid fibrogenesis. Clin Exp Dermatol.
41:341–345. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Liu Y, Yang D, Xiao Z and Zhang M: miRNA
expression profiles in keloid tissue and corresponding normal skin
tissue. Aesthetic Plast Surg. 36:193–201. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Lian N and Li T: Growth factor pathways in
hypertrophic scars: Molecular pathogenesis and therapeutic
implications. Biomed Pharmacother. 84:42–50. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Ning P, Liu DW, Mao YG, Peng Y, Lin ZW and
Liu DM: Differential expression profile of microRNA between
hyperplastic scar and normal skin]. Zhonghua Yi Xue Za Zhi.
92:692–694. 2012.(In Chinese). PubMed/NCBI
|
|
66
|
Guo J, Lin Q, Shao Y, Rong L and Zhang D:
miR-29b promotes skin wound healing and reduces excessive scar
formation by inhibition of TGF-β1/Smad/CTGF signaling pathway. Can
J Physiol Pharmacol. 95:437–442. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Zhou R, Zhang Q, Zhang Y, Fu S and Wang C:
Aberrant miR-21 and miR-200b expression and its pro-fibrotic
potential in hypertrophic scars. Exp Cell Res. 339:360–366. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Li G, Zhou R, Zhang Q, Jiang B, Wu Q and
Wang C: Fibroproliferative effect of microRNA-21 in hypertrophic
scar derived fibroblasts. Exp Cell Res. 345:93–99. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Mu S, Kang B, Zeng W, Sun Y and Yang F:
MicroRNA-143-3p inhibits hyperplastic scar formation by targeting
connective tissue growth factor CTGF/CCN2 via the Akt/mTOR pathway.
Mol Cell Biochem. 416:99–108. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Gay S, Distler O and Maurer B: Treatment
of scleroderma US Patent US20110218233 A1. Filed September 4, 2009;
issued September 8. 2011
|
|
71
|
Zhu JN, Chen R, Fu YH, Lin QX, Huang S,
Guo LL, Zhang MZ, Deng CY, Zou X, Zhong SL, et al: Smad3
inactivation and miR-29b upregulation mediate the effect of
carvedilol on attenuating the acute myocardium infarction-induced
myocardial fibrosis in rat. PLoS One. 8:e755572013. View Article : Google Scholar : PubMed/NCBI
|